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ABSTRACT 
 

This research paper is on development of distributed and decentralized multisensor data estimation 
and fusion algorithm with linear information filter for fusing the information from these various 
sensors and embedded in the developed system. The estimation technique is modified Kalman 
filter that provides estimates of the information about a certain state. Consequently the developed 
system is Radar Tracking System (RTS); comprising of array of antennae, and GPS mounted on a 
Digital Rate Gyroscope (DRG), for accurate and effective Information Gathering and Processing 
(IGP). The system was simulated to determine the stability and drift error rate of the trajectory over 
a period of 300secs. The results are also derived under usual methods and proof procedure of 
some existing literature. The advantage of this algorithm is that the transmission of new information 
can be done asynchronously only when the amount of information, measure with its randomness, 
is larger than a fixed threshold level. 
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1. INTRODUCTION 
 
Since the early-1989, work on decentralized 
systems began as part of the ESPRIT project 
SKIDS. In the SKIDS project, a fully 
decentralized surveillance system was 
implemented using four cameras and a 
Transputer based architecture. The network was 
a fully-connected point-to- point topology. The 
system was capable of tracking multiple targets 
(humans and robots) and addressed such issues 
as decentralized data association and 
decentralized identification [1]. The SKIDS 
demonstrator, which continued to be refined and 
operated for almost 10 years, laid the basis for all 
subsequent work on decentralized data fusion. 
 
Practical estimation and control applications 
generally entail the difficulty that the measured 
data is corrupted by noise. Thus, the derivation 
of specific estimates from noisy measurements is 
of little value, if the involved uncertainties are not 
considered appropriately. A common approach 
consists in modeling uncertain quantities 
stochastically by calculating mean and estimate 
variance. These parameters correspond to a 
Gaussian density characterizing the uncertainty 
about the state. For a linear evolution of the state 
variable and linear observation models, the 
Kalman filter [2] formulas represent an optimal 
closed-form solution to the estimation problem. In 
linear/nonlinear situations, mean and estimate 
variance often do not suffice to describe the 
underlying uncertainty and they can even be 
deceptive, in particular when the true probability 
density of the state estimate is multi-modal. 
Since a closed- form computation of the actual 
density is generally not possible, a lot of effort 
has been focused on approximate solutions to 
nonlinear Bayesian state estimation. For this 
purpose, either the underlying system and 
measurement mappings or the underlying 
probability densities are approximated. 
 
In the former case, the nonlinearities are 
generally linearized by first-order Taylor series 
approximations, which are performed within the 
extended Kalman filter, or by a linear regression 
analysis, of which the unscented Kalman filter [3] 
and [4] is a well-known example. Of course, due 
to the Gaussian assumption, they only provide 
very limited capabilities for capturing multi-
modalities. This can be better achieved              
through density approximations such as particle 
filters or finite-dimensional representations via 

orthonormal bases, e.g., truncated Fourier, or 
wavelet series. All these approaches are 
intended to provide finite and implementable 
parameterizations of the state estimates. 
 
In the recent past, the information filter [5] and [6] 
has been derived as an inverse covariance 
formulation of the Kalman filter, with the benefit 
that the fusion of multiple sensor data can easily 
be distributed. This reformulation has widely 
been applied to sensor networks [6]. The 
information filter herein calculates estimates on 
the information about the state and not on the 
state itself, which simplifies the fusion 
significantly. Also, the elimination of double-
counted information between two sensors nodes 
becomes very simple in the information space. 
 
The extended information filter comes with the 
same drawbacks as the extended Kalman filter 
and developing distributed fusion structures for 
arbitrary probability densities is elaborate.  
 
In order to solve these problems, the aims of this 
paper is to lay down the theoretical foundation for 
tractable linear/nonlinear decentralized and 
distributed data fusion. For this purpose, Section 
2 briefly describes decentralized and distributed 
data fusion (DDDF); follow by Implementation of 
Control Architecture for AIMSS, The algorithmic 
structures of a decentralized sensing node for 
AIMSS were fully analysis. Section 3 provides 
numerical simulation example. Section 4 the 
result was discussed. Section 5 performance 
evaluation decentralized and distributed linear 
Information filter and concluded in section 6 of 
this paper. 
 
2. FULLY DECENTRALIZED AND 

DISTRIBUTED MULTISENSOR 
NETWORK ARCHITECTURE 

 
A decentralized system should not be confused 
with a distributed system. Distributed systems 
typically contain some form of centralized 
resource and as a result will never be scalable.  
 
A distributed sensor network (DSN): can be 
defined as a set of spatially scattered intelligent 
sensors designed to obtain measurements from 
the environment, abstract relevant information 
from the data gathered, and to derive appropriate 
inferences from the information gained. 
Distributed sensor networks depend on multiple 
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processors to simultaneously gather and process 
information from many sources.  
 
Fully decentralized processing architecture: a 
decentralized data fusion system consists of a 
network of sensor nodes, each with its own 
processing facility, which together do not require 
any central fusion or central communication 
facility. In such a system, fusion occurs locally at 
each node on the basis of local observations and 
the information communicated from neighboring 
nodes. At no point is there a common place 
where fusion or global decisions are made. This 
is because a computational or communication 
bottleneck will always be associated with the 
central resource. This central resource is also a 
potential weakness because its failure will render 
the entire system unusable. 
 
A decentralized data fusion system is 
characterized by three constraints: 
 

1. There is no single central fusion center; no 
one node should be central to the 
successful operation of the network. 

2. There is no common communication 
facility; nodes cannot broadcast results 
and communication must be kept on a 
strictly node-to-node basis. 

3. Sensor nodes do not have any global 
knowledge of sensor network topology; 
nodes should only know about connections 
in their own neighborhood. 

 

The constraints imposed provide a number of 
important characteristics for decentralized data 
fusion systems: 
 

2.1 Implementation of Control 
Architecture for AIMSS 

 
The control architecture of this paper have been 
develop in [7], were we comes up with 
decentralized, distributed, local interaction and 
heterarchical structure for AIMSS. The system 
described in this paper employs a fully distributed 
and decentralized architecture for multisensor 
data fusion. The motivation behind all these 
organizations is to hide complexity and make 
each sensor function as modular as possible. 
Typically, in these organizations, the architecture 
comes first, and the data fusion algorithm is then 
“designed to fit”. 
 
2.1.1 Mathematical structure Distributed 

Decentralized Data Fusion (DDDF) 
 
The problem is to use appropriate models and 
sensors to control the state of a dynamic system 
(e.g., industrial robot, mobile robot, autonomous 
vehicle, surgical robot, etc.). Usually such 
systems involve real-time feedback control loops 
in addition to state estimation, uncertainty 
models. In spite of this Distributed Decentralized 
Data Fusion (DDDF) methods were initially 
motivated by the insight that the information form 
of the Kalman filter data fusion algorithm could 
be implemented by simply adding information 
contributions from observations.  
 
The mathematical structure of a DDDF sensor 
node is shown in Fig. 1 the sensor is modeled 
directly in the form of a likelihood function. Since, 
Kalman filter does not design sensor systems, 

 
 

Fig. 1. Mathematical structure of decentralized distributed data fusion node 
(Durrant-Whyte and Henderson, 2009) 
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but it provides the tool for doing it defensibly. 
That tool is the model for estimation uncertainty. 
The covariance propagation equations                
derived from the model can be used in 
characterizing estimation uncertainty as a 
function of the parameters of the design. Some 
of these parameters are statistical, such as           
the noise models of the sensors under 
consideration.  
 
2.1.2 Information filtering for decentralized 

and distributed multisensor data fusion  
 
Practical systems are in general affected by 
perturbations and inaccuracies, which have to be 
dealt with. For uncertain linear discrete-time 
systems and linear observation models 
 

    (1)                                                                                                                                              

 
                         (2) 

 
The Kalman filter [8] and its derivatives provide 
estimates on the uncertain state  by 

computing mean  and estimate covariance 

matrix  at each time instant , the function 
 usually represents a known control input. 

For the rest of the discussion in this paper, we 
will assume that  A basic assumption in 

the derivation of the Kalman filter is that the 
random sequences  and  describing 

process and observation noise are all Gaussian, 
temporally uncorrelated and zero-mean. 
 
The ability to construct decentralized data fusion 
architecture clearly depends on whether it is 
possible to efficiently decentralize existing 
centralized data fusion algorithms [9]. For                    
most common data fusion algorithms, this turns 
out to be possible, and indeed many 
decentralized data fusion algorithms are, 
surprisingly, more efficient, in terms of both 
computation and communication, than 
conventional distributed, federated or hierarchical 
data fusion algorithms. 
 
The initial impetus for decentralized systems   
was the development of a decentralized form of 
the Kalman filter algorithm. This is achieved by 
first recasting the usual Kalman filter                     
state estimation problem in information form. 
Briefly, consider a state with discrete-time 

index , a sequence of observations 

the estimate of this state 
(conditional mean)  
 

                                    (3) 
 
together with estimate covariance 
 

                 (4) 
 
The information form of the Kalman filter is 
obtained by re-writing the state estimate and 
covariance in terms of two new variables 
 

            1ˆ ˆ( | ) ( | ) ( | ),y i j P i j x i j−=                     (5)  
                                                                                                                             

1( | ) ( | ),Y i j P i j−=             (6) 
 
and, assuming observations in the form 
 

                        (7)  
 
with  
 

                               (8) 
 
the information associated with an observation 
may be written in the form 
 

                           (9) 
 

                          (10)  
 
with these definitions, the update stage of the 
Kalman filter becomes (Information 
Measurement Update) 
 

                          (11) 

                                 
                        (12)  

 
This simple update form comes at the cost of 
complexity in the prediction stage which is dual 
to the update stage for the conventional Kalman 
filter [10,11,12]. The information form of the 
Kalman filter, while widely known, is not 
commonly used because the update terms are of 
dimension the state, whereas in the distributed 
Kalman filter updates are of dimension the 
observation. For single sensor estimation 
problems, this argues for the use of the Kalman 
filter over the information filter. However, in 
multiple sensor problems, the opposite is true. 
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The reason is that with multiple sensor 
observations 
 

        (13)
 

 
The estimate cannot be constructed from a 
simple linear combination of contributions from 
individual sensors 
 

    (14) 

 
(with independent gain matrices) as the 

innovation generated from each sensor is 
correlated because they share common 
information through the prediction  

However, in information form, estimates can be 
constructed from linear combinations of 
observation information 
 

                    (15)                                 

 
as the information terms from each sensor 

are uncorrelated. Once the update equations 
have been written in this simple additive form,                   
it is straightforward to distribute the data                
fusion problem (unlike for a Kalman filter);        
each sensor node simply generates the 
information terms and these are summed at 

the fusion center to produce a global information 
estimate. 
 
2.1.3 Decentralize information filter 
 
The review shows that [3] and [7,10] as done a 
critical work on information filter and decentralize 

and distributed information filter. To decentralize 
the information filter all that is necessary is to 
replicate the central fusion algorithm 
(summation) at each sensor node and simplify 
the result. This yields a surprisingly simple nodal 
fusion algorithm. The algorithm is described 
graphically in Fig. 2 for a typical sensor node,  
in a decentralized data fusion system. The node 
generates information measures at a 

time  given observations made locally and 
information communicated to the node up to time 

 
 
The node implements a local prediction stage to 
produce information measure predictions 

) at time  given all local and 

communicated data up to time  (this 
prediction stage is often the same on each node 
and may, for example, correspond to the path 
predictions of a number of common targets). At 
this time, local observations produce local 
information measures on the basis of local 
observations. 
 
The prediction and local information measures 
are combined, by simple addition, into total local 
information measure at time  This 
measure is handed down to the communication 
channels for subsequent communication to other 
nodes in the decentralized network. Incoming 
information from other nodes is 

extracted from appropriate channels and is 
assimilated with the total local information by 
simple addition. The result of this fusion is a 
locally available global information                  
measure 

 
The algorithm then repeats 

recursively. 
 

 
 

Fig. 2. Algorithmic structure of a decentralized sensing node 
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The communication channels exploit the 
associative property of information measures. 
The channels take the total local information 

and subtract out all information that has 

previously been communicated down the 
channel, thus transmitting only new 

information obtained by node  since the last 
communication. Intuitively, communicated from 
node  thus consists only of information not 
previously transmitted to a node  because 

common data has already been removed from 
the communication, node  can simply 

assimilate incoming information measures by 
addition. As these channels essentially act as 
information assimilation processes, they are 
usually referred to as channel filters [13]. 
 
3. NUMERICAL SIMULATION EXAMPLE  
 
The Decentralized Kalman Tracking System 
which consists of GPS mounted on digital rate 
gyro with cameras as a tracking system, this 
illustrative example is to demonstrate the 
effectiveness and accuracy of the proposed 
modified Kalman filter MSDDF-AIMSS. Consider 
the following linear system, which corresponds to 
a vehicle moving in three dimensional co-
ordinate spaces.  
 

DRG use to measure the angular rate . Use the 
data provided in data specification sheet to 
determine a model for the noise process and 
design a Kalman filter to determine the position 
and velocity of the trajectory of the vehicle.  
 
The derivation of the Kalman filter assumes that 
the disturbances and noise are independent and 
white. Removing the assumption of 
independence is straightforward and simply 
results in a cross term  
being carried through all calculations. 
 
The error state vector  is given by 
 

(16)         

 
The first three entries of  represent Euler 

angle errors while represent 

errors in our knowledge of the rate gyro biases.  
 
3.1 Time Update Equations 
 
The dynamic matrix  is given by 

       (17) 

 
The process mapping matrix  is given by 
 

(18) 
 

and relates the process noise vector  to 
The process noise vector is given by  
 

            (19) 
 

The first three entries of represent the 
wideband measurement errors on the and 

 gyro outputs. The last three entries of  are 
the driving noise terms for the stochastic gyro 

biases (i.e., the equivalent of  is ) In 

the actual implementation of the estimator, 
however, the process noise vector, , itself is 
not used. Instead, what is used is the process 
noise covariance matrix, , and its associated 

power spectral density matrix, . The matrix 

 is defined as:  
 

                                           (20)  
 
The symbol  represents the expectation 
operator. Thus, the power spectral density matrix 
for  is denoted  and is given by 
 

                                  (21) 

 
The variables  and  are the Euler angle 

and gyro bias process noise matrices 
respectively. The matrix  is given by: 
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Numerical values for depend on 
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data sheet. The variables   are 
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 are also found in the data 

sheet. 
 
For the gyro bias process noise matrices when 
using ADIS16250/ADIS16255 rate gyro, the 
matrix  is given by: 
 

                                 (23) 

 
Equation (23) we now equal,  
 

     (24) 

 

In this case matrix  is used in the equations 

for propagating the state error covariance matrix, 
 Propagation of  forward in time is 

accomplished by using the solution to the 
discrete Riccati equation. Given the state error 
covariance matrix, , at time step , then the 

covariance at time step is given by:  
 

        (25) 
 
this gives them a priori value of the covariance 
matrix of estimation uncertainty as a function of 
the previous a posteriori. 
 
Updated state covariance equation 
 

   (26) 
 

3.2 Measurement (Update or Correction) 
Equations 

 
At time  an observation is made and the 
updated estimate of the state 

together with the updated estimate covariance 
is computed from the state prediction 

and observation according to  
 

 (27) 
 

      (28) 
 
The measurement vector  is given by: 
 

                                       (29) 
 

The measurement matrix  is defined as: 
 

                                   (30) 

where the gain matrix is given by 
 

                    (31)  
 
where 
 

            (32) 
 

is the innovation covariance. The difference 
between the observation  and the predicted 

observation is termed the 

innovation or residual : 
 

                      (33) 
 
The innovation is an important measure of the 
deviation between the filter estimates and the 
observation sequence [14,15]. Indeed, because 
the true states are not usually available for 
comparison with the estimated states, the 
innovation is often the only measure of how well 
the estimator is performing. The innovation is 
particularly important in data association. 
 

4. ANALYSIS OF THE RESULTS 
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without bound, then the theoretical performance 
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system can be modeled mathematically and 
there are in-built Matlab m-file functions for their 
implementations. 
 
One can, for example, use eigenvalues and 
eigenvector decomposition of solutions to test 
their characteristic roots (they should be positive) 
and condition numbers.  
 
4.1.1 Simulation result 1 
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4.1.2 Simulation result 2 
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Algebraic Riccati Equation of the controller 
design (Innovation Covariance matrix),  the 
open-loop eigenvalues of the plant dynamics and 

, the open-loop eigenvector root of the plant 

dynamics. Note, that for  design the pair 

 must be controllable.  
 

  

 
optimal gain matrix K, called Kalman gain 
 

  

 
Innovation Covariance matrix 
 

 Eigen values E. 

 
4.1.3 Simulation result 3 
 

Returns the observer gain matrix  such that 
the Kalman filter produces an optimal state 
estimate of  using the sensor 

measurements  Also returned solution of 

 as associated updated state covariance 

of the Riccati equation. 
 

 

 

  

Updated State Covariance 
 

 Estimator Poles 

 
5. PERFORMANCE EVALUATION 

DECENTRALIZED AND DISTRIBUTED 
LINEAR INFORMATION FILTER  

 

Performance evaluation of a data fusion 
architecture does not pertain only on algorithms 
accuracy in localization but several other aspects 
must be considered as the data communication 
between sensors and fusion nodes, the 
computational complexity and the memory used. 
Then, in order to define a procedure to assess 
the performances of this kind of systems a 
general model of multisensor and of fusion nodes 
has been studied that takes into account the 
elements involved in a multisensor tracking 
process. 

 

5.1 Performance Evaluation of Tracking 
Control System Algorithm 

 
By applying the distributed and decentralized 
fusion algorithm in Chapter three and verified the 

result. The innovation  i.e. the 

difference between the observation and the 
predicted observation and corresponding 

variance  The result compare the 

deviation between the filter estimates of different 
fusion algorithm and the observation sequence. 
We select appropriate coordinate to show their 
differences clearly. We denote position and 
velocity as  and  respectively and 

decentralized and centralized system denoted as
 respectively. 

 
Fig. 3 a and b: The tracking performance 
comparison of the decentralized and centralized 
Tracking Control System: 
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 
 
  

0.0052 0.0000 0.0310 0.0049 0.0000 0.0101

0.0000 0.0211 0.0000 0.0000 0.0714 0.0000

0.0310 0.0000 0.4311 0.0483 0.0000 0.191

0.0049 0.0000 0.0483 0.0064 0.0000 0.0179

0.0000 0.0714 0.0000 0.0000 0.3363 0.0000

0.0

S

− − − −

− − −

− −
=

− − − −

− −

− 101 0.0000 0.1922 0.0179 0.0000 0.1193− −

 
 
 
 
 
 
 
 
 

0.5008 1.1789

0.5008 1.1789

1.1754 0.4836

1.1754 0.4836

0.1474 0.1152

0.1474 0.1152

i

i

i
E

i

i

i

− +

− −

− +
=

− −

− +

− +

 
 
 
 
 
 
 
 
 

L

ˆ( )x k x

ˆ( ).y k

( | )P k k&

0.4123 0.0000

0.0000 0.0018

0.0018 0.0000

0.0850 0.0000

0.0000 0.0000

0.0000 0.0000

L

−

−

−
=

−

−

 
 
 
 
 
 
 
 
 

Observer Gain Matrix L

0.0412 0.0000 0.0002 0.0008 0.0000 0.0000

0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

0.0002 0.0000 0.0000 0.0001 0.0000 0.0000

0.0085 0.0000 0.0001 0.0028 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0

P

− − −

− −

− − −
=

− − − −

− −

− 000 0.0000 0.0000 0.0000 0.0000 0.0000−

 
 
 
 
 
 
 
 
 

0.1350 0.2163

0.1350 0.2163

0.2720

0.0003

0.0018

0.1300

i

i

E

− +

− −

−
=

−

−

−

 
 
 
 
 
 
 
 
 

0
ˆ ( | )x t t

0( | ).P t t

( )s t ( )s t&

0( | ) and ( | )cs t t s t t

( )s t

ˆ ( | );cs t t

0ˆ ( | ),s t t

( )s t&
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target velocity centralized 

estimated target velocity  
 

 
 

Fig. 3 a. from the simulation results of 
position tracking system, we see that the 

centralized estimated target position tracking 
system diverges at 100 seconds 

 But the decentralized 
estimated target position tracking can still 

track the target throughout the period of the 
flight 

 

 
 

Fig. 3b. from the simulation results of velocity 
tracking system, we see that the centralized 

estimated target velocity tracking system 
diverges at 100 seconds  and 

at the 200 seconds it started 
converging back. The decentralized 

estimated target velocity tracking system 
track the target throughout the flight period 

 
It shows that the decentralized and distributed 
multi-target tracking control has better fault 
tolerance and robustness properties. 

6. DISCUSSION AND CONCLUSION  
 
The objective of the analysis is to evaluate the 
feasibility of an estimation system design for 
meeting some pre-specified acceptable level of 
uncertainty in the estimates that will be obtained. 
This can be achieved by adopting algorithm 
introduced in this paper, which is based on 
Decentralized, Distributed, Local interaction and 
Heterarchical Architecture requiring no central 
processing facility to perform data fusion. Each 
node communicates local information to each 
other node so each one arrives at the common 
global consensus. It was found that the 
information that each node needs to broadcast to 
each other node is simple and that the data 
assimilation equations that each node must 
perform are no more complex than the equations 
for the Kalman filter. 
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