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In this paper, we study continuous frames in Hilbert spaces using a family of linearly independent 
vectors called coherent state (CS) and applying it in any physical space. To accomplish this goal, the 
standard theory of frames in Hilbert spaces, using discrete bases, is generalized to one where the basis 
vectors may be labeled using discrete, continuous or a mixture of the two types of indices.  A 
comprehensive analysis of such frames is presented and illustrated by the examples drawn from a toy 
example Sea Star and the affine group. 
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INTRODUCTION 
 
The Hilbert space is the natural framework for the 
mathematical description of many areas of Physics and 
Mathematics. The most economical solution, is of course 

to use an orthonormal basis,  nn , which gives in 

addition the uniqueness of decomposition: 
 

.n
Nn

n  



                        

(1)
 

 
The uniqueness of the decomposition and the 
orthogonality of the basis vectors, while maintaining its 
others useful properties: fast convergence, numerical 

stability of the reconstruction    n , etc. The 

resulting object is called a discrete frame, a concept 
introduced by Duffin and Schaeffer (1952)

 
in the context 

of non-harmonic Fourier analysis. Latter the concept of 
generalization of frames was proposed by Daubechies et  
al. (1986) and then independently by Ali et al., (1993). Let 

H be an abstract, separable Hilbert space (over the 

complexes C ) and  HGL the group of all bounded 

linear operators on H  which have bounded inverses, 
throughout this paper. 
The definition is very simple: a family of 

vectors  HNnn ,  (the Hilbert space) is a frame if 

there are two constants 0, BA  such that, for all 

,  one has:  
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where the constant A  and B  are called frame bounds 

and  if BA ,  then  the  frame  is   called   tight.  Writing 
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Here, S is a positive bounded operator with bounded 

inverse .1S  Additionally, the set  ,,' Nnn 
 

where 

nn S  1'  , is called dual or reciprocal frame, with frame 

bounds 
11 ,  AB . Combining the two allows for the 

recovery of any element   from its frame components: 

 
''
n

Nn
nn

Nn
n  


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In mathematical physics, the coherent states, 

  gUg  actually yield the following continuous 

resolution of the identity on the group, G with the (left) 

Haar measure dg : 

 

Idgg
G

g   ,                        (5) 

 

where U being a strongly continuous unitary 

representation of G on the H , and   a fixed, suitable 

vector in H . Rewriting Equation 5, we obtain: 
 

H
G

g   ,
22

                        (6) 

 

Analogy with a tight frame is clear and it seems natural to 

call the set of vectors  Ggg , a continuous tight 

frame. 
One should mention furthermore that the theory of 

frames has been elaborated by Ali et al. (1993, 2000) and 
Daubechies et al. (1986) and Daubechies (1990). 
Moreover, the interested reader can refer to Antoine and 
Grossmann (1976), Duffin and Schaeffer (1952), Gazeau 
(2016), and Christensen (2003). In this paper, continuous 
frames in Hilbert space were studied and applied to any 
physical space. 
 

         
MATERIALS AND METHODS 
 

Here, mathematical formulation of frames in H  was discussed by 
taking the famous articles by Ali et al., (1993) and Rahimi et al., 
(2017). 
 
 
Mathematical formulation of frames 
 

A frame H is the union of a choice of linearly independent sets of 
vectors, satisfying a specific completeness-or rather over 
completeness-condition. Each set of vectors could be labeled by a 

set of discrete, continuous, or mixed indices. Let    be a locally 
compact space (which could be partly, or completely discrete) and 

let   be a regular Borel measure on   with support equal to  . 

 A set of vectors XxniHi
x  ,....,,.........2,1,   

Das et al.         73 
 
 
 

is said to constitute a rank n  frame F if the following conditions 

hold:  
 

(i) For all  niXx i
x ,......,2,1,,    is a linearly  

independent set; and  

(ii) There exists a positive operator  HGLA  such that, 

 

Axdvi
x

n

i

i
x 

 

)(||
1

 ,                              (7) 

 
the integral converging weakly. 

To be more explicit, we shall denote the frame so defined 

by  nAF i
x ,, . Note that if JX  is a discrete set and    is 

a counting measure, then the condition of Equation 7 yields the 
following equation. 

 

Ai
j

n

i Jj

i
j 

 


1                               

(8)
 

 
Or simply, 
 

Ak
Jk

k 



                              

(9)
 

 

(
,J being another discrete index set). It is in this form that the 

definition of a frame is conventionally given (Duffin and Schaeffer, 
1952; Fornasier and Rauhut, 2005) such that Equation is an 
obvious generalization. 

Let  A
 

be the spectrum of the self-adjoint (positive) 

operator A  and let  Am  and  AM  be its infimum and 

supremum, respectively, 
 

 

  0sup

0inf

1

1

















AAM

AAm

                                         (10) 
 

,H so that       AAMAm ,    and  

 

      ,m
                            (11)

 

 

It is then clear that H
 
(Equation 7), implies the usual frame 

condition: 
 

      2
2

1

2
 AMxdvAm

n

i
X

i
x 

                   (12)

 

In other words,  Am  and  AM  are the frame bounds of 

common parlance. Furthermore,   1
AM  and   1

Am  are the 

infimum and supremum of  1A
 

and both 

     111
, 

 AAmAM  , with 
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      .,
111   AmAMA

                           (13) 

 
Defining  
 

i
x

i
x A  1' 

                             (14) 

 

,,,,2,1 Xxni  
 
we easily verify that 
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Satisfying the frame condition 
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H . The frame  nAF i
x ,, 1'   is said to be the dual 

frame of  nAF
i

x ,, . The width or snugness of the frame 

 nAF
i

x ,,
 
is as follows:  

 

     
   




m

m
Fw

                            
(17)

 

 

Obviously,   10  Fw  and  Fw  measure the spectral width 

of the operator A . If   0Fw , that is, if IA  ( 0 and 

I the identity operator on H ), then the frame F is called tight. 

Note that a frame  nAF
i

x ,,  and its dual 







   nAF

i

x ,, 1  

have the same width and the frame is self-dual iff IA  

associated naturally to the frame  nAF
i

x ,, , there is a self-

dual, tight frame  nIF
i

x ,, , with: 

 

,2/1 i

x

i

x A  
                            (18)

 

 

In fact, if  is any operator  HGL  and 
T its adjoint, then 

writing 
 

,,  TATAT
i

x

i

x 
                           (19)

 

 
We see that 
 

  Axdi
x

n

i

i
x 

 


1

                                                (20) 

 
 
 
 

Such that we obtain  nAF
i

x ,, . In particular, if T is a unitary 

operator  ITTTT  
, then  nAF

i

x ,,  and 

 nAF
i

x ,,  are said to be unitarily equivalent frames. In this 

case, of course,    AA    and the frame 

widths,      nAFwnAFw
i

x

i

x ,,,,   . Note, however, 

that Equation 18 is not the only way to obtain a self-dual tight frame 

from  nAF
i

x ,, . Indeed, if U is any unitary operator on H , 

then since we can always write
2/12/1 UAUAA  , we see that 

with: 

 
i

x

i

x UA  2/1
                          (18a) 

 

Another self-dual tight frame  nIF
i

x ,,  is obtained which is 

unitarily equivalent to  nIF i
x ,, . 

There is a sense in which any two frames  nAF
i

x ,, and 

 nAF
i

x ,, , related by Equation 19, are equivalent and we 

proceed to study this point a little more closely. If we introduce the 
positive operator: 

 

  i

x

n

i

i

xxF 



1

,                                    (21) 

 

For each Xx ,
 
Equation 7 assumes the form: 

 

    


xdxF 
                            (22)

 

 
Of course, for each x  there is more than one choice of linearly 

independent vectors 
i

x
 for which Equation 21 is satisfied. The 

arbitrariness is quantified by Ali et al., (1993) and Friedberg et al., 
(2003). 
 

Theorem 1. If  nii
x ,.......,2,1,   is linearly independent set of 

vectors for which 

 

  i

x

n

i

i

xxF 



1

,                           (23) 

 

if there exists an nn  unitary matrix  xU , with 

elements  xUij , such that 

 

  nix
j

x

n

j
ij

i

x U ,,2,1,
1




 .                        (24) 



 
 
 
 
Proof 
 

It is clear from the unitary of  xU  (that is, from 

    ik

n

j
kjij xUxU 

1

) that if 
i

x  and 
i
x  are related by 

Equation 24, then Equation 23 holds. On the other hand, assume 

that 
i
x  are linearly independent and satisfy Equation 23. Then, for 

all ,H
 

 

 
    
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i
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i
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1 1
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Setting 
 

Cz

Cz

i
xi

i
xi







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 (26)
 

 

This equation becomes 
 

 
  

 


n

i

n

i
ii zz

1 1

2
'2

27.
                                                              

(27)
 

 

Now let  xP  be the projection operator onto the range of  xF
 

(and hence  xP  is also its support). Then both  n

i

i
x 1

  and 

 n

i

i
x 1

 span the subspace  HxP of H , and there exists an 

nn  invertible matrix  xU  for which 

 

  .
1

j
x

n

j
ij

i
x xU  



  

 

Thus, for all ,H
 

 

   j
x

n

j
ij

i
x xU




1

 

  ,
1

'
j

n

j
iji zxUz 




 

 

and, hence by Equation 27,  xU  is unitary. 
 
 

RESULTS AND DISCUSSION 
 

Applications of continuous frames 
 
Here, we discuss two useful examples on the continuous 
frame in Hilbert space  (Ali  et  al.,  2000,   1993;  Gazeau  
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(2016); Rahimi et al., (2017); Friedman A (1970). 
 
 
Example 1: A toy example - Sea star

 

 
Consider the Euclidean plane with Dirac notations 
 











1

0

2
j


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00
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22
00

0
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0,
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100





I

 
 

In the Euclidean plane, 
2 orthonormal basis is defined 

by the two ket vectors 0 and 
2

 , where   

denotes the unit vector with polar angle   2,0 . This 

frame is such that 
 

0
2

0,
22

100    

 
and the resolution of the identity comes through the sum 
of their corresponding orthogonal projections, 
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Now, coherent state 0
5

2

5

2










 n
R

n
, where 

)5(mod4,3,2,1,0n  and matrix representation is  
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 
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
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To the unit vector 
2

sin0cos  
 

corresponds with the orthogonal projector p  given by 
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Again the resolution of the identity for Sea Star is as 
follows: 
 

I
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Here,   4,3,2,1,0X is the set of orientations   

angles 
5

2 n
 explored by the starfish which is equipped 

with uniform weight 
5

2 . The operator 
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2

5

2 nn
pn


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2H . 

 

From 
5

2

5

2 nn
pn


  acts on 

2H  and given a 

 4,3,2,1,00 n  one derives the probability distribution 

on  4,3,2,1,0X
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Choosing 00 n , values are 
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
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  618.1

2
51    (golden mean). Check from 

12   that 
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Projectors npn  with Hilbert-Schmidt 

norm     122
 

nnnn ptrpptrp allow a localization 

distance on X  to be defined: 
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Similarly, any regular N-fold polygon in the plane have 
satisfied the resolution of unity by the following way: 
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Finally, if we consider the continuous case, then we have, 
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Example 2: The affine group

 

 
In order to obtain a concrete situation where the more 
general considerations of the results do indeed apply, let 
us construct a rather unorthodox family of CS for the 

affine group AG . The connected affine group consists of 

transformation of of the following type: 

 

 xbaxx ,
                                                   (28)

 

 

where, Rba  ,0 . Writing 

 

  ,, AGbag 
                       (29)

 

 
We have the multiplication law, 
 

 ., 2112121 babaagg 
                      (30)

 

 
The matrix representation  
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reproduces this composition rule. The inverse is given by 
the matrix 
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If we take a vector 




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



1

x , then trivially the action of the 

matrix Equation 30 on this vector is given by 
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
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which exactly reproduces the action baxx  on . It 

is clear that this class of matrices constitute a group, 

called the full affine group which is denoted by AG  but 

note that, it is not a connected group. So that, if we 
consider only those matrices from the class of matrices 

where 0a , then the class of matrices forms a 

subgroup of AG  which is denoted by 


AG . 

On the Hilbert space 
 

 ,,2
nn RLH  1int  egern

 
 

  ,1drrrd n
n


                       (31)

 

 

AG has the unitary irreducible representation 

 gUg n  given by 

 

      n
ibrn

n HarearbaU   ,, 2

                  (32)
 

 

Consider the subgroup H of G , 

 

  .,0,|  aagGgH A                      (33)
 

 

Then ,HGA   ,, AGba 
 

 

      babba ,0,,1,
                      (34)

 

 

Also, since ,x
 

 

     ,0,,1,1, abaxxba 
                      (35)

 

 

On the coset space ,
H

G  
 A

 
the action of  AG

 
in  , 

can be written as: 
 

  AGbagbaxgx  ,,
                    (36)

 

 

On  ,
H

 AG  so parameterized, we choose the quasi-

invariant measure,  
 

,dxdv
                      (37) 

so that 
 

     bagaxgx
dv

dvg
,,,  

                                  
(38) 
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Choosing a (global) section, AG:
 

 

   ,,1 xx 
                        (39) 

 
we get  
 

   1, xx ,                          (40) 

 
so that coherent states may be constructed

14
 for a 

suitable choice of nH  as  

 

       xxUxx nx ,, 
                    (41) 

 

Thus,          
 

     rrer ixr
x ,

                      (42) 
 
The operator, 
 

,dxA x
R

x                         (43) 
 

is easily computed to be a multiplication operator on ,nH
 

 

       n
n Hxrrr   ,2

2

                    (44) 
 

In order for   to be bounded and invertible with 

,1A we must, therefore, impose on  nH  the 

conditions, 
 

 i    12sup
21 

 

rr n

Rr

                                    (45) 

 

 ii   ,0
2
r exceptperhaps at isolated points      

 
r                                             (46) 

 

These conditions, together with the fact that   nH  

that is, 
 

  ,
2

  n
R

dr 
                      (47) 

 

imply that 
1  is unbounded. In fact, since 

 

  
 

 ,
2

1
2

1
1 r

r

r
r

n







 

                     
(48) 
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 lies in the set  1AD iff 

 

   
    .

2

1 2

4

22

2
 



rdr
r

r
n

R

n




                                  
(49) 

 

Thus, the representation nU  of   is square-integrable 

mod  ,  and coherent states (Equation 42) may be 

constructed for any  nH  satisfying the admissibility 

conditions (Equations 45 and 46). However, the coherent 

states do not define a frame, since 
1  is unbounded. In 

fact from Equations 45 and 47, it follows that none of the 

vectors x  is the domain of either 2
1

  or 
1 . The 

map  
  

 ,,: 2 dxLHW n   
 

        ,irx
x nW x e r r d r     


  

     (50) 
 

is clearly bounded and its range in  dxRL ,2

 
is closed in 

the norm   
 

 2

2 1

,
,

L dx
A




   

                      (51) 

 

where
1  is the image, on  2 , ,L dx  of  

1  under   

W .  The evaluation maps   CHxE  : ,given by 

 ,x  is easily seen to be continuous (in the 

Equations 51 norm). However, the reproducing kernel, 
 

    ,
2

1
, ,1 dreyx

R

ryxi
yx  
 




                    
(52) 

 

is a distribution which defines a sesquilinear form on .H
 

 
 
Conclusion 
 
An introductory-level theory of continuous frames in 
Hilbert space was studied, focusing primarily on the 
analysis and ending with its applications to possible 
physical space. The mathematical construction of frames 
was illustrated by the examples drawn from a toy 
example Sea Star and the affine group.  
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