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Abstract 
 

This paper deals with the construction of l-stable implicit one-block methods for the solution of stiff 
initial value problems. The constructions are done using three different multi-block methods. The first 
multi-block method is composed using Generalized Backward Differentiation Formula (GBDF) and 
Backward Differentiation Formula (BDF), the second is composed using Reversed Generalized Adams 
Moulton (RGAM) and Generalized Adams Moulton (GAM) while the third is composed using Reversed 
Adams Moulton (RAM) and Adams Moulton (AM). Shift operator is then applied to the combination of 
the three multi-block methods in such a manner that the resultant block is a one-block method and self-

starting. These one-block methods are stablel  up to order six and stablel )(  with o75.79 at 

order ten. Numerical experiments show that they are good for solving stiff initial problems. 
 

 
Keywords: l-stable; multi-block; stiff initial value problem; one-block and self-starting. 
 

Subject Classification: 65L04; 65L05; 65L06. 
 

Original Research Article 



 
 
 

Ajie et al.; JAMCS, 32(5): 1-13, 2019; Article no.JAMCS.48977 
 
 
 

2 
 
 

1 Introduction 
 
Consider the problem of finding the numerical solution )(ty  to the stiff initial value problems  (ivp) in 

ordinary differential equations (ode) of the form 
 

mmm yf
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         (1.1) 

 
 Stiff problems can only be handled without so much step size restrictions by A-stable methods but these 
methods are difficult to come by because of Dahlquist order barrier theorem [1]. In [2], it was pointed out 
that many researchers have circumvented this order barrier and constructed high order, A-stable methods 
through unconventional means. In recent literatures, the focus is on block methods as a means of 
circumventing this barrier theorem. These methods are composed using different linear multistep formulas 
(LMF), (see [3,4,5,6,7,8,9]. In this paper, we show how one-block methods can be constructed using 
different multi-block methods as opposed to the known convention of using different single LMF. This 
paper is divided into five sections; section 2 started with a brief review of LMF and describes how to 
construct the family of methods. Section 3 gives the stability analysis of the methods, section 4 deals with 
numerical experiments while the conclusion is given in section 5. 
 

2 Construction of the Methods 
 
The classical linear multistep formula which is given by  
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where the step number 1k  and nnn tth  1  is a variable step length,  k

rr 0
  and  k

rr 0
  are real 

constants and both are not zero. If (2.1) is applied to the scalar test equation  
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it yields the stability polynomial  
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Now let us redefine (2.4) as 
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where  k

iiA
0 and  k

iiB
0

,
 are matrices (block coefficients), then (2.1) becomes a linear multi-block 

methods (LMBM) 
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Equation (2.6) is what is needed in the construction of the new block methods instead of the usual (2.1). The 
methodology for the construction is explained in the following proposition: 

 

Theorem 

 

Let the family of Linear Multi-Block Methods (LMBM)  Tm
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  be given, that is, 
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with  ][][ , j
k

j
k   for a fixed j forming a family of variable order jkp ,  of variable step number k. Then 

the resultant system of composite LMBM 
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arising from the E-operator transformation of (2.7) can be composed as the one-block method 
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if k is chosen such that l is an integer given as  
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where ,1nY ;nY andFn 1 nF ...,2,1,0n  are as defined below and 0101 ,,, DDCC  are 

square matrices also defined below for a fixed s and m. 
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Proof: 
 

Notice that the E-operator is effectively applied k-l times on the system of LMBM  
jk

j
k

j
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][][ ,  . Thus 

there are ))(())(( lksklksk   unknown solution points captured in the block of solution 

T
lksknnnn yyyY ).,..,,( )(211   .By this block definition in (2.9) is realized if the coefficient 

matrices 
0101 ,,, DDCC  are square matrices of dimension ))(())(( lksklksk  . 

 

This simply imply that )()( lksklkmsms   so that l is as in (2.10) and for a fixed m and s, k is 

chosen such that 0 lk .  
 
In particular: 
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 (2.) 3m  ; ;2s
4

63 


k
l  ; ...,14,10,6k

 

 

When 0 lk  , the method requires zero shifting. This is so if kms . However, the case of interest 
in this paper is when m = 3 and s = 2.Consider the family composed using GBDF/BDF [5], RGAM/GAM 
and RAM/AM [4] methods, the coefficients are respectively given below:  
 
The method constructed using the pair of GBDF and BDF of order 6, that is k=6. 
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The method constructed using the pair of RGAM and GAM of order 7, that is k=6. 
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The method constructed using the pair of RAM and AM of order 7, that is k=6. 
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The three multi-block (Three-block) methods are then used to construct a one-block method given as in 
(2.9)where 
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Case of k=10, five-block methods constructed are 
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Putting all the three multi-block methods together, we have (2.9) where 
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3 Stability of the Implicit One-Block Methods 
 
When (2.9) is applied to the test equation (2.2), it yields the characteristics equation.    
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The region of absolute stability AR  associated with (2.9) is the set 
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The only non-zero value of w(z) for this family of methods are given as a rational function 
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where )( zP  and )(zQ  are polynomials. From the above k = 6,  
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This value tends to zero as z tends to infinity. 
 

Definition 1: A block method is said to be pre-stable if the roots of )(zQ  are contained in C (see [10]).  

 
The roots of )(zQ  are 

 
{{z0.2210288675951737 -1.2587046977754033i},{z0.2210288675951737 
+1.2587046977754033i},{z0.7560441897235561 - 0.701940199394596i}, 
{z0.7560441897235561 +0.701940199394596i}, {z1.0140247811340575 -
0.2047642418277674i},{z1.0140247811340575 +0.2047642418277674i}} 
 

They are all contained in C . 
 
Definition 2: A one block method is A-stable if and only if it is stable on the imaginary axis (I-stable) [11]:  

That is 1)( iyT  for all y , and T(z) is analytic for 0z  (i.e. )(zQ does not have roots with  

negative or zero real parts), I-stability is equivalent to the fact that the Norsett polynomial defined by  
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satisfies 0)( yG  for all y  [11].  

 

Definition 3: A block method is said to be StableL   if it is StableA  and also 0)( zT  as 

z [12]. 
 

The none zero solution, )( zT of order 6 has no pole in
C , all the roots of )(zQ  are contained in C . The 

orders 6 satisfies condition (3.3) and definitions 1 and 2, therefore it is StableL .  
 

Definition 4: A LMF is said to be A(α)-Stable, with )
2

,0(


   if its region of absolute stability (RAS) 

contains the infinite wedge w ,    )arg(: zhw
 

 
Following the analysis as above, the order 10 of the constructed method is �(�) − ������with � = 79.75� 
and therefore �(�) − ������ 

 

4 Numerical Experiments 
 
In this section, we considered two problems to test the effectiveness of the method  
 
Problem 1: Van der Pol problem (cf: [5]) 
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The phase diagram of the problem of the computed solution and that of ode15s are plotted in Fig. 1 and they 
produced the graph. 
 

 
Fig. 1. The phase diagram of problem computed with order 6 of the method 

 
Problem 2:  
 
Consider the following linear constant coefficient initial value problem taken from [5], 
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The theoretical solution is given by 
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The exact and the computed solution using order 6 of our new method produced the same graph as can be 

seen in the Fig. 2. 
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Fig. 2. Solution of problem 2 using order p=6 

 

5 Conclusion 
 
The work done in [4,5,7] using linear multistep methods has been extended to multi-block methods. The 

order 6 of the methods constructed is StableL , while the order 10 is StableL )(
 
with

o75.79 . 

The result of the implementation of order 6 of the method on a stiff initial value problem shows that it is 
effective.    
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