

SCIENCEDOMAIN international www.sciencedomain.org

Relationship between CO₂ Emissions and Renewable Energy Production in the United States of America

Yaw A. Twumasi^{1*}

¹Department of Urban and Regional Planning, Jackson State University, 101 West Capitol Street, MS 39201, Jackson, USA.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ACRI/2017/30483 <u>Editor(s):</u> (1) Samson Mekbib Atnaw, Universiti Teknologi Petronas (UTP), Mechanical Engineering Department, Perak, Malaysia. <u>Reviewerss</u> (1) Joao Fernando Pereira Gomes, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal. (2) António Félix Flores Rodrigues, University of the Azores, Portugal. (3) Xuefei Hong, Harbin Institute of Technology, China. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/18072</u>

> Received 11th November 2016 Accepted 29th January 2017 Published 6th March 2017

Original Research Article

ABSTRACT

This study investigates the relationship between carbon dioxide (CO_2) emissions and renewable energy production. In particular, the analysis considers whether there is a uniform relationship between CO_2 emissions and renewable energy production in the United States. The study uses CO_2 emissions, Gross Domestic Product (GDP), population, and renewable energy production data obtained from the U.S. census Bureau, U.S. energy information administration (EIA), and other reliable data sources. Multivariate analysis was combined with geographic information system (GIS) to visualize the variables in each state. Pearson Correlation Coefficient was also used in this study to probe into the relationship between CO_2 emissions, renewable energy production, GDP and population in a linear form. Results of this study through the data analysis revealed there was a significant positive correlation between population and CO_2 emissions, while GDP also showed positive correlation with CO_2 emissions. However, there was no specific pattern between renewable energy and CO_2 emissions; meaning that producing more renewable energy does not necessarily lead to less CO_2 emissions.

*Corresponding author: Email: yaw.twumasi@gmail.com, yaw.a.twumasi@jsums.edu;

Keywords: CO₂ emissions; renewable energy; fossil fuels; climate change; green house gas; geographic information systems.

1. INTRODUCTION

The state of the environment, especially on the depletion of the ozone layer, the rise in mean global temperatures, the loss of biodiversity and the degradation of large watersheds, has focused the attention of world communities for more than a decade. After the 1972 Stockholm conference on the Human Environment, the international community responded with the appointment of the Brundtland Commission, whose report in 1987 sparked heightened and increasingly concerned discussions [1]. The questions raised in the report formed much of the agenda at the 1992 United Nations Conference on Environment and Development (UNCED). also known as the Rio Conference and Earth Summit. Following the signing of the 1992 Earth Summit, Kyoto protocol emerged from the UN Framework Convention on Climate Change (UNFCCC) with the legally binding agreement under which the industrialized countries will reduce their collective emissions of greenhouse gases by 5.2% [2,3].

Despite Kyoto protocol which was adopted in Kyoto, Japan, on 11 December 1997 and entered into force on 16 February 2005 [3], greenhouse gases especially carbon dioxide (CO₂) has received the most attention as it continues to increase in recent years [2]. According to Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, CO₂ has contributed the most to global warming and could have atmospheric lifetime of estimated between 30-95 years whereas Methane and Nitrous Oxide have mean atmospheric lifetime of 12 years and 114 years respectively [4,5]. Studies conducted by U.S. Environmental Protection Agency (EPA) in United States of America suggests that the composition of U.S. greenhouse gas emissions for CO₂ in 2014 was 81% followed by Methane 11%, Nitrous Oxide 6% and Fluorinated gases 3% [6]. In United Kingdom (U.K), final report in 2014 by National Statistics showed that CO2 accounted for 82% greenhouse gas emissions. From the same report, Methane and Nitrous Oxide posted 10% and 4% respectively of UK's greenhouse gas emissions in 2014 [7]. Among the Organization for Economic Co-operation and Development (OECD) countries in Europe and Asia, CO₂ data in Fig. 1 show higher emissions in thousands of tons per annum in 2013 [8-11]. According to U.S.

EPA report in 2016, Global CO_2 emissions from fossil fuels have been increasing at an alarming rate since 1900 [6,12,13]. As shown in Fig. 2, Global CO_2 emissions is expected to increase sharply as the world population increases which translates into more energy consumption and GDP growth [6,9,12-16].

Anthropogenic activities fueled partly by the pressures caused by human activities through growing demand for resources, global population growth, and increasing urbanization plays a key role in changing the carbon cycle both by adding more CO_2 to the atmosphere and by influencing the ability of natural sinks, like forests, to remove CO_2 from the atmosphere [5,6,9,14-18].

1.1 CO₂ Emissions and GDP Growth

The ratification of the Kyoto protocol re-kindled debates on the relationship between carbon dioxide emissions and economic growth. Shafik [19] found a linear relationship between per capita CO₂ emissions and per capita income. Schmalensee [20] found an 'inverse-U' shaped relationship between the per capita CO₂ emissions and per capita income. Such a shape is generally known as the Environmental Kuznets Curve in the literature. Gangadharan [21] analyzing two sets of cross-section data, from 36 countries in 1980 and 51 countries in 1995, found the slope of the per capita emissions versus per capita income curve to be positive everywhere except at the inflection point, where the slope is zero. In contrast, other studies have found direct evidence that supports a strictly monotonic relationship between GDP/capita and CO₂[10,16,22-31].

1.2 CO₂ Emissions and Renewable Energy

The U.S. EPA reported that CO_2 emissions from the burning of petroleum, coal and natural gas constituted 81 percent of all U.S. man-made greenhouse-gas emissions in 2014 [6,12,16]. It directly links changes in carbon dioxide emissions levels with changes in energy usage. Many believe renewable energies, as carbon free energy sources, could provide a major solution to global warming and energy security. By now, most studies about the CO_2 emissions have focused on other variables more than renewable energy. Sadorsky [32] analyzed the relationship between renewable energy consumption, income, oil prices and CO2 emissions in the Group of 7 (G7) economies over the period 1980-2005. Results showed that increases in real GDP per capita and carbon dioxide emissions per capita are found to be major drivers behind increases in G7 renewable energy consumption per capita. Menyah and Wolde-Rufael [33] used auto regression to study the relationship between carbon dioxide emissions, renewable energy consumption, nuclear consumption and real GDP for the US over the period 1960-2007. They found causality running from nuclear energy consumption to CO₂ emissions but no causality running from renewable energy consumption CO_2 to emissions. There is evidence of causality running from GDP to renewable energy.

1.3 Population and CO₂ Emissions

In support of the population growth and CO₂ emissions, early work of Cropper and Griffiths

[34], Bruvoll and Medin [35], found monotonic relationships between population growth and CO₂ emissions, and various forms of environmental degradation associated with such growth. In particular, Shi [36] found that global population change over the last two decades was more than proportionally associated with growth in carbon dioxide emissions. His empirical findings were based on data collected from 93 countries over the period 1975-1996. A larger population results in increased demand for goods and services which could result in a chain reaction of problems such as increased pressure on natural resources and other negative externalities on the local, regional and global environment. Early work of Seldon and Song [37], found a strong negative relationship between population growth and environmental degradation. This finding means that population growth and expansion across the landscape causes increased awareness of environmental issues, resulting in more pressure to adopt environmental standards [37].

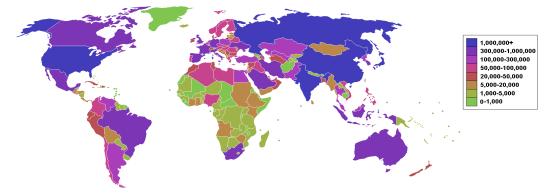


Fig. 1. Countries by carbon dioxide emissions in thousands of tons per annum in 2007 [11]

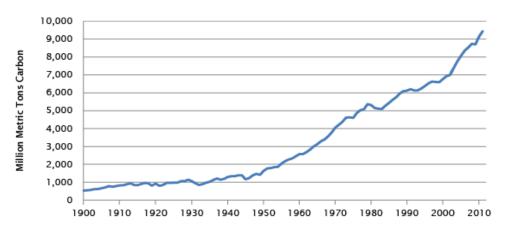


Fig. 2. Global carbon emissions from Fossil Fuels, 1900-2011 [16]

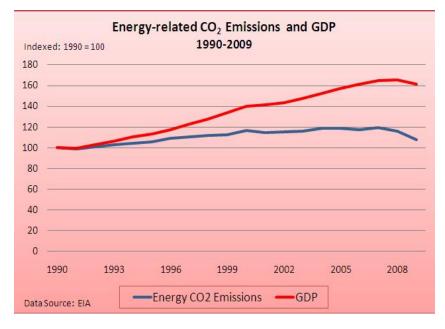


Fig. 3. Energy-related CO₂ emissions and GDP 1990-2009 [13]

1.4 Objectives of the Study

This study investigates the relationship between carbon dioxide emissions and renewable energy production. In particular, the goal is to examine whether a statistically significant relationship exists between CO_2 emissions and renewable energy production in the United States.

2. METHODOLOGY

Key variables: In this study key variables are CO_2 emissions and renewable energy production.

Variable classification: renewable energy production (interest variable), population, GDP considered as independent variables; while CO₂ emissions are supposed to be the dependent variable.

Identification of the variables:

Renewable energy production: renewable energy is a source of energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat. About 16% of global energy consumption comes from renewable energy, with 10% from traditional biomass, and 3.4% from hydroelectricity [9,14,15].

1- In this study renewable energy production in U.S is used to define the interest variable.

- 2- CO₂ emissions: CO₂ emissions are the amount of carbon dioxide that are emitted from human activities, measured in million metric tons.
- 3- GDP: Gross domestic product refers to the market value of all officially recognized final goods and services produced within a country in a given period; GDP per capita is often considered an indicator of a country's standard of living.
- 4- Population: value of this variable measured by the population in the middle of each year.

2.1 Data Type and Data Source

The data used for this study contained variables CO_2 emissions, GDP, population and renewable energy production in 2009. These data, were obtained from the U.S. Energy Information Administration (EIA), U.S. EPA and U.S. Census Bureau website [12,16,38,39].

2.2 Geographic Information Systems (GIS) Mapping

Esri's GIS mapping software (ArcMap) was used to visualize each of the variables in the U.S. by state. The data in Table 1 was entered into the attribute table. To assist in comparative analysis between CO_2 emissions and renewable energy production in each state in 2009, dot density mapping methods was used to show quantities.

2.3 Pearson Correlation Coefficient

In this study Pearson Correlation or Pearson's r technique was used to carry out statistical analysis. Before proceeding to the analysis it is important to explain briefly few concepts associated with Pearson Correlation Coefficient. This statistical method is widely used in the behavioral, social and medical sciences for investigating the relationship between two quantitative and continuous variables, for example, body mass index (BMI) and blood pressure [40,41], family size on savings and consumption [42-44], poverty and deforestation [45]. Pearson Correlation enables a researcher to test the strength and direction of a relationship between two quantitative or numerical variables ranges from negative (-1) to positive (+1) coefficient values. It assesses the degree to which two variables are linearly related or correlated [46]. A general assumption underlying the interpretation of Pearson Correlation is that both variables are each measured on a quantitative scale [46,47].

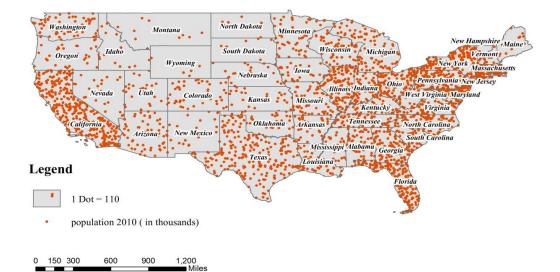
The SPSS version 22.0 statistical software package was used in this study. Pearson Correlation Coefficients were calculated using bivariate correlation analysis to examine whether a statistically significant relationship exists between CO_2 emissions, renewable energy production, GDP and population using data in Table 1. The effect of GDP and Population was controlled statistically to find out the relationship between carbon dioxide and renewable energy. Also, to aid data input, analysis and interpretation in SPSS software, the following abbreviations were used:

CO2 = CO₂ emissions GDP = Gross domestic product POP = Population RENERGY = Renewable energy

3. RESULTS AND DISCUSSION

Table 2 shows correlations between CO_2 emissions and population. Table 3 presents information on correlations between CO_2 emissions and GDP. Table 4 shows correlations between CO_2 emissions and renewable energy. Correlations between CO_2 emissions and renewable energy with control GDP and population are presented in Table 5. Map 1 represent the spatial distribution of U.S. population by States in 2010. Map 2 shows U.S. total CO_2 emissions by States in 2009. The total renewable energy production by States in 2009 is shown in Map 3. Total GDP by each State in 2009 is presented in Map 4. Total renewable energy production per CO_2 emissions in 2009 which was created by combining Map 2 and Map 3 is reported in Map 5.

In Table 2, Pearson correlations analysis was conducted to examine whether a statistically relationship exists between CO₂ emissions and population. The results revealed a significant and positive relationship (r = .85, N = 50, p = .00). The correlations were strong in strength. Also, Pearson correlations results in Table 3 examined the correlation between CO2 emissions and GDP. The result also shows a significant and strong positive relationship (r = .81, N = 50, p = .00). In Table 4 Pearson correlations analysis was conducted to examine the relationship between CO₂ emissions and renewable energy production. The results revealed a significant and positive relationship (r = .28, N = 50, p = .05). The low positive r = .28 indicates the correlations was weak in strength. A similar calculation was done in Table 5 showing correlations between CO₂ emissions and renewable energy by controlling GDP and population. The results revealed a significant and negative relationship (r = -.18, N = 46, p = .23). Again, the strength of the correlations was weak.


From foregoing analysis, CO_2 emissions and renewable energy production have a small positive correlation at (.05) in the absence of other factors. But when included and controlled for GDP and population the relationship changes. Conversely, relationships between CO_2 emissions and GDP, and CO_2 emissions and population were all significant (p = .00).

These statistical results generally correlated with Maps 1, 2 and 4, where there are almost positive relationship between population, total CO₂ emissions and GDP. This means that more populated States such as California, Texas, Florida, New York, Ohio and Illinois had more CO₂ emissions and higher GDP. On the other hand, few states such as Washington, Oregon, Idaho had relatively high renewable energy production considering their population, CO2 emissions and GDP (Map 3). As shown in Map 5, there was no positive relationship between renewable energy production and CO_2 emissions. This not necessarily mean that if one state has higher production of renewable energy we can expect to see less CO₂ emissions as in the case of the state of California.

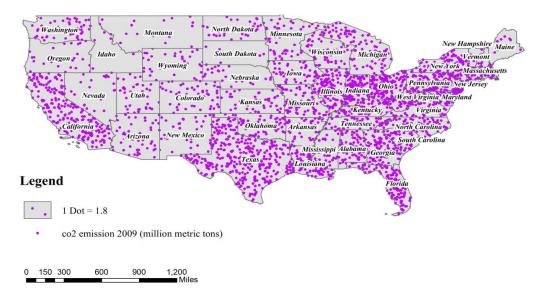

State	Abb.	CO ₂ emissions 2009 (million metric tons)	Population 2010 (in thousands)	GDP 2009 (current dollars)	Total renewable energy production 2009 (millions of kilowatt)
Alabama	AL	122.2750382	4779.736	166819	15585.23
Alaska	AK	37.9260201	710.231	45861	1337.28
Arizona	AZ	95.1229428	6392.017	249711	6629.67
Arkansas	AR	62.0693448	2915.918	98795	5778.26
California	CA	375.8438943	37253.956	1847048	53427.70
Colorado	CO	93.7430117	5029.196	250664	5131.70
Connecticut	CT	36.6167558	3574.097	227550	1268.28
Delaware	DE	11.7251820	897.934	60660	125.61
Florida	FL	226.9840713	18801.31	732782	4548.53
Georgia	GA	164.1764433	9687.653	394117	6084.85
Hawaii	HI	18.8564437	1360.301	65428	817.48
Idaho	ID	15.2098298	1567.582	53661	11301.58
Illinois	IL	226.4663779	12830.632	631970	3666.13
Indiana	IN	209.4309716	6483.802	259894	2209.31
lowa	IA	84.0540013	3046.355	136062	8559.77
Kansas	KS	75.0121289	2853.118	122544	2876.07
Kentucky	KY	145.1356347	4339.367	155789	3681.18
Louisiana	LA	167.1443834	4533.372	205117	3600.31
Maine	ME	18.4684464	1328.361	50039	8149.92
	MD			285116	2439.55
Maryland Massacussetts		71.6186547	5773.552	360538	
	MA	71.2048193	6547.629		2430.33
Michigan	MI	164.7656787	9883.64	369671	3995.11
Minnesota	MN	93.0815693	5303.925	258499	7545.75
Mississippi	MS	59.8660193	2967.297	94406	1424.28
Missouri	MO	131.9961729	5988.927	237955	2391.50
Montana	MT	32.6652671	989.415	34999	10421.51
Nebraska	NE	46.8982495	1826.341	86411	882.52
Nevada	NV	39.7534401	2700.551	125037	4269.01
New Hampshire	NH	17.3162930	1316.47	59086	2878.43
New Jersey	NJ	111.0414111	8791.894	471946	991.91
New Mexico	NM	58.6807540	2059.179	76871	1851.35
New York	NY	175.6017785	19378.102	1094104	32082.11
North Carolina	NC	134.057883	9535.483	407032	7064.66
North Dakota	ND	51.7686694	672.591	31626	4484.35
Ohio	OH	238.1754828	11536.501	462015	1161.16
Oklahoma	OK	105.1538769	3751.351	142388	6481.85
Oregon	OR	41.2693245	3831.074	167481	37305.94
Pennsylvania	PA	246.4227372	12702.379	546538	6034.79
Rhode Island	RI	11.1650865	1052.567	47470	149.34
South Carolina	SC	80.9368360	4625.364	158786	4079.98
South Dakota	SD	14.7825945	814.18	38255	4859.21
Tennessee	ΤN	105.3970097	6346.105	243849	11162.43
Texas	ТΧ	605.5016459	25145.561	1146647	22133.13
Utah	UT	65.1749276	2763.885	111301	1321.79
Vermont	VT	6.2814883	625.741	24625	1914.87
Virginia	VA	106.6646313	8001.024	409732	3896.15
Washington	WA	77.5479531	6724.54	331639	77977.38
West Virginia	WV	89.3321268	1852.994	61043	2387.53
Wisconsin	WI	96.7853529	5686.986	239613	3734.28
Wyoming	WY	63.9064380	564	36760	3192.78

Table 1. All variables' data source: U.S. census bureau

Available:[38,39]

Map 1. U.S. population by state 2010

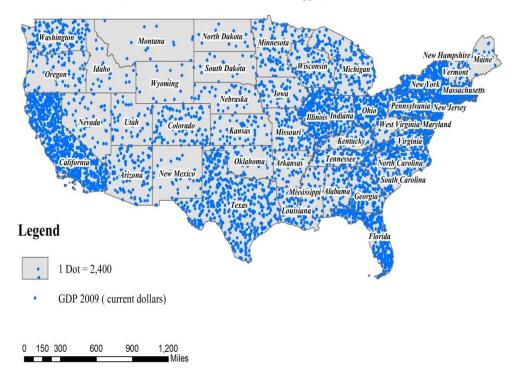
Map 2. U.S. total CO₂ emissions by states 2009

Table 2. Correlation between CO ₂ emissions				
and population				

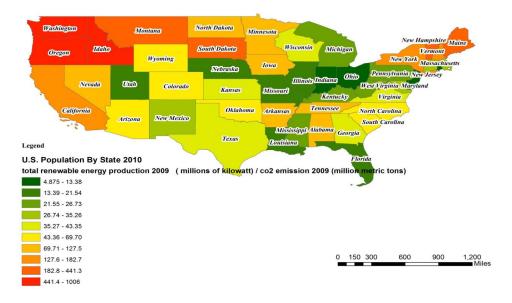

Correlations				
		CO2	POP	
CO2	Pearson correlation	1	.854**	
	Sig. (2-tailed)		.000	
	Ν	50	50	
POP	Pearson Correlation	.854**	1	
	Sig. (2-tailed)	.000		
	N	50	50	
**. Correlation is significant at the 0.01 level (2-tailed)				

Table 3. Correlation between CO₂ emissions and GDP

Correlations				
		CO2	GDP	
CO2	Pearson correlation	1	.810**	
	Sig. (2-tailed)		.000	
	Ν	50	50	
GDP	Pearson correlation	.810**	1	
	Sig. (2-tailed)	.000		
	Ν	50	50	


**. Correlation is significant at the 0.01 level (2-tailed)

Twumasi; ACRI, 7(1): 1-12, 2017; Article no.ACRI.30483


total renewable energy production 2009 (millions of kilowatt)

0 150 300 600 900 1,200 Miles

Map 3. U.S. total renewable energy production 2009

Map 4. U.S. gross domestic production (GDP) 2009

Map 5. U.S. total renewable energy production / CO₂ emissions 2009

Table 4. Correlation between CO₂ emissions and renewable energy

Correlations				
		CO2	Renergy	
CO2	Pearson correlation	1	.282*	
	Sig. (2-tailed)		.047	
	N	50	50	
Renergy	Pearson correlation	.282	1	
	Sig. (2-tailed)	.047		
	Ň	50	50	
<u> </u>				

*. Correlation is significant at the 0.05 level (2-tailed)

Table 5. Correlation between CO₂ emissions and renewable energy (Controlling GDP and population)

Correlations						
Control	variables	;	CO2	Renergy		
POP &	CO2	Correlation	1.000	175		
GDP		Significance		.234		
		(2-tailed)				
		df	0	46		
	Renergy	Correlation	175	1.000		
		Significance	.234			
		(2-tailed)				
		df	46	0		

4. CONCLUSION

The effect of renewable energy production on CO_2 emissions has been the focus of this study. The main findings of the study were as follows:

Pearson Correlations result between renewable energy production and CO_2 emissions was found to be statistically insignificant. The resulting coefficient is (r = -.18). Conversely, correlations between CO_2 emissions and GDP, and CO_2 emissions and population were all statistically significant (p = .00) with resulting coefficients of (r = .81) and (r = .85) respectively.

These findings means, the more populated the state is the more CO₂ emissions expected; also the higher GDP results and the higher CO₂ emissions are. However, this study could not find any specific pattern between renewable energy and CO₂ emissions. Map 5 shows the proportion of renewable energy production and CO2 emissions. States such as Washington, Idaho and Oregon have extremely high renewable energy production in comparison with their CO₂ emissions. It follows that there is no positive relationship between CO₂ emissions and renewable energy production in this study. Also, the study could not conclude that if one state has higher production of renewable energy, it follows that there will be less CO₂ emissions, as this for example in the State of California.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- World Commission on Environment and Development (WCED). New York: Oxford University Press; 1987.
- 2. The Guardian. What is the Kyoto protocol and has it made any difference?; 2011. Available:<u>https://www.theguardian.com/env</u> ironment/2011/mar/11/kyoto-protocol
- UNFCCC. Kyoto Protocol; 2014. Available:<u>http://unfccc.int/kyoto_protocol/it</u> ems/2830.php
- Jacobson MZ. Correction to control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research. 2005;110: D14105.
 - DOI: 10.1029/2005JD005888.
- 5. IPCC climate change The physical science basis contribution of working group I to the fourth assessment report of the IPCC; 2007.

Available:<u>https://www.ipcc.ch/report/ar4/wg</u> 1/

- U.S. Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014; 2016a Available:<u>https://www.epa.gov/ghgemissio</u> ns/inventory-us-greenhouse-gasemissions-and-sinks-1990-2014
- U.K. National Statistics. Final UK greenhouse gas emissions national statistics: 1990-2014; 2016. Available:<u>https://www.gov.uk/government/s</u> tatistics/final-uk-greenhouse-gasemissions-national-statistics-1990-2014
- Netherlands Environmental Assessment Agency. CO₂ time series 1990-2014 per region/country. Neumayer, E., Can natural factors explain any cross-country differences in carbon dioxide emissions? Available:<u>http://edgar.jrc.ec.europa.eu/over</u> view.php?v=CO2ts1990-2014
- Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JHAW. Trends in global CO₂ emissions - 2014 report, JRC report 93171 / PBL Netherlands Environmental Assessment Agency; report 1490; 2016.

ISBN: 978-94-91506-87-1

Available:<u>http://edgar.jrc.ec.europa.eu/new</u> s_docs/jrc-2016-trends-in-global-co2emissions-2016-report-103425.pdf

10. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JHAW. Trends in global CO₂ emissions - 2015 report, JRC report 98184 / PBL report 1803; 2015 Available:<u>http://edgar.jrc.ec.europa.eu/new</u> <u>s_docs/jrc-2015-trends-in-global-co2-</u> <u>emissions-2015-report-98184.pdf</u>

- 11. Underwood K. 5 Growing Nations With Growing Emissions; 2008. Available:<u>http://www.treehugger.com/corpo</u> <u>rate-responsibility/5-growing-nations-with-</u> <u>growing-emissions.html</u>
- U.S. Environmental Protection Agency (EPA).Greenhouse Gas Emissions: Sources of Greenhouse Gas Emissions; 2016b. Available:https://www.epa.gov/ghgemissio

ns/sources-greenhouse-gas-emissions

 U.S. Energy Information Administration (EIA). State carbon dioxide emissions; 2015. Available:http://www.eia.gov/environment/e

<u>missions/state/</u>
14. Chefurka P. World energy and population trends to 2100; 2007. Available:<u>http://www.paulchefurka.ca/WEA</u> P/WEAP.html

- Riddell A, Ronson S, Counts G, Spenser K. Towards sustainable energy: The current fossil fuel problem and the prospects of geothermal and nuclear power; 2015. Available:<u>http://web.stanford.edu/class/e29</u>
- <u>7c/trade_environment/energy/hfossil.html</u>
 U.S. Environmental Protection Agency (EPA). Greenhouse gas emissions: Global greenhouse gas emissions data; 2016c. Available:<u>https://www.epa.gov/ghgemissio</u> ns/sources-greenhouse-gas-emissions
- 17. IPCC Second Assessment, Climate Change: A report of the intergovernmental panel on climate change; 1995. Available:<u>https://www.ipcc.ch/publications</u> and data/ar4/syr/en/annexessannexvii.html
- 18. IPCC third assessment, report, climate change: A report of the intergovernmental panel on climate change; 2001. Available:<u>https://www.ipcc.ch/publications_and_data/ar4/syr/en/annexessannex-vii.html</u>
- Shafik N. Economic development and environmental quality: An econometric analysis. Oxford Economic Papers. 1994; 46:757-773.
- Schmalensee R, Stoker TM, Judson RA. World energy consumption and carbon dioxide emissions: 1950– 2050. Joint

program on the Science and Policy of Global Change, MIT, Report #5; 1996.

- 21. Gangadharan L, Valenzuela M. Interrelationships between income, health and the environment: Extending the environmental kuznets curve hypothesis. research paper number 740, Dept. of Economics, the University of Melbourne; 2000.
- 22. Cole MA, Rayner AJ, Bates JM. The environmental kuznets curve: An empirical analysis environment and development economics. 1997;(2)4:401-416.
- de Bruyn SM, van den Bergh JCJM, Opschoor JB. Economic growth and emissions: Reconsidering the empirical basis of environmental Kuznets curves. Ecological Economics. 1998;25:161–175.
- 24. Friedl B, Getzner M. Determinants of CO₂ emissions in a small open economy Ecological Economics. 2003;(45)1:133–148.
- Alam J. On the relationship between economic growth and CO₂ emissions: The Bangladesh experience. IOSR Journal of Economics and Finance. 2014;(5)6:36-41.
- 26. Bruvoll A, Medin H. Factors behind the environmental Kuznets curve. Environmental and Resource Economics. 2003;24:27–48.
- 27. Grubb M, Butler L, Feldman O. Analysis of the Relationship between Growth in Carbon Dioxide Emissions and Growth in Income. Working paper; 2004. Available:<u>https://www.researchgate.net/pu blication/237135069 Analysis of the Rel ationship between Growth in Carbon Di oxide Emissions and Growth in Income</u>
- Cohen D. The close relationship between economic growth and carbon emissions; 2012. Available:<u>http://oilprice.com/Finance/the-Economy/The-Close-Relationshipbetween-Economic-Growth-and-Carbon-Emissions.html</u>
- 29. Stavins R. Don't be fooled. CO₂ emissions still tied to economic growth; 2016. Available:<u>http://www.pbs.org/newshour/ma</u> <u>king-sense/column-dont-be-fooled-co2-</u> emissions-still-tied-to-economic-growth/
- Talukdar D, Meisner C. Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries. World Development. 2001;29(5):827–840.
- Saboori B. Sulaiman J, Mohd S. Economic growth and CO₂ emissions in Malaysia: A

cointegration analysis of the Environmental Kuznets Curve. Energy Policy. 2012;51: 184–191.

- Sadorsky P. Renewable energy consumption, CO₂ emissions and oil prices in the G7 countries. Energy Economics. 2009;(31)3:456-462.
- Menyah K, Wolde-Rufael Y. CO₂ emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy. 2010;(38)6:2911-2915.
- Cropper M, Griffiths C. The interaction of population growth and environmental quality. American Economic Review. 1994; 84:250–25.
- 35. Bruvoll A, Medin H. Factors behind the environmental Kuznets curve. Environmental and Resource Economics. 2003;24:27-48.
- Shi A. The impact of population pressure on global carbon dioxide emissions, 1975– 1996: evidence from pooled cross-country data. Ecological Economics. 2003;(44)1: 29–42.
- 37. Seldon T, Song D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? Journal of Environmental Economics and Management. 1994;27:147–162.
- U.S. Census Bureau. Data Tools and Apps; 2014. Available:<u>http://www.census.gov/data/data-</u>tools.html
- 39. U.S. Energy Information Administration (EIA) Data Zoa; 2015. Available:<u>http://www.datazoa.com/landing/ dz-landingpageEIA.asp</u>
- 40. Srikanth J, Jayant KK, Narasimha NS. Factors influencing obesity among urban high school children Bangalore City. Indian Journal of Nutrition and Dietetics. 2011;48(1):8–17.
- Ravisankar P, Madanmohan UK, Prakash ES. Correlation between body mass index and blood pressure indices, handgrip strength, and handgrip endurance in healthy adolescents. Indian Journal of Physiology and Pharmacology. 2005;49: 455-461.
- 42. Kiran T, Dhawan S. The impact of family size on savings and consumption expenditure of industrial workers: A crosssectional study. American Journal of Economics and Business Administration. 2015;7(4):177-184.
- 43. Xu X, Tan Y, Chen S, Yang G, Su W. Urban household carbon emission and

Twumasi; ACRI, 7(1): 1-12, 2017; Article no.ACRI.30483

contributing factors in the Yangtze River Delta, China. PLoS ONE. 2015;10(4): e0121604.

DOI: 10.1371/journal.pone.0121604

- 44. Radivojević B, Vasić P. Household age structure and consumption in Serbia. Economic Annals. 2012;(LVII)195:79-101. DOI: 10.2298/EKA1295079R.
- 45. Sunderlin WD, Dewi S, Puntodewo A. Poverty and forests: Multi-country analysis of spatial association and proposed policy solutions. In Kenneth M. Chomitz, Piet Buys, Giacomo De Luca, Timothy S. Thomas and Sheila Wertz-Kanounnikoff

(eds). At Loggerheads? Agricultural Expansion, Poverty Reduction and Environment in Tropical Forests The International Bank for Reconstruction and Development / The World Bank, Washington DC; 2017.

- 46. Meyers LS, Gamst GC, Guarino AJ. Applied Multivariate Research: Design and Interpretation, 3rd Edition. London: SAGE Publications, Inc.; 2017.
- Meyers LS, Gamst GC, Guarino AJ. Performing data analysis using IBM SPSS, 1st Edition. New Jersey: John Wiley & Sons, Inc.; 2013.

© 2017 Twumasi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/18072