International Blood Research & Reviews

8(2): 1-6, 2018; Article no.IBRR.42009 ISSN: 2321–7219

Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency among Neonates in Usmanu Danfodiyo University Teaching Hospital (UDUTH), Sokoto, Nigeria: Oxidative Stress Markers in G6pd Deficient Neonates

Taofeeq Oduola^{1*}, Faruq Bunza¹, Monsurat Temitope Yusuf¹, Muhammed Kabiru Dallatu¹, Muhammed Alhaji Ndakotsu², Abubakar Panti³, Ben Onankpa⁴ and Adesoji Adeniji⁵

¹Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
²Department of Haematology and Blood Transfusion, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
³Department of Obstetrics and Gynaecology, Faculty of Surgery, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
⁴Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
⁵Department of Chemical Pathology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria. *Authors' contributions*

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IBRR/2018/42009 <u>Editor(s)</u>: (1) Anamika Dhyani, Laboratory of Biochemistry & Molecular and Cellular Biology, Hemocentro-UNICAMP, Brazil. (2) Dharmesh Chandra Sharma, Incharge Blood Component & Aphaeresis Unit, G. R. Medical College, Gwalior, India. (3) Armel Herve Nwabo Kamdje, Professor, Department of Biomedical Sciences, University of Ngaoundere, Cameroon. <u>Reviewers:</u> (1) Jaime Carmona-Fonseca, Universidad de Antioquia, Colombia. (2) Hadiza Abdullahi, North West University, Nigeria. (3) Dhastagir Sheriff, Benghazi University, Libya. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/25133</u>

> Received 2nd April 2018 Accepted 9th June 2018 Published 14th June 2018

Original Research Article

*Corresponding author: E-mail: oduola.taofeeq@udusok.edu.ng;

ABSTRACT

Background: Glucose-6-phosphate dehydrogenase deficiency is one of the most common enzyme defects affecting all races and particularly in malaria-endemic areas. This study aimed at determining G6PD deficiency, bilirubin and oxidative stress biomarkers in G6PD deficient neonates among neonates in UDUTH, Sokoto.

Methods: Samples of cord blood were collected at delivery, in the Labour Room, from 300 neonates made up of 131 (43.7%) males and 169 (56.3%) females. Methaemoglobin reduction method was used for the screening of G6PD deficiency; total bilirubin level was estimated using bilirubinometer, total antioxidant capacity (TAC) was measured using TAC Assay Kit, and malondialdehyde (MDA) using thiobarbituric acid method.

Results: Of the 300 neonates tested, a total of 90(30%) were G6PD-deficient while 210(70%) had normal G6PD status. Of the 90 G6PD-deficient neonates, 41(45.6%) were males and 49(54.4%) were females. The prevalence was 31.3% among male population and 29.0% among female population. The mean \pm standard error of total bilirubin (mg/dL), TAC (uM CRE), and MDA (nmol/L) in G6PD-deficient and G6PD-normal neonates were 6.63 \pm 0.12 and 6.11 \pm 0.06, 364.34 \pm 18.76 and 390.99 \pm 24.18, 26.15 \pm 1.22 and 23.35 \pm 1.15 respectively. The total bilirubin was significantly higher (p<0.05) in G6PD-deficient neonate than in G6PD-normal neonates, both TAC and MDA values showed no significant difference between the G6PD deficient and G6PD normal neonates. **Conclusion:** From this study, there is a high prevalence of G6PD deficiency among neonates in UDUTH, Sokoto. G6PD deficiency is a known cause of neonatal jaundice hence it is recommended

G6PD screening be made routine for all neonates born in UDUTH, Sokoto.

Keywords: G6PD; prevalence; lipid peroxidation; bilirubin; neonatal jaundice.

1. INTRODUCTION

(G6PD) Glucose-6-phosphate-dehydrogenase deficiency is the most common enzyme defect. being present in more than 400 million people worldwide [1.2]. G6PD deficiency is described as a widespread, heritable X-chromosome linked abnormality [3]. It is seen most frequently in approximately all of Africa, Asia, and the countries near the Mediterranean Sea [4]. Glucose-6-phosphate-dehydrogenase deficiency disorder is an important of hexose monophosphate shunt in erythrocyte metabolism [5.6]. G6PD enzyme activity is necessary for red blood cell (RBC) survival as it catalyses the only metabolic pathway capable of generating reducing power to these cells lacking mitochondria [7]. Reducing power, supplied in the form of NADPH, is necessary as an electron donor for detoxifying oxidative challenges to cells. The metabolic reactions concerned are part of the pentose phosphate pathway (PPP), the first and rate-limiting step of which is catalyzed by the G6PD enzyme: the oxidation of glucose-6phosphate into 6-phosphoglucono- δ -lactone, which simultaneously reduces NADP to NADPH. The electron of NADPH passes to abundant glutathione dimers (GSSG) via another enzyme, glutathione reductase. Reduced glutathione monomers (GSH) represent the primary defense against hydrogen peroxides, organic peroxides,

and free radicals. When G6PD functions normally, the drain of electrons from the NADPH pool caused by oxidative challenge within the cell prompts the PPP to accelerate according to need, i.e. maintaining an NADP-NADPH equilibrium that strongly favours NADPH. This in turn maintains the oxidized-reduced glutathione (GSSG-2GSH) equilibrium strongly in the direction of the reduced state [8]. Thus, G6PD serves as dominant cellular defense against oxidative stress [9]. In G6PD deficiency, acute hemolytic anemia usually begins within hours of an oxidative stress and ends when G6PD deficient erythrocytes have haemolvzed: therefore, the severity of the anaemia associated with these acute hemolytic episodes is proportionate to the deficiency of G6PD and oxidative stress [10]. Viral and bacterial infections are the most common triggers, but many drugs, foods and toxins can also precipitate haemolysis [10]. The most clinically serious public health burden of G6PD deficiency neonatal jaundice as a result of is hyperbilirubinaemia, and puts infants at risk of kernicterus within the first few days of life. Kernicterus can lead to hearing deficits, behaviour problems, and permanent neurological damage or death [1]. Previous studies in Nigeria documented a prevalence of 4-26% for G6PD deficiency [11]. It has been documented that G6PD deficiency is implicated as the major factor

associated with high prevalence of severe neonatal hyperbilirubinaemia, acute bilirubin encephalopathy, kernicterus, and cerebral palsy among Nigerian infants; hence this study is designed to establish the prevalence of G6PD deficiency in neonates born in UDUTH, Sokoto in order to take preventive measures if the need arises.

2. METHODS

2.1 Study Design

This was a prospective observational study conducted in the labour room of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria between March and June, 2015.

2.2 Subjects

The study population consisted of three hundred male and female term neonates delivered by normal vaginal delivery or by caesarian section. Intra-uterine fetal distress (IUFD) and still birth were excluded from the study. The sample size was calculated based on prevalence rate of G6PD deficiency in neonates from a previous study [12]. Ethical approval was obtained from Ethics and Research Committee of the Hospital and informed consent was obtained from the mother of each neonate prior to delivery.

2.3 Blood Collection and Analysis

Five milliliter of cord blood from each neonate was collected into a clean lithium heparinized sample container and was mixed gently to prevent clotting. G6PD screening was performed using Methaemoglobin Reduction Method [13]. The screening was carried out on the day of blood collection. Total plasma bilirubin was

determined using Bilirubinometer (Neo-bil Plus) [13], lipid peroxidation by plasma malondialdehyde estimation colorimetric method of Shah and Walker [14] and total antioxidant potential by copper reducing antioxidant assay method of Sashindran et al. [15]. The data generated from this study were analyzed using the statistical package for social sciences (SPSS) version 20.0. Values were presented as the mean ± standard error of mean (SEM). Statistical comparisons of the parameters were made between G6PD normal and G6PD deficient neonates using student t-test.

3. RESULTS

A total of 300 neonates made up of 131 (43.7%) males and 169 (56.3%) females were screened for G6PD deficiency. Of this number, 90 (30%) were G6PD-deficient while 210(70%) were G6PD normal. Of the 90 G6PD-deficient neonates, 41(45.6%) were males and 49(54.4%) were females (Table 1). Table 2 shows the prevalence based on gender of the neonates. The prevalence was 31.3% among male population and 29% among female population. Table 3 shows the Bilirubin and oxidative stress biomarkers in G6PD deficient neonates and G6PD normal neonate (controls). The mean ± standard error of mean of total bilirubin (mg/dL) for the G6PD-deficient neonates and G6PDnormal neonates were 6.63 \pm 0.12 and 6.11 \pm 0.06 respectively. The mean ± standard error of mean of TAC (uM CRE) for the G6PD-deficient neonates and G6PD-normal neonates were 364.34 ± 18.76 and 390.99 ± 24.18 respectively.

The mean \pm standard error of mean of MDA (nmol/L) for the G6PD-deficient neonates and G6PD-normal neonates were 26.15 \pm 1.22 and 23.35 \pm 1.15 respectively.

Table 1. Frequency of G6PD deficiency among the neonates

G6PD status	Frequency	Percent	Valid percent	Cumulative percent
Deficient	90	30	30	30
Normal	210	70	70	70
Total	300	100	100	100

G6PD status	Female	Percent	Male	Percent	Total
Deficient	49	29	41	31.3	90
Normal	120	71	90	68.7	210
Total	169	100	131	100	300

Parameters	G6PD normal n(50)	Deficient n(90)
Total Bilirubin(mg/dL)	6.11 ± 0.06	6.63 ± 0.12**
MDA(nmol/L)	23.35 ± 1.15	26.15 ± 1.22
TAC(µM CRÉ)	390.99 ± 24.18	364.34 ± 18.76

Table 3. Bilirubin an	d oxidative stress	biomarkers in	n G6PD deficient neonates

Values are presented as mean ±SEM. ** statistically significant (p<0.01) as compared to control. Abbreviation: CRE = Copper reducing equivalence

4. DISCUSSION

It has been established that Glucose-6phosphate dehydrogenase deficiency is the most easily identified inherited disorder that causes newborn jaundice, severe hyperbilirubinaemia, and bilirubin encephalopathy. Furthermore, acute bilirubin encephalopathy (ABE) and its post icteric chronic sequelae (kernicterus, in its classic form) are the most severe, life-threatening manifestations of neonatal G6PD deficiency that is preventable [9]. Its prevalence in neonates with indirect hyperbilirubinaemia varies in different parts of the world according to ethnic variations. Studies from different parts of the world report different prevalence rates. In Spain, France and Singapore the prevalence rates (1.57, 2.1 and 1.62% respectively) were low, while that of Saudi Arabia, Nigeria and in American Blacks (18.4, 40 and 14% respectively) were high [16]. In earlier studies, the prevalence of G6PD deficiency in apparently healthy individuals in Ile-Ife and in Sokoto was established to be 26.7% and 37.6% respectively [17,18]. In the present study, the prevalence of G6PD deficiency amongst neonates born in UDUTH, Sokoto, Nigeria; was determined and found to be 30%. In another study on neonates in Ile-Ife, prevalence of G6PD deficiency was reported to be 20% among neonates (19), and 18.2% to 28.7%: have been documented from earlier different studies in Nigeria (20). Strong relationship between malaria and G6PD deficiency state has been widelv reported, prevalence of G6PD deficiency is high in malaria endemic region [11]. It has also been documented that G6PD deficiency provides protection from malaria infections areat especially for falciparum infections. Nigeria being a malaria endemic country, might have accounted for the high prevalence of G6PD deficiency.

G6PD deficiency, being an X-linked condition, the G6PD deficiency was found to be more in male than the female from this study and this finding is consistent with previous reports [21].

In the present study, the mean bilirubin level of G6PD deficient neonates was significantly higher than G6PD normal neonates. Our finding is consistent with that of Badejoko et al. [19] and Isa et al. [21]. Significant association of G6PD deficiency with neonatal hyperbilirubinaemia in the immediate perinatal period has been documented [22]. It has also been reported that significant hyperbilirubinaemia poses a potential threat for permanent neurological deficit or kernicterus. Studies have revealed that insufficient hepatic metabolism of unconjugated bilirubin [23] rather than increased hemolysis [24] the contributor to is major neonatal hyperbilirubinaemia.

MDA level is a sensitive indicator of lipid peroxidation and thus of oxidative stress. Increased concentrations of free oxygen radicals in newborns damage the cell membrane through lipid peroxidation, and this damage may be associated with various pathologies such as ischemic encephalopathy, hypoxic hemorrhage. intraventricular necrotizina enterocolitis, and bronchopulmonary dysplasia Bilirubin is an effective scavenger of oxidant radicals, and its concentration is increased during oxidative stress [25]. The level of MDA was higher in G6PD deficient neonates than G6PD normal neonates though the increase was not statistically significant, this is consistence with studies of Alkhotani et al. [25] and Nassef et al. [26]. Total antioxidant capacity concentration was also higher in G6PD normal than G6PD deficient neonates; the difference was also not statistically significant.

5. CONCLUSION

In conclusion, there is a high prevalence of G6PD deficiency among neonates in UDUTH, Sokoto, which may lead to neonatal hyperbilirubinaemia which can result to kernicterus. In UDUTH, neonates are not routinely screened for G6PD deficiency, and the common practice of early discharge means that newborns are discharged before the onset of jaundice. Therefore, it is recommended that all

neonates should be screened for G6PD deficiency in order to take appropriate measures to prevent complications of hemolysis and jaundice; as well as the bilirubin level before postnatal discharge. All patients that are malaria positive must be screened to know their status prior to treatment so as to avoid antimalarial and all other oxidative agents that can trigger hemolytic crisis in G6PD deficient neonates.

CONSENT

As per international standard or university standard, patient's written consent has been collected and preserved by the authors.

ETHICAL APPROVAL

As per international standard or university standard, written approval of Ethics committee has been collected and preserved by the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Williams O, Gbadero D, Edowhorhu G, Brearley A, Slusher T, Lund TC. Glucose-6-phosphate-dehydrogenase deficiency in Nigerian Children. PLoS ONE. 2013;8(7): e68800.
- Hsieh YT, Lin MH, Ho HY, Chen LC, Chen CC, Shu WC. Glucose-6-Phosphate Dehydrogenase (G6PD) - Deficient Epithelial Cells Are Less Tolerant to Infection by *Staphylococcus aureus*. PLoS ONE. 2013;8(11):e79566.
- Stadem PS, Hilgers MV, Bengo D, Cusick SE, Ndidde S, Slusher TM, Lund TC. Markers of oxidative stress in umbilical cord blood from G6PD deficient African newborns. PLoS ONE. 2017;12(2): e0172980.
- Frank, JE. Diagnosis and management of G6PD deficiency. American Family Physician. 2005;72(7):1277.
- Segel GB. Enzymatic defects. In: Behrman RE, Kliegman RM, Jenson HB. Nelson Textbook of Pediatrics. 17th ed. Philadelphia; Saunders. 2004;635-638.
- 6. Azma RZ, Hidayati N, Farisah NR, Hamidah NH, Ainoon O, G6PD enzyme

activity in normal term Malaysian neonates and adults using a Osmmr 2000-d kit with HB normalization. Southeast Asian J. Trop. Med. Public Heal. 2010;41:982-988.

- Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995;14:5209–5215.
- Greene LS. G6PD deficiency as protection against Falciparum-malaria: An epidemiologic critique of population and experimental studies. Yearb. Phys. Anthropol. 1993;36:153–178.
- Bhutani VK. Jaundice due to glucose-6phosphate dehydrogenase deficiency. Neoreviews. 2012;12(3).
 Available:<u>htpp://neoreviews.aappublication</u> s.org
- 10. Leong A. Is there a need for neonatal screening of glucose-6-phosphate dehydrogenase deficiency in Canada? McGill J. Med. 2007;10(1):31-34.
- Ibrahim B, Sani AM, Timothy B. Prevalence of glucose-6-phosphate dehydrogenase deficiency in children aged 0-5 years infected with Plasmodium falciparum in Katsina State, Nigeria. Advances in Biochemistry. 2016;4(6):66-73.
- 12. Ibrahim T. Sample size determination, In: Research methodology and dissertation writing for health and allied health Professionals. 1st Edition, Lucas, A.O (eds), Nigeria. 1997;74.
- Cheesbrough M. District laboratory practice in tropical countries. 2nd ed. Cambridge, UK: Cambridge University Press. 2006;362–378.
- 14. Shah JK, Walker's AM. Quantitative determination of MDA. Biochemica et Biophysica Acta. 1989;11:207-211.
- Sashindran R, Balasundaram M, Jegathambigai R, Kumar P. Evaluation of neuroprotective effect of quercetin and coenzyme Q10 in ethanol induced neurotoxicity in mice. International Journal of Applied Biology and Pharmaceutical Technology. 2015;6(1):67-71.
- 16. Khodashenas E, Kalani-Moghaddam F, Araghi Z, Khodaparast M, Yazdani Z. Glucose-6-Phosphate Dehydrogenase Deficiency and Neonatal Hyper-

bilirubinemia. Iranian Journal of Neonatology. 2015;6(3):28-31.

- 17. Oduola T, Thomas KD, Falana CO. Prevalence and pattern of glucose-6phosphate dehydrogenase in Ile-Ife, Nigeria. Journal of Medical Laboratory Science. 2004;13(2):67-71.
- Oduola1 T, Jelani I, Bolarin DM, Ndakotsu MA, Dallatu MK. Prevalence of glucose -6- phosphate dehydrogenase (G-6-PD) deficiency in Sokoto: liver function and oxidative stress biomarkers in deficient individual. BJMMR. 2016;13(11):1-6.
- Badejoko BO, Owa JA, Oseni SBA, Badejoko O, Fatusi AO, Adejuyigbe EA. Early neonatal bilirubin, hematocrit, and glucose-6-phosphate dehydrogenase status. Paediatrics. 2014;134(4):e1082e1087.
- Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6- phosphate dehydrogenase deficiency: A systematic review and metaanalysis. Blood Cells Mol Dis. 2009;42(3): 267–278.
- Isa HM, Mohamed MS, Mohamed AM, Abdulla A, Abdulla F. Neonatal indirect hyperbilirubinemia and glucose-6-

phosphate dehydrogenase deficiency. Korean J Paediatr. 2017;60(4):106-111.

- Kaplan M, Algur N, Hammerman C. Onset of jaundice in glucose-6- phosphate dehydrogenase - deficient neonates. Pediatrics. 2001;108(4):956–959.
- Kaplan M, Muraca M, Hammerman C, Vilei MT, Leiter C, Rudensky B, Rubaltelli FF. Bilirubin conjugation, reflected by conjugated bilirubin fractions, in glucose-6phosphate dehydrogenase-deficient neonates: A determining factor in the pathogenesis of hyperbilirubinemia. Pediatrics. 1998;102(3):E37.
- Jalloh S, Van Rostenberghe H, Yusoff NM, Ghazali S, Nishio H, Wahab NA, Matsuo M, Nik Ismail NZ. Poor correlation between hemolysis and jaundice in glucose 6phosphate dehydrogenase-deficient babies. Pediatr Int. 2005;47(3):258–261.
- 25. Alkhotani A, Eldin EEMN, Zaghloul A, Mujahid S. Evaluation of neonatal jaundice in the Makkah region. Sci. Rep. 2014;4: 4802.
- Nassef YE, Fathy HA, Ali A, Hamed MA, Fathy GA. Evaluation of G6PD activity and antioxidants status in jaundiced Egyptian neonates. Int. J. Med. Med. Sci. 2013; 5(12):550-559.

© 2018 Oduola et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history/25133