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ABSTRACT 
 

A new theoretical description of a number of hydrodynamic phenomena and paradoxes (such as 
laminar-turbulent transition, Magnus effect, Einstein's tea leaves paradox, drag mechanism, wing 
lift, Karman vortex Street) is proposed. This description is based on the fundamental equations of 
hydrodynamics and corresponding detection of low and high pressure zones in the given fluid flow. 
 

 

Keywords: Hydrodynamic paradox; laminar-turbulent transition; drag mechanism; Magnus effect; 
Karman Vortex Street. 

 

1. INTRODUCTION 
 

A characteristic feature of classical 
hydrodynamics is the presence of a strong, well-
developed mathematical apparatus that allows to 
confirm many experimental results (mainly by 
numerical simulation), and the simultaneous 
absence of a clear understanding at the level of 

"simple physics" of a number of hydrodynamic 
phenomena. The consequence of this fact is a lot 
of the so-called hydrodynamic paradox [1], 
demonstrating to the satisfaction of pupils and 
students "miracles" of the flowing fluid but do not 
receiving a satisfactory physical interpretation. 
Suffice it to mention the two "iconic" phenomena: 
the laminar-turbulent transition and the lift of the 
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wing. In the first case, the critical conditions are 
well known, empirically established, 3D-modeling 
of the transition to turbulent flow regime is 
successfully implemented, but the deduction of 
the critical Reynolds number even in its simplest 
form in the classical theory is missing. In the 
second case, to explain the effect and to facilitate 
the calculations the existence of circulation and 
of the so-called bound vortex around the wing 
was postulated, although their reality is not 
confirmed experimentally. It can be assumed that 
the fundamental laws of hydrodynamics are true, 
but their use in specific situations is not always 
correct. This is especially regard events, where 
an important role is played by the boundary 
conditions. 
 
1.1 Basic Equations and Concept 
 
Here are the basic equations of hydrodynamics 
[2]. First of all, the Navier-Stokes equations, 
which represents the second law of Newton, 
recorded for an elementary volume of fluid: the 
rate of change of momentum is equal to the sum 
of all forces acting on the mass: 
 

2( )D v
F p v

Dt


   

  
                        (1) 

 

where v


 is the speed, p is pressure,  is 

density,   is viscosity of the fluid at a given 

point, F


is a mass force,  is gradient,
2  is 

Laplacian. In the absence of mass forces, with 
zero viscosity and constant density, equation (1) 
is converted to Euler's equation, which in one-
dimensional case (for the current line with a 
coordinate s ) is as follows: 

 

( )v t v v s p s                           

(2) 

 

The integral on the current line in the stationary 

case ( 0v t   ) gives the Bernoulli equation: 

 

2

2

v
p const                                        (3) 

 

An integral part of fluid dynamics (and the 
Navier-Stokes equations) is the continuity 
equation: 
 

0t div v    


                                   (4) 

In the current tube with section S  the continuity 
equation gives the condition of constant mass 
flow: 
 

Sv const                                               (5) 

 
The system of equations must include the 
equation of state for compressible fluids (gases): 
 

p RT  ,                                                (6) 

 

where R is the universal gas constant, T is a 
temperature. 
 
Completeness of a theoretical description is 
provided by the boundary and initial conditions, 
the importance of which can’t be overestimated. 
For example, on the surface of the fixed solids 
the fluid velocity must always be equal to zero. 
 
In accordance with the classical concepts [2,3], 
we will use the terms "critical point" and  
"boundary layer", which are introduced for areas 
of flow-collision with fixed boundaries or 
obstacles. Thus, in case of a fluid falling at right 
angle to a flat surface (Fig. 1), the pressure near 

the critical point K  (where 0v ) in 
accordance with the equation (3) tends to a 

maximum value equal to
2 2v . 

 

 
 
Fig. 1. Fluid flow impinging on a flat surface 
at right angle, spreads to the left and right of 

the critical point K, where pressure is 
maximum 

 

Principal aspect of the concept of "critical point" 
does not change depending on what is the 
nature of the flow: Laminar or turbulent. In the 
latter case, obviously, the initial average speed of 
individual jets subjected to the collision with the 
surface is close to v , and it can be expected that 
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the pressure near the critical point will fluctuate 

correspondingly near the value 
2 2v . To 

ensure evacuation of fluid from the region of jet-
plane collision, the fluid pressure along the solid 
surface should decrease to the left and to the 

right from the point K . 
 

In case of fluid motion parallel to the solid 

surface a boundary layer with thickness   
forms, and some perturbed streams reach the 
area where fluid may experience a deceleration 
to zero speed. This occurs, for example, at the 

critical point K  (Fig. 2), the pressure near it 
increases in accordance with (3), and the jet is 
"reflected" from the wall, choosing a new 
direction depending on the magnitude of a local 
pressure increase and the total pressure 
distribution in the flow in the vicinity of this point. 
The nature of possible interaction of the jet, 
colliding a solid surface, Fig. 3 illustrates, where 
an enlarged scale of supposed surface structure 
is shown. Streams or jets decelerate at the 
micro-irregularities having a corresponding plane 
oriented upstream. On these flat planes the 

zones of local high pressure, proportional
2 2v , 

are formed. 
 

 
 

Fig. 2. Deviation of the individual jet in the 
direction of the boundary layer and solid 

surface. At critical point K the jet decelerates 
 

 
 

Fig. 3. Supposed collision of fluid jets with a 
solid surface on the crystal structure level 

(highly magnified) 

2. THEORETICAL RESULTS AND 
DISCUSSION 

 
Let's see some "iconic" hydrodynamic 
phenomena and paradox, which can be 
interpreted and calculated with ideas on the 
decelerating of individual streams and jets near 
solid surfaces. 
 

2.1 Einstein's Paradox: The Tea Leaves 
Accumulate in the Bottom Center of 
the Glass 

 
The phenomenon, which has attracted the 
attention of the great physicist, was on 
everyone's mind when there were not tea bags. If 
a glass of tea contains tea leaves, then after 
stirring sugar with a spoon all tea leaves 
accumulate at the bottom of a glass at its center. 
This experiment is easy to repeat in either 
cylindrical vessel (e.g., in a pan), filling it with 
water and pouring into water tea leaves or any 
powder having a density slightly higher than the 
density of water. When water is put in rotation, 
the tea leaves realize in its volume a 
corresponding circular motion. During the 
deceleration of water by the walls, tea leaves 
sink to the bottom and actively, as if some 
mysterious force wings them, rush to the center, 
where they are accumulated in an expressive 
hillock! 
 
Einstein himself gave an explanation of his 
paradox [4]. He suggested that the rotating fluid 
particle is subjected to the centrifugal force, 
which initially is balanced by the pressure 
gradient directed towards the center of rotation. 
By the way, due to this gradient, the free surface 
of a rotating liquid has a parabolic shape. Near 
the bottom where the fluid is decelerated, its 
linear velocity decreases, and decreases the 
centrifugal force. A pressure gradient is the same 
as for the higher layers of the fluid. Therefore, in 
the bottom layers the centripetal flow occurs, -- 
Einstein concluded. However, a simple 
experiment is able to refute Einstein's version. It 
is enough to replace the water of a much more 
viscous fluid, such as sunflower oil and the 
paradox disappears: tea leaves accumulate 
nowhere. The viscosity of the oil is almost 40 
times higher than the viscosity of water, and the 
oil rotation in the glass is laminar rather than 
turbulent. How this fact can explain Einstein's 
paradox? 
 
In laminar rotation all current lines are plane-
parallel, the turbulent flow consists of the jets 
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which are deflected upward and downward of 
rotation direction and may face irregularities of 
the bottom surface as shown in Figs. 2, 3. 
Assuming that the water in the vessel is rotated 

with an angular velocity  , each particle 
including particles near the bottom of the vessel 

have a linear velocity V r , where r  is the 
radius of the particle location. Consequently, the 
jet, deviating from its circular path overcomes a 
boundary layer, reach the surface of the bottom 
and create  at the place of collision a local 

increase in pressure equal 
2 2 2r , which is 

greater, the larger the radius of rotation r . The 
corresponding pressure gradient, providing the 
appropriate force, is directed to the center and is 

equal
2r . It decreases at the deceleration of 

fluid rotation, remaining non zero, and is present 
only in the vicinity of the bottom surface. 
Therefore the centripetal movement of tea leaves 
develops, when they begin to touch the bottom 
(this is clearly seen in the experiment in a wide 

pan). While   is large and tea leaves are 
suspended, there are no aspiration to the center. 
 
2.2 Magnus Effect 
 
Let’s analyze the well-known hydrodynamic 
phenomenon that occurs when fluid flows around 
a rotating body. If the body has a circular shape 
and is not fixed (for example, a football or a 
tennis ball), it is deflected due to its rotation to 
the direction perpendicular to the flow. There is a 
Magnus force, which is explained by the 
difference in velocity of fluid at the top and 
bottom of the body (Fig. 4) and by the Bernoulli 
equation: pressure is less where the flow and 
rotation velocities are summed. The correctness 
of the use of Bernoulli's law in this version is not 
obvious. Let us show how to interpret the 
Magnus effect, considering only the deceleration 
of jets on the surface of a rotating body. 

 

 
 
Fig. 4. To illustrate Magnus effect: A rotating 

body and the incoming fluid flow 

At the point K  the incoming flow meets the 

surface of a rotating body with overall speed

( )V R . There is, probably, as shown in Fig. 

3. At critical points (in the coordinate system 
associated with the body) fluid velocity falls to 
zero and the pressure in accordance with 
Bernoulli's equation (3) is increased by an 

amount equal
2( ) / 2V R  . At the bottom 

pointK  the velocity of collision of body surface 

and the flow is equal to V R  and a 

corresponding increase in pressure is 
2( ) / 2V R  . Obviously, it is smaller by the 

value 2 V R   than at the top pointK . The 

maximum pressure difference will exist between 
the upper and lower points. At the remaining 
points of the upper half of the body facing the 
flow, the overpressure as a result of fluid 
decelerating will also be larger than at the bottom 
half. Thus, the Magnus force, in our view, is 
really due to Bernoulli's law in the part where it 
connects local fluid decelerating and the 
corresponding pressure increase. 
 

2.3 Laminar-turbulent Transition 
 
The effect of transformation of flow velocity in a 
local increase in pressure in the zones of 
deceleration of the individual jets (at the 
boundaries and obstacles) is able to originate 
reverse currents and eddies. The result can be a 
laminar-turbulent transition. For the first time this 
mechanism for Poiseuille flow in a pipe has been 
proposed in [5]. We reproduce below the basic 
idea of this analysis, and then apply it to the case 
of laminar-turbulent boundary layer transition. 
 
We assume that in any laminar flow, there are 
disturbed streams caused by a variety of 
irregularities or obstacles, for example, for the 
pipe flow the conditions of the entrance of fluid 
into the inlet are principal. Here, as in [5], we 
consider the heterogeneity as an annular 

aperture with width h , similar to that used in 
experimental study [6] (Fig. 5). 
 

We assume that the fluid streams at a velocity 

( )u h  deviate the ring diaphragm and face the 

opposite wall of the pipe. For simplicity and 
clarity, we assume that isolate fluid jet moves as 
a single body, and on its way to the collision with 
the wall is not experiencing any of viscous friction 

or resistance. So at the point K  of collision with 
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the wall where 0u   the fluid pressure in the jet 

will rise by the value 
2 ( ) / 2u h . The reducing 

of the flow pressure at distance from the 

diaphragm to the point K  is equal
2dp R h

dx tg


. If 

the overpressure at point K exceeds this 
pressure drop, it is possible to reverse the flow 

from the point K  back to the diaphragm, which 
can be transformed into the vortex. If we denote 
the relative magnitude of heterogeneity k , where 

/k h R , the condition of the appearance of 
counter-flow can be obtained for the Poiseuille 
flow and the corresponding critical Reynolds 
number can be derived [5]: 

                               

2

2 8
Re Re

(2 )
cr

RU

k k tg



 
  

  

     (7) 

 

where U is the average velocity of the flow,   is 

viscosity of the fluid,   is an average angle of jet 
deflection. Note that for small inhomogeneity

( , 1)h R k  , we obtain the dependence of 

Recr ~
2h , which was discovered 

experimentally [6]. 
 

 
 

Fig. 5. Poiseuille flow in a pipe with radius R . 
The jets are deflected by ring diaphragm with 

width h  
 

In the case of boundary layer a similar approach 
may be applied. Let there be a steady flow of 
fluid along the plane solid surface and the 

boundary layer with thickness   (Fig. 6). 
 

To calculate the critical Reynolds number, it is 
necessary to estimate the pressure gradient

p x  , which provides steady flow of fluid in the 

x direction. We use the classical approach. We 
mark out in the direction of flow in the boundary 

layer one fluid strip with length l , width d  and 

thickness . It is subjected to the force equal 

p
d l
x





 which counterbalances the force of 

viscous friction, equal U
ld


. Equating both 

forces, we obtain the pressure gradient: 

2

p U

x




 


that naturally agrees with Navier-

Stokes equation (1). The pressure increase at 
critical point B due to stream decelerating is

2 / 2U , and the corresponding decrease of the 

pressure in the flow at distance AB is equal to
p

x tg








. Consequently, we obtain the condition 

of reverse-flow with the critical Reynolds number 

determined by the thickness  of boundary 
layer: 
 

2
Re Recr

U

tg



 
                             (8) 

 
Thus, the threshold of the onset of turbulence, 
that is the critical Reynolds number, in the case 
of the boundary layer is determined by the level 
of flow disturbance, characterized by the 
deflection angle . 
 

 
 

Fig. 6. The flow along a flat surface with an 
individual stream deflected in the boundary 

layer with thickness   
 

2.4 The Flow in the Pipe 
 
Any real fluid flow - whether the flow of water or 
air - always starts somewhere and ends 
somewhere. Accelerated zones throughout the 
region are replaced by the deceleration zones. 
The pressure in the flow responds to the flow 
rate factor in accordance with a whole set of laws 
and equations. Among them the Bernoulli law 
perhaps the main but not the only one. Two laws 
"work in tandem" in the hydrodynamic 
phenomena: Bernoulli's law and the law of mass 
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conservation, which are embodied in the 
corresponding equations. Proper and correct 
application of these laws allows to solve many of 
the hydrodynamic paradox. To better understand 
the physical nature of the hydrodynamic 
equations, consider a trivial, at first glance, the 
flow of fluid in the tube (Fig. 7). 
 

 
 

Fig. 7. The fluid flow in a pipe with a 
contraction and expansion. The pressure on 

the inlet and outlet of the pipe is kept 
constant. The lower graph is the expected 

pressure distribution at different times. Black 
color is the pressure at the initial moment. 

Blue color is the pressure in a steady stream 
 

For the initial time ( 0t  ) the pressure drop is 
constant along the entire pipe (it is set with the 
speed of sound). With the acceleration of fluid its 
pressure begins to change. Initially, all fluid 
moves at the same speed v , but the total flow 

vS  (where S is the section) throughout has to 

be different, it is equal to the mass of fluid flowing 
in one second through a given section. Hence, in 
the narrowing portion of the tube, where S
decreases, the fluid tends to compress and it 
tends to expand in the expanding part. 
Therefore, in the left side of the pipe the pressure 
increases, and in the right it falls (red line on Fig. 
7). The pressure drop in the narrow part of the 
tube increases, so fluid is accelerated. The 
pressure in the expanding part is aligned, the 

fluid slows down there. Next, the Navier-Stokes 
equations and the continuity equation are 
adjusted to each other, the pressure reduction 
factor in the narrow part of the tube plays a 
leading role. As a result the pressure gradient in 
the left part increases to accelerate fluid to "slip" 
through the narrow section of pipe, and pressure 
gradient on the right side changes sign to 
decelerate fluid and make its speed in 
accordance with the flow in the wide part of the 
tube (green and blue line, Fig. 7). Strictly 
speaking, the Bernoulli equation in this case is 
not correct to use, because of the presence of 
frictional forces, but it gives a good quality 
estimation if the flow through the tube is not 
changed. The speed in this case is inversely 
proportional to the cross section of the pipe, and 

a stationary pressure will correspond to 
2 / 2v . 

If, for example, a narrow section S where the 

flow velocity is V , is followed by the extension of 

pipe cross section until 0S , the expected 

pressure drop p  in the narrowest part will be 

equal (ignoring friction): 
  

2
2

0

[( ) 1]
2

V S
p

S


                                  (9) 

 

Equation (9) is valid for an incompressible fluid, 
when the frictional losses (laminar or turbulent) 
are negligible. The air friction is small, but the air 
density is directly related to its pressure via the 
equation of state (6), which, strictly speaking, can 
not be ignored. Let’s illustrate these 
particularities in the theoretical analysis of the 
well-known hydrodynamic paradox: "the behavior 
of the paper cone in a funnel with an air blowing 
[1]." 
 

If you put inside of the glass funnel a paper cone 
of the appropriate form (Fig. 8) and blow into the 
tube, the air stream does not eject a cone out: 
On the contrary, the cone is drawn into the funnel 
even if the last is directed down. 
 

Let the air flow entering the funnel tube to be 

constant and equal M . The same flow is stored 
inside funnel, where its cross section has an 
annular shape and is approximately equal to 

2 2 2( ) 2 ( )r R r r R R          (Fig. 8). 

The pressure at the outlet of the funnel is equal 

to 0 0p RT , the average air velocity is 0V . At 

the apex of the cone ( 0)s   the corresponding 

flow parameters are equal 1 1 1, ,p V . Consider 



 
 
 
 

Nechayev; PSIJ, 11(1): 1-11, 2016; Article no.PSIJ.26624 
 
 

 
7 
 

the movement of air in the absence of friction 
along the current line s  (Fig. 8). Integrating the 
equation (1) and using equations (4) - (6), we 
obtain the Bernoulli equation in our case: 
 

( )
0

d d v
RT ds vds

ds ds

 
                   (10) 

 

Given that sinr s  , we can determine the air 
density and velocity using a system of two 
equations (11)-(12) that can be solved iteratively. 
 

0

( )
1/

v
RT vds

s


 


 

                     (11) 

 

22 sin ( )

M
v

s R R


  


  
                (12) 

 
From these equations we can deduce, that the 
pressure on the side surface of the paper cone is 

always less than atmospheric pressure 0p  as 

( )
0

v

s





, and its maximum drop (near the 

apex) will be the greater, the larger square of the 

velocity 1V  , the smaller R and the larger outlet 

radius 0R . 
 

 
 

Fig. 8. The funnel with a paper cone inside. 
Air enters the funnel tube and flows through 

the gap with width R  between the walls of 
the funnel and a paper cone 

 

2.5 The Drag Mechanism 
 
When fluid flows around the obstacle, it 
surrounds it with pressure, and much depends 
on how this pressure is distributed. The plane 
rises into the air, dolphin catches ship, soccer 

ball flies into the goal, a tornado tears off the 
roof. The behavior of the fluid is always natural. 
Let's try to understand how these hydrodynamic 
laws can work in the simplest cases. 
 

Let's start with the flow around a flat plate       
(Fig. 9). 
 

 
 

Fig. 9. A plate streamlined with a constant 
flow of average speed V. At the edges of the 
plate speed is increased. At the critical point 

K the pressure is maximum 
 

The incoming fluid flow goes around the plate. In 
order to satisfy the mass conservation law, it 
should accelerate at the edges of the plate as if 

the flow is narrowed and 1V V . Behind the 

plate the flow begins to spread, and at some 
distance from the plate the velocity of all jets 
becomes equal to V again. Consequently, the 
speed of jets passing near the center of the plate 
at first increases and then decreases. This 
process can be provided by reducing the 
pressure on the edges of the plate (due to the 
reasons discussed above in the case of fluid flow 
in the narrow and expanding pipe section). 
Excessive fluid pressure in the center of the 
plate, at a critical point K, where the incoming 
stream is decelerated to zero velocity, 
contributes to the fluid acceleration, but a major 
role is apparently plays the expansion factor 
behind the plate: The flow here is obliged to 

decelerate as 1V V , and it is caused by the 

negative pressure gradient. According to 
Bernoulli's equation (it is true for jets, flowing 
stationary around the plate) pressure increase in 
the flow direction behind the plate should be 
equal 2 2

1( 2 2)V V  . Since the pressure does 

not change at the cross section, because there 
are no transversal motion here, the pressure 
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drop at the total back side of the plate remain the 
same with respect to the cross section where the 
flow restores its speed V (at the end of the 
"trace"). The magnitude of pressure drop is 

greater, the greater the velocity 1V , which 

increases with the transverse size of the plate. 
The total drag should obviously include the 
increasing pressure before the plate (it is 

proportional to 
2( 2)V S , where S is the area 

of the plate) and the pressure drop behind the 
plate due to the spreading of the stream. 
 
Let's see what happens to the pressure and drag 
distribution when changing the shape of the 
obstacle body and take a hemispherical object, 
streamlined by fluid flow (Fig. 10). 
 

 
 

Fig. 10. Fluid flow around hemisphere. Red 
arrows indicate the pressure forces. Behind 

the body pressure considerably less because 
of the spreading flow 

 
The stream flowing around a hemisphere is 
accelerated by the pressure drop, which 
decreases from the center (where it has the 

maximum value
2 2V ) to the edges. This 

pressure acts perpendicular to the body surface, 
but for the total drag the components along the 
direction of flow are only essential, and they 
reduce to zero towards the edges of the 
hemisphere. Therefore, the pressure force (Fig. 
10) in the case of the hemisphere will always be 
less than the equivalent force in the case of a 
plate of the same cross section. The pressure 
reducing behind the hemisphere defines the 

force 2F  and depends on the magnitude of 1V
which can be smaller than in the case of the 

plate. As a result, the total drag 1 2( )F F  is less 

for the hemisphere than for the plate. It will be 
even less if the rear part of the body obtain a 
conical shape (Fig. 11). 

 
 

Fig. 11. Flowing around  the conical shape 

body. The pressure forces 2F  on the rear of 
the body have components against the 

stream and totally  reduce the drag 
 

The maximum reduction in pressure in the 
flowing stream occurs at the beginning of the 
flow spreading behind the body and is equal

2 2
1( 2 2)p V V    . It is reduced to zero 

by the end of the body. If we take the average 
reduction of pressure on the back side surface of 

the body equal / 2p , the overall reduction in 

the pressure force (per unit length of the surface 
in perpendicular direction to the flow) will be 

equal to 
2 sin

p R




 (where R is the radius of the 

hemisphere), and the reduction of its upstream 

component will be respectively 
2

p
R


 (Fig. 11). 

Decrease of the pressure force behind the body 
means a corresponding increase in the force of 
drag. For the body with a hemispherical shape 

(Fig. 10) reducing of the pressure p occupy the 

entire rear surface of the body and a 

corresponding decrease force gives pR , which 

is twice more than for the conical "tail" body 
where the reduction in pressure is distributed 
across the all back side surface. 
 

Thus, in all cases, reduction in pressure behind 
the body and a corresponding increase in drag 

will be greater, the greater the flow velocities 1V  

andV . The connection between them can be 

written in the form of 1V aV , where the 

coefficient 1a   is determined by the transverse 
dimensions and shape of the streamlined body. 
 

2.6 The Lifting Force of the Wing 
 

The approach to evaluation of pressure forces 
acting on the streamlined body proposed above 
allows us to explain the origin of the wing lifting 
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force. Consider the conventional image of the 
wing with a distinctive asymmetrical profile (Fig. 
12). The angle of attack is zero. The stream runs 
onto the front part of the wing, air flows around 

the  profile, narrowing and accelerating until 1V , 

and further expands, reducing its speed to V . 
From the "drag" of the above section, it follows 
that above the wing there is a low pressure zone 
with respect to the atmospheric pressure of the 
ambient air. The average value of pressure 

reduction, proportional to 
2 2
1( ) / 4V V  , 

multiplied by the area of the wing and cos , 

creates the desired lifting force and, multiplied by 

sin , gives addition to the drag force. 

 

 
 
Fig. 12. The origin of wing lift at zero angle of 

attack 
 
If the wing has the angle of attack  , the flow 
has somewhat different form (Fig. 13), but the 
fundamental cause of the lift remains the same, it  
is increased by the additional flow  pressure on 
the lower part of the wing, which can be 
estimated by the decelerating to zero of the 
velocity component perpendicular to the bottom 
surface of the wing. 

 

 
 

Fig. 13. Streamlining of the wing with the 
angle of attack   

This reduction gives the corresponding increase 

in pressure, proportional 
2( sin ) / 2V  , and 

the corresponding contribution to the lifting force 

proportional 2cos ( sin ) / 2V   . The main 

contribution to the lifting force provide the 
decrease in air pressure in flow spreading over 
the wing. The magnitude of this reduction gives 

the integration of 2 2
1( ) / 2V V  , which is 

determined by the value of V  and streamline 

coefficient a  coming from the relation 1V aV . 

The last also depends on the angles   and  , 

as they determine the flow velocity 1V . 

 

2.7 Ping-pong Ball in the Air Stream 
 

The approach used above makes it easy to 
explain the well-known paradoxical behavior of a 
ping-pong ball in the air stream [1]. The ball 
“sticks” to the air stream and keeps it not only in 
a vertical position, but also when the air jet is 
inclined to the horizon (Fig. 14). The jet flows 
around the ball on one side, in streamlined place 

the flow velocity increases up to 1V , behind the 

ball the spreading zone is formed and the 
pressure decreases with respect to the 
atmospheric one. The maximum of this reduction 

is equal to
2 2
1( ) / 2V V  . On the opposite side 

the atmospheric pressure pushes to the ball and 
makes it "stick" to the jet. 
 

 
 

Fig. 14. The ball streamlined by the air jet 
directed at an angle to the horizon 

 

2.8 Von Karman Vortex Street 
 

Finally, we demonstrate how our approach 
makes it possible to interpret the hydrodynamic 
phenomenon, known as "Karman Vortex Street". 
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Consider steady stream of fluid with average 

velocity V flowing around the obstacle with 
cylindrical shape, which axis is located 
perpendicular to the flow (Fig. 15). Fluid flows 
around the cylinder, being accelerated at its 
edges. Assume that the accelerated flow area 

(with an average speed 1V V ) form a kind of 

"stripes" with thickness d . Restoration of flow 

velocity V behind the cylinder takes place at a 

distance L equal to the length of the "trace". 
 

 
 

Fig. 15. A cylindrical obstacle with the axis 
perpendicular to the flow is streamlined by 

the fluid 
 

Thus, the fluid stream with the thickness 2R , 
flowing around a cylinder, is divided into two 

bands  each with  thickness d . In accordance 

with the continuity equation 1RV dV . The 

pressure gradient in the flow behind the cylinder 
can be estimated using the classical procedure. 
The pressure force on the strip of unit length 

(along the axis of the cylinder), of thickness d

and length ( )L R  is equal to ( )dp L R d
dx



(where the axis x  is directed along the flow). It is 
balanced by the force of viscous friction, since 
the flow velocity is reduced to zero at the center 
line, dividing the cylinder (Fig. 15). This force can 

be overestimated by the value 1 ( )
V

L R
R

  . 

The equality of these two forces and conditions 

of continuity give us: 
2
1

2
Vdp

dx R V


 . We 

assume for simplicity again that 1V aV  where 

1a  . So then 
2

2
dp a V
dx R

 . We now 

estimate the magnitude of pressure reduction on 

cylinder edges 1p
  caused by the spreading of 

the flow and reducing its speed from 1V until V . 

It is easy to see that in accordance with the 

Bernoulli law it is: 
2 2

1 ( 1)
2

p V a    

(viscous friction between adjacent streams we 
have neglected). Standard pressure drop behind 

the cylinder 2p
 , providing fluid flow, obviously, 

is: 
2

2
dp a VRp
dx tg Rtg

 
   . If 

1 2p p    , the flow in opposite direction 

(counter-flow) towards each of the cylinder edges 
becomes possible, as observed in the 
experiment with Karman vortex street. This 
condition can be written as 

22 2( 1)
2

a VV a
Rtg

    , or 

2

2

2
Re

( 1)

VR a

a tg



 
 


. Because of the 

asymmetry between the streams around the 
cylinder edges which is always present in real 
situation, one of the sides gets the advantage for 
the beginning of the reverse flow and further 
formation of a vortex. From this the alternation of 
the vortices takes its origin. 
 

3. BRIEF CONCLUSIONS 
 
For the correct interpretation of hydrodynamic 
phenomena at the interaction of the fluid stream 
with a streamlined solid body, you can use the 
Bernoulli and continuity equations to locate the 
zones of high and low pressure. The first are 
related to the flow deceleration near critical 
points and to the places of the flow narrowing. 
The second are caused by the flow deceleration 
in the places of spreading. The interaction of 
these high and low pressure zones transforms 
the fluid flow, causing the diversity of 
hydrodynamic phenomena. 
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