Ramos-Fernandez, Gabriel and Smith Aguilar, Sandra E. and Krakauer, David C. and Flack, Jessica C. (2020) Collective Computation in Animal Fission-Fusion Dynamics. Frontiers in Robotics and AI, 7. ISSN 2296-9144
pubmed-zip/versions/1/package-entries/frobt-07-00090/frobt-07-00090.pdf - Published Version
Download (2MB)
Abstract
Recent work suggests that collective computation of social structure can minimize uncertainty about the social and physical environment, facilitating adaptation. We explore these ideas by studying how fission-fusion social structure arises in spider monkey (Ateles geoffroyi) groups, exploring whether monkeys use social knowledge to collectively compute subgroup size distributions adaptive for foraging in variable environments. We assess whether individual decisions to stay in or leave subgroups are conditioned on strategies based on the presence or absence of others. We search for this evidence in a time series of subgroup membership. We find that individuals have multiple strategies, suggesting that the social knowledge of different individuals is important. These stay-leave strategies provide microscopic inputs to a stochastic model of collective computation encoded in a family of circuits. Each circuit represents an hypothesis for how collectives combine strategies to make decisions, and how these produce various subgroup size distributions. By running these circuits forward in simulation we generate new subgroup size distributions and measure how well they match food abundance in the environment using transfer entropies. We find that spider monkeys decide to stay or go using information from multiple individuals and that they can collectively compute a distribution of subgroup size that makes efficient use of ephemeral sources of nutrition. We are able to artificially tune circuits with subgroup size distributions that are a better fit to the environment than the observed. This suggests that a combination of measurement error, constraint, and adaptive lag are diminishing the power of collective computation in this system. These results are relevant for a more general understanding of the emergence of ordered states in multi-scale social systems with adaptive properties–both natural and engineered.
Item Type: | Article |
---|---|
Subjects: | Pustaka Library > Mathematical Science |
Depositing User: | Unnamed user with email support@pustakalibrary.com |
Date Deposited: | 29 Jun 2023 05:18 |
Last Modified: | 09 Oct 2023 06:41 |
URI: | http://archive.bionaturalists.in/id/eprint/1295 |