
  

_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: akpataleg@hotmail.com; 

 
 

 Physical Science International Journal 
14(1): 1-17, 2017; Article no.PSIJ.31687 

ISSN: 2348-0130 
 

SCIENCEDOMAIN international 
             www.sciencedomain.org 

 

 

Green’s Function (GF) for the Two Dimensional (2D) 
Time Dependent Inhomogeneous Wave Equation 

 
Akpata Erhieyovwe1*, Umukoro Judith2 and Enaibe A. Edison2 

 
1
Department of Physics, University of Benin, Benin City, P.M.B. 1154, Edo State, Nigeria.  

2Department of Physics, Federal University of Petroleum Resources, P.M.B. 1221, Effurun, Nigeria.  
 

Authors’ contributions  
 

This work was carried out in collaboration between all authors. Author AE designed the study, wrote 
the protocol and the first draft of the manuscript. Author UJ managed the analyses of the study and 

author EAE managed the literature searches. All authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/PSIJ/2017/31687 
Editor(s): 

(1) Samin Femmam, Strasbourg University of Haute Alsace, France and Safety Systems of Polytechnic School of Engineering 
“L3S”, France. 

(2) Yang-Hui He, Professor of Mathematics, City University London, UK and Chang-Jiang Chair Professor in Physics and  
Qian-Ren Scholar, Nan Kai University, China; & Tutor and Quondam-Socius in Mathematics, Merton College,              

University of Oxford, UK. 
(3) Abbas Mohammed, Blekinge Institute of Technology, Sweden. 

Reviewers: 
(1) Abdullah Sonmezoglu, Bozok University, Turkey. 

(2) Wensheng Zhang, University of Chinese Academy of Sciences, AMSS, CAS, P.R. China. 
(3) Memet Şahin, Gaziantep University, Gaziantep, Turkey. 

Complete Peer review History: http://www.sciencedomain.org/review-history/18648 

 
 
 

Received 19th January 2017 
Accepted 18

th
 March 2017 

Published 15th April 2017 
 

 

ABSTRACT 
 

Interference effect that occurs when two or more waves overlap or intersect is a common 
phenomenon in physical wave mechanics. A carrier wave as applied in this study describes the 
resultant of the interference of a parasitic wave with a host wave. A carrier wave in this wise, is a 
corrupt wave function which certainly describes the activity and performance of most physical 
systems. In this work, presented in this paper, we used the Green’s function technique to evaluate 
the behaviour of a 2D carrier wave as it propagates away from the origin in a pipe of a given radius. 
In this work, we showed quantitatively the method of determining the intrinsic characteristics of the 
constituents of a carrier wave which were initially not known. Evidently from this study the 
frequency and the band spectrum of the Green’s function are greater than those of the general 
solution of the wave equation.  It is revealed in this study that the retarded behaviour of the carrier 
wave described by the Green’s function at some point away from the origin is much greater than 
the general wave solution of the carrier wave at the origin.  The Green’ function is spherically 
symmetric about the source, and falls off smoothly with increasing distance from the source. The 
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anomalous behaviour exhibited by the carrier wave at some point during the damping, is due to the 
resistance pose by the carrier wave in an attempt to annul the destructive tendency of the 
interfering wave. Evidently it is shown in this work that when a carrier wave is undergoing 
attenuation, it does not consistently come to rest; rather it shows some resistance at some point in 
time during the damping process, before it finally comes to rest.  
 

 
Keywords: Parasitic wave; carrier wave; host wave; greens function; time dependent inhomogeneous 

wave. 
 

1. INTRODUCTION 
 
Interference effect that occurs when two or more 
waves overlap or intersect is a common 
phenomenon in physical wave mechanics. When 
waves interfere with each other, the amplitude of 
the resulting wave depends on the frequencies, 
relative phases and amplitudes of the interfering 
waves. The resultant amplitude can have any 
value between the differences and sum of the 
individual waves [1]. If the resultant amplitude 
comes out smaller than the larger of the 
amplitude of the interfering waves, we say the 
superposition is destructive; if the resultant 
amplitude comes out larger than both we say the 
superposition is constructive.  
 
When a wave equation   and its partial 

derivatives never occur in any form other than 
that of the first degree, then the wave equation is 

said to be linear. Consequently, if 1 and 1 are 

any two solutions of the wave equation , then

11a   + 
22a is also a solution, 

1a and 
2a being 

two arbitrary constants [2,3]. This is an 
illustration of the principle of superposition, which 
states that, when all the relevant equations are 
linear we may superpose any number of 
individual solutions to form new functions which 
are themselves also solutions.   

 
There is a great need in differential equations to 
define objects that arise as limits of functions and 
behave like functions under integration but are 
not, properly speaking, functions themselves. 
These objects are sometimes called generalized 
functions or distributions. The most basic one of 

these is the so-called delta  -function. 

 
A distribution is a continuous linear functional on 
the set of infinitely differentiable functions with 
bounded support; this space of functions is 
denoted by D . We can write ][d : D  to 

represent such a map: for any input function , 

][d gives us a number [4,5]. 

Green’s functions depend both on a linear 
operator and boundary conditions. As a result, if 
the problem domain changes, a different Green’s 
function must be found. A useful trick here is to 
use symmetry to construct a Green’s function on 
a semi-infinite (half line) domain from a Green’s 
function on the entire domain. This idea is often 
called the method of images [6]. 
 

If a wave is to travel through a medium such as 
water, air, steel, or a stretched string, it must 
cause the particles of that medium to oscillate as 
it passes [7]. For that to happen, the medium 
must possess both mass (so that there can be 
kinetic energy) and elasticity (so that there can 
be potential energy). Thus, the medium’s mass 
and elasticity property determines how fast the 
wave can travel in the medium.    
 

The principle of superposition of wave states that 
if any medium is disturbed simultaneously by a 
number of disturbances, then the instantaneous 
displacement will be given by the vector sum of 
the disturbance which would have been 
produced by the individual waves separately. 
Superposition helps in the handling of 
complicated wave motions. It is applicable to 
electromagnetic waves and elastic waves in a 
deformed medium provided Hooke’s law is 
obeyed [8].   
 

A parasitic wave as the name implies, has the 
ability of destroying and transforming the intrinsic 
constituents of the host wave to its form after a 
sufficiently long time. It contains an inbuilt raising 
multiplier  which is capable of increasing the 
intrinsic parameters of the parasitic wave to 
become equal to those of the ‘host wave’. 
Ultimately, once this equilibrium is achieved,      
then all the active components of the ‘host                
wave’ would have been completely eroded          
and the constituted carrier wave ceases to exist 
[9].  
 

Any source function )(r  can be represented as 

a weighted sum of point sources. It follows from 
superposability that the potential generated by 
the source )(r  can be written as the weighted 
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sum of point source driven potentials i.e. Green's 
functions. It is evident that one very general way 
to solve inhomogeneous partial differential 
equations (PDEs) is to build a Green's function 
and write the solution as an integral equation 
[10,11]. Remarkably, a Green’s function can be 
used for problems with inhomogeneous 
boundary conditions even though the Green’s 
function itself satisfies homogeneous boundary 
conditions. This seems improbable at first since 
any combination or superposition of Green’s 
functions would always still satisfy a 
homogeneous boundary condition [12]. The way 
in which inhomogeneous boundary conditions 
enter relies on the so-called “Green’s formula”, 
which depends both on the linear operator in 
question as well as the type of boundary 
condition (i.e. Dirichlet, Neumann, or a 
combination). 
 
The organization of this paper is as follows. In 
section 1, we discuss the nature of wave and 
interference. In section 2, we show the 
mathematical theory of superposition of two 
incoherent waves using Green’s function 
technique. The results emanating from this study 
is shown in section 3. The discussion of the 
results of our study is presented in section 4. 
Conclusion of this work is discussed in section 5. 
The paper is finally brought to an end by a few 
lists of references and appendix.    

 
1.1 Research Methodology 
 
In this work, a carrier wave with an inbuilt raising 
multiplier is allowed to propagate in a narrow 
pipe containing air. The attenuation mechanism 
of the carrier wave is thus studied by means of 
the Green’s function technique.  
 
 

2. MATHEMATICAL THEORY 
 

2.1 General Wave Equation 
 

Generally, the wave equation (WE) can be 
described by two basic equations given below. 
 

 
2

��





2

2

t



 



                              (2.1) 
 

 A
2

�





2

2

t

A

 � J                           (2.2) 
 
where  ∇ is called the del operator, it is a three 
dimensional (3D) Laplacian operator in Cartesian 
coordinate system, the scalar potential is given 
by  , the vector potential is given by A , the 

charge density is  , the permittivity is �, while 

the permeability is �, and the current density is J , 
the permittivity and the permeability of air is  

and   respectively. It is very obvious that both 
wave equations have the same basic structure; 
hence in a free space we can write a single wave 
that would connect the two equations as follows. 
 















2

2
2

t


),( tx  );,( ttxf       (2.3) 
 

Where �(�, � ; �) is a known source distribution 
having space – time functions. Since we are 
dealing with dynamic variable coordinates, the 
source function is normally represented by the 
delta function. 
 
Solving equation (2.3) using Green’s Function 

)',',( txtxG  [13,14], we obtains  

)'()'()';';(
2

2
2

ttxxtxtxG
t





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
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




                                                            (2.4) 
 
Hence, (2.4) is the Green function for one dimensional (1D) space.  
 
Recasting equation (2.4) to be 2-Dimensional in character, the variation in the Laplacian will also lead 
to a variation in the Green’s Function. Accordingly, we get. 
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Solving equation (2.7) using the Green’s Function of the Helmholtz equation, we get  
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 
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                                                                                                       (2.6) 
 
Putting equation (2.6) into equation (2.5) and equating the result into equation (2.8) and if the wave 

number conserves parity or reciprocricity, then xy kk  and ij  hence 
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         (2.7) 
 
2.2 Evaluation of the Retarded Distance and the Retarded Time of the Green’s    

Equation 
 

Factorizing the denominator of equation (2.7) and taking the value of the exponential power o  
Then 
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                                                                              (2.8) 
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
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tExxtz
tt

                                                              (2.9) 
 

This means that the causal behaviour associated with a wave distribution, that is, the effect observed 

at the point x and time t  is due to a disturbance which originated at an earlier or retarded time 't . The 

reader should note that 
'xx  

 is a time component. Hence equation (2.7) becomes 
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4
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


 

     )()'(2)'()()'(2)'(

1

tzkktzkk  
               (2.10) 

 

2.3 Evaluation of the Green’s Function using Contour Integration Method 
 
Solving equation (2.9) by contour integration and determine the validity of the Green’s function 

)';''.;,( tyxtyxG by observing the poles of the equation, we have 

 

 )'()(
1

kkfzf  )()'(2 tz 
                                                              (2.11) 

 

)'()( 2 kkfzf   )()'(2 tz 
                                                               (2.12) 

 

Thus Setting    ')()'(22 xxtz     ;  )()'()'(2 tEtt   the sum residue of 

)(
1

zf and )(
2

zf at the poles is 
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)( 1zf  )( 2zf
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Hence by Cauchy’s Residue theorem the integral (2.7) becomes 
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3
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              (2.14) 

 

Reducing the numerator of equation (2.14) and taking the absolute value of the resulting equation, we 
get after simplification 
 

)';''.;,( tyxtyxG
 
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)')()'(8(sin

3
tz
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
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Thus the dimension of the Green’s function is metres m . Note that the point source driven potential 
(2.15) is perfectly sensible. It is spherically symmetric about the source, and falls off smoothly with 
increasing distance from the source.  
 

2.4 General Solution of the Wave Equation and the Carrier Wave CW which is the 
Source Function 

 

It follows that the potential generated by ),( tr can be written as the weighted sum of point impulse 

driven potentials. Hence generally, the solution to the wave equation (2.3) is 
 

tdrdtrtrGtyxtr   ),,();,(),(                                                                                         (2.16) 

 

tddydxtyxtyxGtyxtyx   ''),',',,();,();,(                                                                        (2.17) 

 

If such a representation exists, the kernel of this integral operator );',';,( tyxtyxG  is called the 

Green’s function. Hence we think of );,( tyx  as the response at x  and y to the influence given by a 

source function );,( tyx . For example, if the problem involved elasticity, );,( tyx  might be the 

displacement caused by an external force );,( tyxf . If this were an equation describing heat flow, 

);,( tyx  might be the temperature arising from a heat source described by );,( tyxf . The integral 

can be thought of as the sum over influences created by sources at each value of 'x and 'y . For this 

reason, G  is sometimes called the influence function [15]. Thus in this study we assume that the 
carrier wave which is the source distribution is given by the equation 
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    (2.18) 
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From the geometry of the resultant of the two 
interfering waves (please see appendix), the 
carrier wave CW is two dimensional 2D in 
character since it is a transverse wave, the 

position vector of the particle in motion is 
represented as )sincos( jirr  


 and               

hence the motion is constant with respect                       
to the z - axis, the combined wave number                     
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or the spatial frequency of the carrier                         

wave is jkkikkck )()(  


. Then, 

  sincos)(.  kkrrck


 is the coordinate 

of two dimensional (2D) position vectors and
)(   , the total phase angle of the CW 

is represented by )(tE . A complete detail of the 

derivation of the carrier wave (2.19) is shown in a 
previous paper [16].  

 

If '  , then the average angular frequency 
say 2/)'(    will be much more greater than 

the modulation angular frequency say 
2/)'(    and once this is achieved then we 

will have a slowly varying carrier wave with a 
rapidly oscillating phase. Driving forces in anti-
phase )(    provide full destructive 

superposition and the minimum possible 

amplitude; driving forces in phase )(    
provides full constructive superposition and 
maximum possible amplitude. 

 

2.5 The Calculus of the Total Phase Angle E   of the Carrier Wave Function 
 

Let us now determine the variation of the total phase angle with respect to time t . Thus from (2.19),  
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After a lengthy algebra (2.21) simplifies to    
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                                                                                                                                          (2.22) 
 

where we have introduced  a new variable defined by the symbol Z as the characteristic angular 
velocity of the carrier wave and is given by 
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Hence, Z  has the dimension of rad./s. In other to avoid unnecessary complications we can set 
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But according to (2.8) and (2.9); 1''  dtdx , as a result,  
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Now in equation (2.26) we can simply replace 'xxx  which is just the distance covered by the 

carrier wave in metres mas it propagates in a pipe of radius 03.0r metres m . 
 

 );,( tyx 
 

 
 






)()'(8)2(

))()'(8(sin

3
tz

xtz





 

    2
1

()'(cos2)(
2222   tbaba  )()'(.cos tEtrck  



    (2.27) 
 
The reader should not ignore or forget that the motion under study is still a 2D one. The fact that we 

have constrained it to x  axis does not mean that the y axis is not implied. The factor 2 which 
appear in (2.7) is a reflection that the motion is still 2D. Note that it is the absolute values of the carrier 
wave );,( tyx that we used in our computation. 

 
Table 1. Shows the calculated values of the characteristics of the carrier wave );,( tyx  

 

S/N Physical quantity Symbol Value Unit 

1 Amplitude of the host wave a  0.0217 m  
2 Angular frequency of the host wave   2.6182 srad /  
3 Phase angle of the host wave   1.5708 radian 
4 Spatial frequency of the host wave k  4.1907 mrad /  
5 Amplitude of the parasitic wave b  0.0000429 m  

6 Angular frequency of the parasitic wave '  0.00518 srad /  
7 Phase angle of the parasitic wave '  0.00311 radian 
8 Spatial frequency of the parasitic wave 'k  0.00829 mrad /  
9 Raising multiplier   0, 1, 2, … ,505 -- 

 
Table 2. Shows calculated values of some of the parameters and some constants required for 

the work 
 

S/N Physical quantity Symbol Value Unit 

1 Attenuation constant 
 0.001978 1s  

2 Radius of the pipe  r  0.03 m  
3 Maximum  attenuation time corresponding 

to the maximum multiplier 
t  892180 s  

4 Sum of the total time that the carrier wave 
lasted as a function of the multiplier 

t  48429885 s  

5 Sum of the total distance covered by the 
carrier wave as a function of the multiplier 

x  4.67691 x 1015 m  

6 Permittivity of air   8.85 x 10-12 212  mNC  
7 Permeability of air   1.2566 x 10

-6
 mH /  

8 The product of Permittivity and Permeability 
of air 

 
 1.11209 x 10-17 22 /ms  
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2.6 Determination of the Host Wave Parameters ( a ,  ,  and k ) contained in the                             
Carrier Wave 

 
Let us now discuss the possibility of obtaining the parameters of the host wave which were initially not 
known from the carrier wave equation. This is a very crucial stage of the study since there was no 
initial knowledge of the values of the host wave and the parasitic wave contained in the carrier wave. 
However, the carrier wave given by (2.18) can only have a maximum value provided the spatial 

oscillating phase is equal to one. As a result, the non-stationary amplitude A  and the oscillating 

phase angle becomes after disengaging them as 
 

         2
1

2222 'cos2   tbabaA                                                (2.28) 
 

 )()'()sin(cos)(cos tEtrkk  
                                                           (2.29) 

 

Using the boundary conditions that at time 0t , 0 and  aA   , then 
 

      2
1

2

1

22 cos21cos2   aaaA                                                                      (2.30) 
 

   1cos21
2/1
 

         ).5708.1(90)0(cos
01

rad


                                             (2.31) 
    
Any slight variation in the combined amplitude A  of the carrier wave due to displacement with time 

ttt  would invariably produce a negligible effect in the amplitude a of the host wave and under 

this situation 0  . Hence we can write 
 

a
t

A
A

t

Lim


 











 0
                                                                                                        (2.32) 

 

    

  
a

ttaa

ttan
ttaa

t

Lim







 















2/1
22

22/1
22

)(cos2

)(sin
)(cos2

0







             (2.33) 

    

  
a

taa

ta
taa 






















2/1
22

22/1
22

cos2

sin
cos2






                                             (2.34) 
 

        2/122222 cos2sincos2    taatataa a                     (2.35) 
 

       2/1
cos21sincos21   ttt

                                                      (2.36) 
 
At this point of our work, it may not be easy to produce a solution to the problem; this is due to the 
mixed sinusoidal wave functions. However, to get out of this complication we have implemented a 
special approximation technique to minimize the right hand side of (2.36). This approximation states 
that 
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      
















 

32
)(

!3

)2)(1(
)(

!2

)1(
)(1)(1 


 f

nnn
f

nn
fn

d

dn
f          (2.37) 

 
The general background of this approximation is the differentiation of the resulting binomial expansion 
of a given variable function. This approximation has the advantage of converging functions easily and 
also it produces minimum applicable value of result. Consequently, (2.36) becomes  
 

       ttt sinsincos21                                                                  (2.38) 
 

.0472.160)5.0(cos
01

radt 
     .6182.2 radt   srad /.6182.2        (2.39) 

 
From (2.33), by using the boundary conditions that for stationary state when ,0,0   t

 )(  radErad 5708.1,5712.15708.1142.3   , then we have that 

 

  1)()(sin)(cos)(cos
0




Etttrkkrkk
t

Lim



                            (2.40) 

 

  0)sin(cos   trrk                (since, 01cos
1




)                                        (2.41) 
 

  05708.16182.2)9996.0( rk   radrk 1907.4     mradk /1907.4                    (2.42) 
 

The change in the resultant amplitude A of the carrier wave is proportional to the frequency of 
oscillation of the spatial oscillating phase  multiplied by the product of the variation with time t  of the 

inverse of the oscillating phase with respect to the radial distance r , and the variation with respect to 
the wave number )( kk  . This condition would make us write (2.28) and (2.29) separately as 

 

   2/1
2222

2

)()'(cos)(2)(

)()'(sin))('(










tbaba

tba

dt

dA
                                          (2.43) 

 

 Etrkkkk
dr

d
 )'()sin(cos)(sin)sin)(cos( 


                      (2.44) 

 

   EtrkkZ
dt

d
 )'()sin(cos)(sin)'( 


                                   (2.45) 

 

   EtrkkEr
kkd

d



)'(sin )sin(cos)()sin(cos

)(





       (2.46) 

 

lf
kk

r

rtdt

dA













 
























)(

1

2

1










 (2.47) 

 

tlfA                                                 (2.48) 
 

That is the time rate of change of the resultant 
amplitude is equal to the frequency f  of the 

spatial oscillating phase multiplied by the length l  
of the arc covered by the oscillating phase. 
Under this circumstance, we refer to A as the 

instantaneous amplitude of oscillation. The first 
term in the parenthesis of (2.47) is the frequency 
dependent term, while the combination of the 
rest two terms in the parenthesis represents the 
angular length or simply the length of an arc 
covered by the spatial oscillating phase. Note 
that the second term in the right hand side of 
(2.47) is the inverse of (2.44).  
 
With the usual implementation of the boundary 
conditions that at 
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adtdAradErad

t





/,5708.1,5712.1

5708.1142.3)(,0,0




 

 
we obtain the expression for the amplitude as 
 

 






















)sin(cossin

)sin(cos

2

1





 k
a = m0217.0                                                                     

(2.49) 
 
Note that  cos)cos(  (even and symmetric 

function) and  sin)sin(   (odd and screw 

symmetric function). Thus generally we have 
established that the basic constituent’s 
parameters of the host wave are 
 

ma 0217.0 , srad /6182.2 , 
rad5708.1 , and mradk /1907.4    (2.50) 

 
2.7 Determination of the Parasitic Wave 

Parameters (b , ' ,   and k  ) Contained 
in the Carrier Wave 

 
Let us now determine the basic parameters of 
the parasitic wave which were initially not known 
before the interference from the derived values of 
the resident ‘host wave’ using the below method. 
The gradual depletion in the physical parameters 
of the system under study would mean that after 
a sufficiently long period of time all the active 
constituents of the resident host wave would 
have been completely attenuated by the 
destructive influence of the parasitic wave. On 
the basis of these arguments, we can now write 
as follows. 
 





























kkk

bba

1907.40

5708.10

'6182.20'

0217.00

               (2.51) 

 
Upon dividing the sets of relations in (2.75) with 

one another with the view to eliminate  we get 
 





































k

k

bk

b

b

3748.0

'6248.0

'6668.1

005178.0

013820.0

'008288.0

                                   (2.52) 

However, there are several possible values that 
each parameter would take according to (2.49). 
But for a gradual decay process, that is for a 
slow depletion in the constituent of the                       
host parameters we choose the least values                
of the parasitic parameters.  Thus a more 
realistic and applicable relation is when

k  005178.0'008288.0  . Based on simple ratio 
we eventually arrive at the following results. 
 

srad /00518.0' ,  mradk /00829.0 , 
rad00311.0 , mb 0000429.0        (2.53) 

 
Any of these values of the constituents of the 
parasitic wave shall produce a corresponding 

approximate value of lambda 505 upon 
substituting them into (2.51). Hence the interval 

of the multiplier is 5050   . Now, so far, we 
have systematically determined the basic 
constituent’s parameters of both the host wave 
and those of the parasitic wave both contained in 
the carrier wave. 
 
2.8 Determination of the Attenuation 

Constant ( ) 
 
Attenuation is a decay process. It brings about a 
gradual reduction and weakening in the initial 
strength of the basic parameters of a given 
physical system.  In this study, the parameters 
are the amplitude ( a ), phase angle (  ), angular 

frequency (  ) and the spatial frequency ( k ). 

The dimension of the attenuation constant (


) is 
determined by the system under study. However, 
in this work, the attenuation constant is the 
relative rate of fractional change (FC) in the basic 
parameters of the carrier wave. There are 4 
(four) attenuating parameters present in the 

carrier wave. Now, if  a ,  ,  , k  represent the 
initial basic parameters of the host wave that is 

present in the carrier wave and ba  ,  ' , 
  , kk   represent the basic parameters 

of the host wave that survives after a given time. 
Then, the FC is 
 



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


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







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
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
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









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




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
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










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kk

a

ba












'4

1
   (2.54) 

 

1//   Ii FCFC   = 1 II    (2.55) 
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The dimension is per second (
1

s ). Thus (2.55) 

gives 
1

sη 0.001978


  for all values of the raising 

multiplier )505,,2,1,0( i . The reader should 

note that we have adopted a slowly varying 
regular interval for the raising multiplier since this 
would help to delineate clearly the physical 
parameter space accessible to our model. 
 

2.9 Determination of the Decay or 

Attenuation Time ( t ) 
 

We used the information provided in (2.55), to 
compute the various times taken for the carrier 
wave to attenuate to zero. The maximum time 
the carrier wave lasted as a function of the 

raising multiplier  is also calculated from the 
attenuation equation. However, it is clear from 
the calculation that the different attenuating 
fractional changes contained in the carrier wave 
are approximately equal to one another. We can 
now apply the attenuation time equation given 
below. 
 




/)2( t
e


                                    (2.56) 
 





ln

2








t

                                     (2.57) 
 

The equation is statistical and not a deterministic 
law. It gives the expected basic intrinsic 
parameters of the ‘host wave’ that survives after 
time t . Clearly, we used (2.57) to calculate the 
values of the decay time as a function of the 
raising multiplier  (0, 1, 2, . . . , 505). 
 

3. RESULTS AND DISCUSSION 
 
The relevant results obtained which is given by 
the equations (2.8), (2.14), (2.18), (2.22) and 
(2.26) respectively are shown graphically below. 
 
The displacement of the carrier wave as a 
function of time and the multiplier is shown in   
Fig. 1. At the origin the frequency of the carrier is 
initially very high and with well-defined amplitude 

of about  0.02477 m  and 0.0279 m .  When 
the value of the raising multiplier is 486 and the 
time is about 400000s the frequency of the CW 
decreases. However, the CW has a longer 
wavelength when the amplitude is decreasing. 
The carrier wave becomes monochromatic with 

no definite frequency after 600000 s . The carrier 

wave finally decays to zero after 892180 s . The 
simple explanation here is that the components 
of the host wave in the carrier wave could have 
been completely depleted by the effect of the 
interfering parasitic wave. 
 

 
 

Fig. 1. Shows the displacement of the carrier wave as function of time and multiplier. The      
figure represents equation (2.18) 
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Fig. 2. Shows the spectrum of the amplitude of the total phase angle of the carrier wave as 
function of time and multiplier. The figure represents equation (2.18) 

 

 
 

Fig. 3. Shows the spectrum of the amplitude of the characteristic angular velocity Z  of the CW 
as function of time and multiplier. The figure represents equation (2.22) 

 

In Fig. 2 the amplitude of the total phase angle of 
the CW first increases with high frequency and a 
narrow band. However, after a period of time say 

about 400000 s , the frequency becomes 
dispersed and the CW has a pronounced 
wavelength. The total phase angle is thus 
generally positive and basically it does not 

attenuate to zero. The positive nature of the total 
phase angle means that the constituents of the 
CW are highly repulsive, in other words, there is 
a general disagreement between the parameters 
of the host wave and those of the parasitic wave 
in the CW. 
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Fig. 4. Shows the spectrum of the distance covered as a function of time and the raising 
multiplier. The figure represents equation (2.8) 

 

 
 

Fig. 5. Shows the Green’s function representation of the 2D carrier wave as function of time 
and the multiplier.  The figure represents equation (2.14) 

 

The spectrum of the amplitude of the 
characteristic angular velocity of the CW as 
shown in Fig. 3 first increases to a maximum 

value of about  0.65011 srad /  and time 37526
s . The maximum value of the characteristic 
angular velocity corresponds to when the raising 
multiplier is 236. However, after this time the 
amplitude decreases to a minimum value of 
0.00896 srad /  when the time is about 380133 s  

and the multiplier is 483. The attenuation of the 
characteristic angular velocity is exponential and 

it decays to zero after about 600000 s . The 
disband frequency shows that the parameters of 
the host wave in the CW equation are already 
experiencing a rapid decay process due the 
destructive tendency of the interfering parasitic 
wave. 
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Fig. 6. Shows the spectrum of the general wave solution as function of time and multiplier. The 
figure represents equation (2.26) 

 

Fig. 4 represents the spectrum of the total 
distance covered by the carrier wave as a 
function of the raising multiplier. The maximum 
distance covered by the CW as a function of the 

raising multiplier is about 2.60893 x1013 m . This 

maximum value corresponding to  = 300 and 

time t  = 68265 s . In the interval of the multiplier 

[100 – 446] and time [6055 – 241272] s the 
distance covered by the carrier wave is longer 
with high frequency. The distance of propagation 

by the CW first go to zero at t =407419s. The 
CW then propagates to some distance before it 

comes to zero again for a second time at t = 

500000 s . Thereafter, it then covered a small 
distance before it finally attenuates to zero. The 
repeated relative zero distance – time behaviour 
of the CW equation shows that there is existence 
of some residual energy in the host wave that 
tends to resist an end to the propagation of the 
CW due to the destructive influence of the 
parasitic wave. From the calculation the sum of 
the total distance covered by the carrier wave as 

a function of the multiplier is 4.67691 x 10
15 m  

while the sum of the total time that the carrier 
wave lasted to travel the distance as a function of 

the multiplier is 48429885 s . 
 
It is obvious from Fig. 5 that the Green’s function 
first show initial increase in the displacement 
from the equilibrium position. The spectrum of 

the Green’s function also show a very high 
frequency before it starts to decrease 
exponentially. The exponential decrease in the 
amplitude finally becomes a plane wave at time t 

= 450873 swith an amplitude of about -1.29941 x 

10-12 m . The wave finally comes to rest at time 

892180 s (247 hours) and this corresponds to a 
critical value of the multiplier which is 505. 
 

It is clear from Fig. 6 that the general wave 
equation first show initial increase in the 
displacement from equilibrium position. The 
spectrum of the general wave equation also 
show a very high frequency before it starts to 
decrease. The decrease is exponential and it 
finally becomes a plane wave at time t = 391988
s  with final amplitude of about 6.03426 x 10-14 m . 
Beyond this time the general wave equation 
becomes a plane wave and it is no longer 
sinusoidal before it finally comes to rest. It is 
clear from Figs. 5 and 6 that the decay time and 
the relative amplitude of the Greens function 
representation of the carrier wave are greater 
than those of the general solution of the wave 
equation. From the figure while there is still 
pronounced amplitude in the Green’s function 

beyond 300000 sbut in the general wave solution 
the amplitude is already almost zero. Thus the 
attenuation time of the Green’s function 
representation of the carrier wave lags the decay 

time for the general wave solution by 100000 s . 
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That is, while the general wave solution finally 

goes to zero at 400000 s  the Green’s function 

finally goes to zero at 500000 s . This shows that 
the retarded behaviour of the carrier wave 
described by the Green’s function at some point 
away from the origin is much greater than the 
general wave solution of the carrier wave at the 
origin. 
 

4. CONCLUSION 
 
This study shows that the process of attenuation 
in most physically active system does not 
obviously begin immediately when they 
encounter an oppositely interfering system. The 
general wave equation that defines the activity 
and performance of a given wave away from the 
origin is guided by some internal inbuilt factor 
which enables it to resist any external interfering 
influence that is destructive in nature. 
Consequently, the anomalous behaviour 
exhibited by the carrier wave during the decay 
process, is due to the resistance pose by the 
intrinsic parameters of the host wave in the 
constituted carrier wave in an attempt to annul 
the destructive tendency of the parasitic wave. It 
is evident from this work that when a carrier 
wave is undergoing attenuation, it does not 
steadily or consistently come to rest; rather it 
shows some resistance at some point in time 
during the decay process, before it finally comes 
to rest.  The attenuation time of the Green’s 
function representation of the carrier wave 
equation lags the attenuation time for the general 
wave solution. This shows that the retarded 
behaviour of the carrier wave described by the 
Green’s function at some point away from the 
origin is much greater than the general wave 
solution of the carrier wave at the origin. The 
Green’ function is spherically symmetric about 
the source, and falls off smoothly with increasing 
distance from the source.  
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APPENDIX 
 

The vector representation shown below is the resultant of the superposition of the parasitic wave on 

the host wave. The amplitudes of the waves 1y  , 2y  and the resultant wave
y

are not constant with 
time but they oscillate at a given frequency.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. A.1. Represents the host wave 1y  and the parasitic wave 2y   after the interference. The 

superposition of both waves 1y and 2y is represented by the carrier wave displacement y . It is 

clear from the geometry of : ;;180180
00

   ;180
0

   and

  
. Note that  is the variable angle between the waves 1y and 2y  

 
Let us consider two incoherent waves defined by the non - stationary displacement vectors 
                                                   

).(cos
1

 tnrkay


                                                                                                   (A. 1)    
                                           

).(cos2   tnrkby


                                                                                           (A. 2)                                 
 
where all the symbols retain their usual meanings. In this study, (A1) is regarded as the host wave. 
While (A. 2) represents a parasitic wave with an inbuilt multiplicative factor or raising multiplier

 max,,2,1,0   . The inbuilt raising multiplier is dimensionless and as the name implies, it is 

capable of gradually raising the basic intrinsic parameters of the parasitic wave. Now let us add the 
two waves given by (A. 1) and (A. 2) using vector summation rule. Consequently, after a lengthy 

algebra we shall get that the resultant equation 
y

 is given as 
 

       )()(cos2
2222  tnnbabay  )()(.cos tEtnnrkc  


      (A. 3)                        

 

    

y1 y 

y2 

  

  

  

 

  

  



 
 
 
 

Erhieyovwe et al.; PSIJ, 14(1): 1-17, 2017; Article no.PSIJ.31687 
 
 

 
17 

 

where 
 

















))cos((cos

))((sinsin
tan)(

1





tnnba

tnnba
tE

                                                                 (A. 4) 
 

Equation (A. 3) is now the required carrier wave CW equation necessary for our study. It is clear from 
(A 3) that when the raising multiplier increases the intrinsic parameters of the parasitic wave to 
become equal to those of the host wave then the carrier wave ceases to exist after a specified time. 
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