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ABSTRACT 
 

In this study the author focuses on thermal and magnetic properties of diluted magnetic 
semiconductors at critical point. Such properties are discontinuous at some point in the critical 
region so that it is very important to study their critical behavior in these regions. In order to study 
these critical behaviors the author uses series expansion technique and quantum lattice model with 
help of computer program. 
 

 
Keywords: Critical behavior; diluted magnetic semiconductors; series expansion; quantum lattice 

model. 
 

1. INTRODUCTION 
 
The role of disorder in magnetism is important 
property in condensed matter physics and 
materials science. Widely accepted recent 
research activities [1-3] in diluted magnetic 
semiconductors (DMS) i.e. cationic substitution 
doping (by a few percent) of a semiconductor 

with magnetic impurities (e.g. ���������	 
with  � � 0.01 � 0.1 ) seemingly leads to an 
intrinsic ferromagnetic. The intrinsic mechanism 
of ferromagnetism is a big research topic 
recently, both from understanding the 
competition between disorder and magnetic 
interactions as well as for technological 
advancement i.e. the subject of ‘spintronics’            
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(or spin electronics) [4]. In this article, the author 
deals with theoretically the competition of thermal 
and magnetic correlations in DMS materials 
using analytical arguments on a disordered Ising 
spin model [5]. 
 
In some cases, it is very difficult to get exact 
solutions, for such cases; there is a branching 
set of approaches which can be used. Among 
these techniques, the most popular one is series 
expansion method. This paper will be considered 
the so called series expansion methods, of which 
there are again a number of different kinds. The 
common feature of all of these techniques is that, 
they can compute a number of coefficients in a 
power series expansion for some quantity. 
 

2. MODEL 
 
After the investigation of quantum mechanics, 
the two known scientists (Heisenberg and Dirac) 
independently proposed that the magnetic order 
in solids might be understood on the basis of a 
model of exchange coupled quantum angular 
momenta (‘spins’), with a Hamiltonian of the form 
[5]. 
 

� = �� ∑ σ�〈��〉 σ�,                                      (2.1) 

 
where  σ�  is Ising spin variable at site i, and its 
values are ± 1, and J is constant interaction 
coupling parameter with dimension of energy. In 
this case we can assume a regular lattice of N 
sites, with nearest-neighbor interactions. The 
thermodynamic and magnetic properties can be 
derived from the partition function [6-7]. 
 

Z�K� = ∑ �� ! = ∑ ��"#$ ∑ σ�〈%&〉 σ�'.(σ)*(σ)*  (2.2) 

 
Where the first sum is over all spin 
configurations, and  K = βJ  is a temperature 
dependent coupling constant, and  β = 1 K,⁄ T as 
usual. We note that at high temperatures $  is 
small. 
 
The power series expansions of the partition 
function in terms of K [8-9]. We obtain 
 

/�$� =
∑ ∏ �� σ)σ1〈%&〉 = ∑ ∏ ∑ 23

4!
∞467〈%&〉 �σ�σ��4(σ)*(σ)*   (2.3) 

 

The term  �σ�σ��4    is related with an l-fold line 

joining sites i and j on the lattice. The equation 
(2.3) can be represented by a diagram of the 
entire lattice with each bond  〈89〉  and 
multiplicity   :%& . At each site i there will be a 

factor ;<, where p is the sum of multiplicities of 
all bonds connecting to site i. We refer to this as 
the degree of site i. The simple result [9]. 
                        

∑  σ= =>6±? @2, p  even
0, p  odd H                             (2.4) 

 
immediately shows that the only non-zero terms 
come from graphs in which every vertex is of 
even  degree (including zero). Therefore, the 
partition function will be 
 

 ZI�K� = 2I ∑ J�K�
L�K�(KM* KNO                          (2.5) 

 
where the sum is over all possible graphs with all 
even vertices, lK is the number of lines, including 

multiplicities, w(g) is a combinatorial factor for 
multiple lines, and C�g� is the number of ways in 
which the graph can be located on the lattice of 
N sites (the embedding factor) [10-13]. 
 
In the case of the Ising model, an immediate 
simplification is possible by use of the identity [9] 
 

 �� σ)σ1 = ST	ℎ$�1 + Wσ�σ��                    (2.6) 
 

which is valid for σ�,σ� = ±1  , with W = X��ℎ$ . 

The zero-field partition function can then be 
written as 
 

  ZI�K� = �coshK�I\ ]⁄ ∑ ∏ #1 + Wσ�σ�'〈��〉(σ*  

= 2^�coshK�I\ ]⁄ ∑ C�g�(KM* vNO      (2.7) 
 

In equ. (2.7) q is the coordination number of the 
lattice, i.e. the number of neighbors of any site 
(Nq 2 ⁄  is the number of nearest-neighbor pairs), 
and the sum is again over a set of even-vertex 
graphs. However, only single-bonded graphs 
occur. 
 
Taking the embedding constant data [13] and the 
logarithm as before, yields  
 

 
�
^ :�ZI = ln2 + 3ln coshK + 2υ] + 3υb + 6υd +

11υe + ⋯                                                        (2.8) 
 

There is usually no need to do this, as υ  can 
itself serve as a high-temperature expansion 
variable. We note that the number of graphs (to 
sixth order) has been reduced from 25 to 6.  This 
is a simple example of renormalization, which is 
an idea that will recur later. 
 
Let us now return to the full Hamiltonian, with the 
field term, and derive a high temperature series 
[14-19] for the zero-field magnetic susceptibility 
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from the corresponding thermodynamic potential, 
or the logarithm of the partition function, one 
obtains the usual thermodynamic and magnetic 
quantities, per site. 
 
 Internal energy: 
 

g = � h
h i�

^ :�/j                                      (2.9) 

 
Specific heat: 
 

k = lm
ln = �opq] lm

l .                                (2.10) 

 
Magnetization or order parameter: 
 

r = � �
 

h
hs i�

^ :�/j                                  (2.11) 

 
(h is an appropriate field which couples to the 
order parameter operator in the Hamiltonian). 
 
 Susceptibility:      
 

t = hu
hs = � �

 
hv

hsv i�
^ :�/j                        (2.12)      

                                           
Using the identity (2.6), and a similar one for the 
field term, yields   

        
ZI�K� = �coshK�I\ ]⁄ �coshβh�I ∑ ∏ #1 +〈��〉(σ*
Wσiσjk�1+τσk� 
          

 = �coshK�I\ ]⁄ �coshβh�IΛI   �τ = tanhβh�   

 
where 
 

 ΛI = ∑ ∏ #1 + Wσ�σ�'〈��〉(σ* ∏ �1 + τσ|�|  

 
and hence 
 

�
^ :�/ = }

] ln ST	ℎ$ + ln cosh qℎ + �
^ :�ΛI         (2.14) 

 
The quantity :�ΛI can be expanded graphically, 
as before. In every bond in the graph there is a 
term Wσ�σ�  and, in addition, each site carries a 

factor either 1 or   τσ| . Only those graphs with 
precisely two τ   factors contribute to (2.12). 
According to equ. (2.4) the graphs which 
contribute are those which have with precisely 
two vertices of odd degree, those to be 
compensated by the two  τσ|  factors. Based on 
the above calculations we obtain the following 
expression for susceptibility: 
 

q��t�~� ≡ t̅�~� = 1 + 2 ∑ S���~4� .(�v*     (2.15) 

In this equ. the sum is over the set of graphs 
{�]}, and S��� denotes the coefficient of N  in the 
embedding factor ( the lattice constant of the 
graph). 
 

Therefore, expression for internal energy will be: 
 

g = � h
h i}

] ln ST	ℎ$ + ln cosh qℎ + �
^ :�ΛIj (2.16) 

                          
and based on equ.(2.16) we will find thermal 
specific heat and magnetization respectively as: 
 

k = opq] l
l 

h
h i}

] ln ST	ℎ$ + ln cosh qℎ + �
^ :�ΛIj                     

(2.17)  
 
and 

r = � �
 

h
hs i}

] ln ST	ℎ$ + ln cosh qℎ + �
^ :�ΛIj           

(2.18) 
                             
The author will be concerned with models which 
exhibit finite-temperature phase transitions, 
particularly critical points, where the free energy 
develops a mathematical singularity at some 
temperature  �� (for this the thermodynamic limit 
is crucial). Not only is the determination of  ��  
important but, even more so, the asymptotic 
behavior of thermodynamic quantities in the 
vicinity of  ��. 

 
3. RESULTS AND DISCUSSION 
 
Finding exact finite-temperature properties of 
such quantum lattice models can be very difficult 
but in order to get approximate values, one has 
to devise series expansions techniques for the 
lattice model in the thermodynamic limit. A very 
popular approach of these series expansions are 
high-temperature expansions (HTEs), in which 
the partition function Z and other extensive 
properties of the system are expanded in powers 
of the inverse temperature  q = �op���� . Based 
on these techniques the author identified critical 
properties of diluted magnetic semiconductors. 

 
According to the mathematical derivation above 
the internal energy of the system strongly 
depends on temperature. As the Fig. 1 indicated 
when the temperature increases, internal energy 
also increases. This is in line with the theoretical 
explanations i.e internal energy (kinetic energy) 
of the system directly related to the temperature. 
In general, this series expansion technique is 
suitable technique in order to determine 
magnetic and thermodynamic properties at 
critical region.  

(2.13) 
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Fig. 1. The dependence of internal energy on 

temperature 
 

 
 

Fig. 2. Explains the relationship between 
magnetization and temperature 

 
Usually, magnetization is the order parameter 
that distinguish the phase transition in magnetic 
materials. Therefore magnetization is strongly 
related with temperature i.e. at high temperature 
the magnetization approaching to zero and there 
is no magnetic alignment in the system (see Fig. 
2). According to the figure the value of 
magnetization (order parameter) is high at low 
temperature and its magnitude decreases with 
increasing temperature.  
 

4. CONCLUSION  
 
In conclusion, the series expansion technique 
that we have used here is very important to 
identify the critical behavior of materials. In this 
study we have mainly used high temperature 
series expansion with the concept of quantum 
lattice model in order to determine the magnetic 
and thermodynamic property of materials at 
critical region. Specifically the properties that we 
have identified (Energy, heat capacity and 

magnetization) are in line with results from other 
mathematical and computational methods. 
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