Predation cues induce predator specific changes in olfactory neurons encoding defensive responses in agile frog tadpoles

Gazzola, Andrea and Ratto, Daniela and Perrucci, Fabio and Occhinegro, Alessandra and Leone, Roberta and Giammello, Francesca and Balestrieri, Alessandro and Pellitteri-Rosa, Daniele and Rossi, Paola and Brandalise, Federico and Eklöv, Peter (2024) Predation cues induce predator specific changes in olfactory neurons encoding defensive responses in agile frog tadpoles. PLOS ONE, 19 (5). e0302728. ISSN 1932-6203

[thumbnail of journal.pone.0302728.pdf] Text
journal.pone.0302728.pdf - Published Version

Download (2MB)

Abstract

Although behavioural defensive responses have been recorded several times in both laboratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct behavioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairomones. We expected chronic treatments to influence the basal neuronal activity of the tadpoles’ mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the number of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conductances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native predators is due to the non-recognition of their olfactory cues.

Item Type: Article
Subjects: Pustaka Library > Multidisciplinary
Depositing User: Unnamed user with email support@pustakalibrary.com
Date Deposited: 06 May 2024 10:35
Last Modified: 06 May 2024 10:35
URI: http://archive.bionaturalists.in/id/eprint/2409

Actions (login required)

View Item
View Item