Rice, Malena and Wang, Songhu and Laughlin, Gregory (2022) Origins of Hot Jupiters from the Stellar Obliquity Distribution. The Astrophysical Journal Letters, 926 (2). L17. ISSN 2041-8205
Rice_2022_ApJL_926_L17.pdf - Published Version
Download (1MB)
Abstract
The obliquity of a star, or the angle between its spin axis and the average orbit normal of its companion planets, provides a unique constraint on that system's evolutionary history. Unlike the solar system, where the Sun's equator is nearly aligned with its companion planets, many hot-Jupiter systems have been discovered with large spin–orbit misalignments, hosting planets on polar or retrograde orbits. We demonstrate that, in contrast to stars harboring hot Jupiters on circular orbits, those with eccentric companions follow no population-wide obliquity trend with stellar temperature. This finding can be naturally explained through a combination of high-eccentricity migration and tidal damping. Furthermore, we show that the joint obliquity and eccentricity distributions observed today are consistent with the outcomes of high-eccentricity migration, with no strict requirement to invoke the other hot-Jupiter formation mechanisms of disk migration or in situ formation. At a population-wide level, high-eccentricity migration can consistently shape the dynamical evolution of hot-Jupiter systems.
Item Type: | Article |
---|---|
Subjects: | Pustaka Library > Physics and Astronomy |
Depositing User: | Unnamed user with email support@pustakalibrary.com |
Date Deposited: | 01 May 2023 07:30 |
Last Modified: | 01 Feb 2024 04:32 |
URI: | http://archive.bionaturalists.in/id/eprint/738 |