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Abstract

This paper proposes a method for constructing a predictive estimator for logistic regression.
We make a provisional assumption that the predictive estimator is given by multiplying the
maximum likelihood estimators by constants, which are estimated using a parametric bootstrap
method. The relative merits of the maximum likelihood estimator and the predictive estimator
produced by this method are determined by cross-validation. The results show that the predictive
estimators derived by this method lead to a smaller deviance than that obtained by the maximum
likelihood estimator in many instances.

Keywords: Log-likelihood; future data; predictive estimator; logistic regression; maximum likelihood
estimator; parametric bootstrap method.
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1 Introduction

The maximum likelihood estimator is a commonly used tool for deriving regression coefficients in
regression analysis. One of the reasons is that the maximum likelihood estimator has a number of
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desirable characteristics when the number of data is large (e.g. [1]). It has been found, however,
that some estimators are better than the maximum likelihood estimator from the standpoint of
fitting well to future data when the number of data is relatively small. Such an estimator is called
a ‘predictive estimator’. For example, when we use the ‘third variance’ for estimating the variance
of normally distributed data, the resultant estimate tends to fit closely to future data ([2]; Chapter
5 of [3]). In contrast, a predictive estimator that gives better results than the maximum likelihood
estimator for estimating the parameter of an exponential distribution has already been obtained
([4]), and a predictive estimator that works better than the maximum likelihood estimator for
estimating the coefficients of correlation has also been found ([5]). The characteristics of such
predictive estimators have been elucidated using asymptotic methods ([6]) and comparisons with
cross-validation ([7]).

Hence, this paper considers a predictive estimator for logistic regression, which is a typical generalized
linear regression (e.g. [8]; [9]; [10]; [11]). The maximum likelihood estimator is extensively used for
estimating regression coefficients in generalized linear regression for practical purposes. One reason
for this is that the estimates obtained by the maximum likelihood estimator are obtained by applying
a weighted linear regression with relative ease; the obvious reason is that the maximum likelihood
estimator is regarded as a desirable estimator. In simple regression, however, we have already
found that a predictive estimator leads to better results than the maximum likelihood estimator
with regard to prediction ([12]). Hence, if a predictive estimator for logistic regression were to be
constructed, it could possibly be a better estimator than the maximum likelihood estimator from
the perspective of prediction. Such considerations should have a substantial impact in the fields in
which estimation using the maximum likelihood estimator are conventionally employed.

Therefore, an outline of the predictive estimator is given below. The predictive estimator for the
variance of normally distributed data is first derived; this predictive estimator is called the third
variance. Next, we suggest an application of the parametric bootstrap method (Section 6.5 of [13];
[14]) to estimate the constants in the predictive estimator for logistic regression. The usefulness
of this method is explored using simulation data. ”R 3.5.0” was used for these numerical simulations.

2 Basic Concept and Example of a Predictive Estimator
using the Third Variance

Maximization of the log-likelihood leads to estimates of parameters using the maximum likelihood
method. The log-likelihood is defined as

l =

n∑
i=1

log
(
f(xi|θ)

)
, (2.1)

where f(x|θ) stands for the available data and θ represents the parameters. The true values of θ
are denoted as θ0, and θ which maximizes l is called the maximum likelihood estimator.

In contrast, a maximum likelihood method that considers future data is also possible. This method
estimates parameters by maximizing the log-likelihood in the light of future data. This method
results in predictive estimators. While the maximum likelihood estimator gives estimates that fit
well to the available data, the predictive estimator gives estimates that fit well to future data.
Because the purpose of constructing a statistical model is to represent the behaviour of future
data with great accuracy, the predictive estimator is a more desirable estimator than the maximum
likelihood estimator in terms of the real purpose of statistical modelling.
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The log-likelihood in the light of future data is defined as

l∗ =

n∑
i=1

log
(
f(x∗

i |θ)
)
, (2.2)

where {x∗
1,x

∗
2, . . . ,x

∗
n} denotes future data. Future data are sampled from the same population as

the one from which the available data were sampled. Hence, future data has the same statistical
characteristics as that of available data, However, use of future data removes overfitting of parameters
to available data. Because the number of future data is infinite, we consider the expectation of l∗

with respect to future data. That is, the average is taken after an infinite number of future data
are sampled. Hence, we obtain the equation

E{x∗
i }[l

∗] = E{x∗
i }

[ n∑
i=1

log
(
f(x∗

i |θ
)]

= n

∫
log
(
f(x∗|θ)

)
f(x∗|θ0)dx

∗. (2.3)

This is referred to as the expected log-likelihood. The term θ, which increases this value, is regarded
as the estimate that fits closely to future data. However, we cannot estimate θ by maximizing this
value because we do not normally have access to future data in regression analysis. Instead, we
consider the expectation of l∗ with respect to both available data and future data. Then, the
expectation given by sampling both available data and future data infinitely is represented as (Eq.
(2.3) in [6])

E{xi,x
∗
i }[l

∗] = E{xi,x
∗
i }

[ n∑
i=1

log
(
f
(
x∗
i |θ̃({xi})

))]
= n

∫
· · ·
∫

log
(
f
(
x∗|θ̃({xi})

))
f(x1|θ0) · · · f(xn|θ0)f(x

∗|θ0)dx1 · · · dxndx
∗, (2.4)

where θ̃({xi}) stands for θ, which is estimated by an estimator of some sort (not limited to the
maximum likelihood method) using {xi}. The estimator that maximizes the value of Eq. (2.4) is
defined as the predictive estimator. When least squares is used for estimation, Eq. (2.4) turns out
to be the ‘expected test mean squared error’ (on page 34 in [15]). The idea of making the value of
E{xi,x

∗
i }[l

∗] large appears in the derivation of Akaike’s information criterion (e.g. [16], [17], [18] and
generalized cross-validation (e.g. [19], [20]). However, whereas Akaike’s information criterion and
generalized cross-validation are used for model selection, a predictive estimator is used for obtaining
estimates.

Next, the predictive estimator for variance of normally distributed data is developed to provide an
example of a predictive estimator. The available data is denoted as {x1, x2, . . . , xn}, and future
data is represented as {x∗

1, x
∗
2, . . . , x

∗
n}. Then, the expectation of the log-likelihood with respect to

both the available data and future data is written as

E{xi,x
∗
i }[l

∗] = E{xi,x
∗
i }

[
−n

2
log(2π)− n

2
log(σ̃2)−

∑n
i=1(x

∗
i − x̄)2

2σ̃2

]
, (2.5)

where σ̃2 is the variance, which is derived using available data. In addition, σ̃2 is set as

σ̃2 =

∑n
i=1(xi − x̄)2

n− α
, (2.6)

where α is a constant and x̄ is the average of {xi}. Then, l∗ is written as

l∗ = −n

2
log(2π)− n

2
log

(∑n
i=1(xi − x̄)2

n− α

)
−

(n− α)
∑n

i=1(x
∗
i − x̄)2

2
∑n

i=1(xi − x̄)2
. (2.7)

3



Takezawa; JAMCS, 32(5): 1-15, 2019; Article no.JAMCS.49483

By taking expectation with respect to both the available data and future data, we obtain the
following equation.

E{xi,x
∗
i }[l

∗] = −n

2
log(2π)− n

2
E{xi}

[
log

(∑n
i=1(xi − x̄)2

n− α

)]
− n− α

2
E{xi,x

∗
i }

[∑n
i=1(x

∗
i − x̄)2∑n

i=1(xi − x̄)2

]
(2.8)

To calculate the last term of the right-hand side of this equation, we use the equation∑n
i=1(x

∗
i − x̄)2∑n

i=1(xi − x̄)2
=

χ2
n+1

χ2
n−1

=
n+ 1

n− 1
F(n+1,n−1), (2.9)

where χ2
n+1 is a random variable that obeys a chi-squared distribution with (n + 1) degrees of

freedom, χ2
n−1 is a random variable that obeys a chi-squared distribution with (n − 1) degrees

of freedom, and χ2
n+1 and χ2

n−1 are independent each other. In addition, F(n+1,n−1) is a random
variable that obeys an F-distribution with (n+1, n−1) degrees of freedom. As a result, the equation
below is obtained.

E{xi,x
∗
i }

[∑n
i=1(x

∗
i − x̄)2∑n

i=1(xi − x̄)2

]
=

n+ 1

n− 1
E[F(n+1,n−1)] =

n+ 1

n− 1
· n− 1

n− 3
=

n+ 1

n− 3
(2.10)

Here, E{xi,x
∗
i }[l

∗] given by Eq. (2.8) is written as

E{xi,x
∗
i }[l

∗] = −n

2
log(2π)− n

2
E{xi}

[
log

(∑n
i=1(xi − x̄)2

n− α

)]
− (n− α)(n+ 1)

2(n− 3)
. (2.11)

The essential part for deriving the optimal value of α is extracted from the equation above. Then,
we have

g(α) =
n

2
log(n− α) +

α(n+ 1)

2(n− 3)
. (2.12)

We differentiate the equation above with respect to α and set it to zero. Then, the optimal value
of α turns out to be

α̂ =
4n

n+ 1
≈ 4. (2.13)

Substitution of the above result into Eq. (2.6) provides the third variance.

Fortunately, α̂ does not depend upon the true value of the parameter in this instance. However,
the most predictive estimators depend upon the true values of the parameters; such predictive
estimators should be handled with ingenuity.

3 Maximum Likelihood Estimator and Predictive Estima-
tor for Logistic Regression

We assume that data ({(xi,mi, yi)}(1 ≤ i ≤ n)) are available for carrying out logistic regression.
Each {xi}(1 ≤ i ≤ n) is the value of a predictive variable at the i-th data point, each {mi}(1 ≤ i ≤ n)
stands for the number of trials at the i-th data point, and each {yi} is the number of success at the
i-th data point. xi and mi are non-random variables, while yi is a realization of a random variable
Yi. {xi} and {mi} are fixed before an experiment and {yi} are results of the experiment. Hence,
(mi − yi) represents the number of failures at the i-th data point.

The regression equation of the logistic equation is written as (page 103 in [9])

E[Yi] = miP (xi) =
mi

1 + exp(−a0 − a1xi)
, (3.1)
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where Yi shows the number of successes at the i-th data point; this random variable obeys a binomial
distribution. Further, E[Yi] is the expectation of the number of successes for a probability process
obeying the binomial distribution, P (xi) represents the probability of success when the value of the
predictive variable is set to xi, and a0 and a1 are regression coefficients.

The deviance of logistic regression is defined as follows (page 174 in [9]). This is the deviance of the
regression equation in the light of available data because this deviance is obtained by considering
the effect of available data on the regression equation.

D0 = 2

n∑
i=1

(
yilog

(
yi
µ̂i

)
+ (mi − yi)log

(
mi − yi
mi − µ̂i

))
, (3.2)

where {µ̂i}(1 ≤ i ≤ n) are estimates corresponding to {yi}(1 ≤ i ≤ n). They are defined as

µ̂i =
mi

1 + exp(−â0 − â1xi)
. (3.3)

The maximum likelihood method minimizes D0 to obtain the values of a0 and a1. These regression
coefficients given by this method are maximum likelihood estimators (â0 and â1).

Next, let us consider the deviance of the maximum likelihood estimators considering future data.
It is defined as

D = 2
n∑

i=1

(
y∗
i log

(
y∗
i

µ̂i

)
+ (mi − y∗

i )log

(
mi − y∗

i

mi − µ̂i

))
, (3.4)

where {y∗
i }(1 ≤ i ≤ n) are future data and y∗

i denotes the number of successes on the i-th data
point. In contrast, the deviance of predictive estimator considering future data is

D∗ = 2

n∑
i=1

(
y∗
i log

(
y∗
i

µ+
i

)
+ (mi − y∗

i )log

(
mi − y∗

i

mi − µ+
i

))
. (3.5)

The values of xi and mi corresponding to y∗
i are the same as those corresponding to yi. Here, µ+

i

is written as
µ+
i =

mi

1 + exp(−a+
0 − a+

1 xi)
. (3.6)

We assume here that a+
0 and a+

1 are represented as

a+
0 = α0â0, a+

1 = α1â1, (3.7)

where α0 and α1 are constants that create the difference between the maximum likelihood estimator
and the predictive estimator. The definition of the predictive estimator as given in Eq. (3.7) is based
on the two limited observations: (1) these equations are simple and (2) both the third variance and
the predictive estimators for exponential distribution are represented in this form. Therefore, we
should keep in mind that the different definition of the predictive estimator for logistic regression
from Eq. (3.7) may lead to better results.

Equation (2.4) indicates that regression coefficients (a+
0 and a+

1 ) that minimize the value below give
the predictive estimator; a+

0 and a+
1 lead to {µ+

i }.

E{yi,y
∗
i }[D

∗] (3.8)

However, an infinite number of future data ({y∗
i }(1 ≤ i ≤ n)) cannot be used in most situations.

Moreover, only one set of data {yi}(1 ≤ i ≤ n) can be used as available data. Hence, we suggest
using the parametric bootstrap method to calculate an approximate value of Eq. (3.8) in the
following section.
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4 Predictive Estimator from the Parametric Bootstrap
Method

Using bootstrap data provided by the parametric bootstrap method, Eq. (3.8) is approximated to
be

E{yi,y
∗
i }[D

∗] ≈ 1

qr

q∑
j=1

r∑
k=1

Db
j,k, (4.1)

where Db
j,k is defined as

Db
j,k = 2

n∑
i=1

(
yf
i,j,klog

(
yf
i,j,k

µ̂b
i,j

)
+ (mi − yf

i,j,k)log

(
mi − yf

i,j,k

mi − µ̂b
i,j

))
, (4.2)

where Eq. (3.5) is used. Db
j,k (1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ r) stands for deviance between {µ̂b

i,j}
and {yf

i,j,k}. To calculate the value of Eq. (4.2), {yb
i,j}(1 ≤ i ≤ n, 1 ≤ j ≤ q) are first constructed.

Here, {yb
i,j} are l sets of bootstrap data. These bootstrap data are obtained using the estimates

(â0 and â1), which are given by the maximum likelihood method using available data ({yi}). Then,
the following equation holds.

E[yb
i,j ] =

mi

1 + exp(−â0 − â1xi)
(4.3)

These bootstrap data ({yb
i,j}) are used as approximations of the available data.

Next, using {yb
i,j}(1 ≤ i ≤ n), a0 and a1 are estimated using the maximum likelihood method. The

results are depicted as âb
0,j and âb

1,j . The use of Eq. (3.6) provides the estimates corresponding to
yi as below.

µ̂b
i,j =

mi

1 + exp(−α0âb
0,j − α1âb

1,jxi)
(4.4)

Moreover, {yf
i,j,k}(1 ≤ i ≤ n) are l ×m sets of bootstrap data. These bootstrap data are obtained

by the parametric bootstrap method with â0 and â1. Then, the equation below holds.

E[yf
i,j,k] =

mi

1 + exp(−â0 − â1xi)
(4.5)

The initial values of pseudorandom numbers for calculating {yf
i,j,k} are different from those for

calculating {yb
i,j}, which are used as approximations of future data. These values are substituted

into Eq. (4.2) to obtain α0 and α1 by minimizing the right-hand side of Eq. (4.1). Then, Eq. (3.7)
gives the approximated predictive estimator.

5 Execution Examples

Simulation data were constructed using Eq. (3.1). We assumed that n = 50 and {xi} = {1, 2, 3, . . . ,
50}. Each {mi}(1 ≤ i ≤ n) were identically 1. Additionally, a0 = −3 and a1 = 0.1 were set. On
the basis of these settings, 500 sets of available data ({yi}) and 500× 500 sets of future data ({y∗

i })
were created; 500 sets of future data were used for one set of available data. Using these simulation
data, the values of D∗ (Eq. (3.5)) were calculated and the average of 500 values of D∗ were derived
and represented as D̄∗. The average of 500 values of D given by Eq. (3.4) was also derived and
denoted as D̄. One of 11 values of {0.7, 0.73, 0.76, . . . , 1} was used as the value of α0, and one of
11 values of {0.7, 0.73, 0.76, . . . , 1} was also used as the value of α1. If D̄∗ is smaller than D̄, it
indicates that the predictive estimator is superior to the maximum likelihood estimator from the
perspective of prediction.
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Fig. 1. Relationship between the values of α0, α1 and those of (D̄∗ − D̄) (left). The

right graph illustrates the result of smoothing the values of the left graph using

smoothing splines. The thick line shows that the value of (D̄∗ − D̄) is 0. The symbol

‘+’ indicates that (D̄∗ − D̄) takes the minimum value at that point.

The relationship between the values of α0, α1, and (D̄∗−D̄) are illustrated in Fig. 1(left). The values
in Fig. 1(left) were smoothed using smoothing splines to illustrate Fig. 1(right). For this purpose,
the R mgcv package (version 1.8-23, [10]) was used. In Fig. 1(right), the point where (D̄∗ − D̄)
takes the minimum value is indicated by ‘+’. This optimal point is depicted as α0 = 0.882 and
α1 = 0.887. These optimal values of α0 and α1 are used in Eq. (3.7) to obtain the optimized
predictive estimator.

In most situations, however, future data cannot be utilized. Hence, the value of D∗ in Eq. (3.5)
cannot be derived. Hence, α0 and α1 were derived using Eq. (4.2) and the right-hand side of
Eq. (4.1). The same simulation data as those used for Fig. 1 were generated to implement 50
simulations, and l = 100 and m = 50 were used. Again, one of 11 values of {0.7, 0.73, 0.76, . . . , 1}
were used as the values of α0 and α1.

The values of α0 and α1 given by minimizing the right-hand side of Eq. (4.1) are superimposed on
Fig. 1(right) to illustrate Fig. 2. By alternating the initial values of the pseudorandom numbers,
50 numerical simulations were carried out. Each of the four graphs illustrates the results obtained
by conducting this numerical simulation four times with other initial values of the pseudorandom
numbers. In the first of the four graphs, ‘×’ symbols indicate that 49 out of 50 points are located
in the area where the value of (D̄∗ − D̄) is negative. In the second (upper right), third (lower
left), and fourth (lower right) graphs, 48, 47, and 49 points out of 50 points, respectively, are
positioned in the area where the value of (D̄∗ − D̄) is negative. Therefore, we conclude that when
the parametric bootstrap method is used, the predictive estimator (Eq. (3.7)) performs better than
the maximum likelihood estimator in terms of prediction with a probability of more than 95%.
Figure 3 compares a logistic curve given by the maximum likelihood method with one given by the
predictive estimator; the data employed here are from one of the simulation datasets used for Fig. 1.
The values of α̂0 and α̂1 used for Fig. 3(left) were obtained by averaging the values of the ‘×’ points
in the first graph of Fig. 2, that is, the averages of α̂0 and α̂1 yielded by the parametric bootstrap
method were adopted. The values of α̂0 and α̂1 used for Fig. 3(right) represent the position where

7



Takezawa; JAMCS, 32(5): 1-15, 2019; Article no.JAMCS.49483

α0

α 1

 −0.2 

 0 

 0.2 

 0.2 

 0.
4 

 0.4 

 0
.6

 

 0.6 

 0
.8

 

 0.
8 

 1
 

 1 

 1
.2

 

 1
.2

 

 1
.4

 

 1.
4 

 1.
6 

 1.6 

 1
.8

 

 2
 

 2  2
.2

 

 2
.8

 

 3
 

 3 

 3.
2 

 3
.4

 

 4 

 4.
2 

 5
.4

 

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

α0

α 1

 0 

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

α0

α 1

 −0.2 

 0 

 0.2 

 0.2 

 0.
4 

 0.4 

 0
.6

 

 0.
6 

 0
.8

 

 0
.8

 

 1 

 1 

 1.
4 

 1.
4 

 1
.6

 

 1.8 

 2
 

 2
 

 2
.8

 

 3
 

 3 

 3.
4 

 3.
8 

 4
 

0.70 0.80 0.90 1.00
0.

70
0.

80
0.

90
1.

00
α0

α 1
 0 

0.70 0.80 0.90 1.00
0.

70
0.

80
0.

90
1.

00
α0

α 1

 −0.2 

 0 

 0.2 

 0.2 

 0.
4 

 0.4 

 0
.6

 

 0.
6 

 0
.8

 

 0
.8

 

 1 

 1 

 1.
4 

 1.
4 

 1
.6

 

 1.8 

 2
 

 2
 

 2
.8

 

 3
 

 3 

 3.
4 

 3.
8 

 4
 

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

α0

α 1

 0 

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

α0

α 1

 −0.2 

 0 

 0.2 

 0.2 

 0.
4 

 0.4 

 0
.6

 

 0.
6 

 0
.8

 

 0
.8

 

 1 

 1 

 1.
4 

 1.
4 

 1
.6

 

 1.8 

 2
 

 2
 

 2
.8

 

 3
 

 3 

 3.
4 

 3.
8 

 4
 

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

α0

α 1

 0 

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

Fig. 2. Values of α0 and α1 optimized by the parametric bootstrap method

superimposed on Fig. 1(right) (upper left). The upper right, lower left, and lower

right graphs use the results given by altering the initial value of pseudorandom

numbers in the simulation, yielding the upper left graph.

(D̄∗ − D̄) takes the minimum value in Fig. 1(right). That is, the values of α̂0 and α̂1 derived by an
infinite number of future data are adopted. Both graphs in Fig. 3 show that the estimates given by
the predictive estimator are non-negligibly different from those given by the maximum likelihood
estimator. Because we cannot obtain future data in the usual regression analysis, we cannot use
future data to confirm the superiority of the predictive estimator (Eq. (3.7)), which contains the
optimized values of α0 and α1 using the parametric bootstrap method, over the maximum likelihood
estimator from the standpoint of prediction. Furthermore, we have to take into account the fact
that the bootstrap data provided by parametric bootstrap method are slightly different from real
future data. Hence, we use cross-validation to investigate whether the predictive estimator using the
values of α̂0 and α̂1 given by the parametric bootstrap method surpasses the maximum likelihood
method from the aspect of prediction. For this purpose, the cross-validated deviance defined below
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Fig. 3. Logistic curve given by the maximum likelihood estimator (dashed line) and

that given by the averaged predictive estimator when one of the simulation datasets

used for Fig. 1(left) are adopted (thick line). Here, ‘⃝’ symbols depict 50 data

points. In the left graph, α̂0 = 0.84024 and α̂1 = 0.84066 (the average of the ‘×’ in the

upper left graph of Fig. 2) are set. In the right graph, α̂0 = 0.882 and α̂1 = 0.887,

where (D̄∗ − D̄) takes the minimum value in Fig. 1(right), are set.

is calculated.

Dc∗ =
n∑

i=1

2

(
yilog

(
yi

µ+
i(−i)

)
+ (mi − yi)log

(
mi − yi

mi − µ+
i(−i)

))
, (5.1)

where µ+
i(−i) is

µ+
i(−i) =

mi

1 + exp(−α̂0â0(−i) − α̂â0(−i)xi)
, (5.2)

where α̂0 and α̂1 stand for the optimized values of α0 and α1 using the parametric bootstrap
method, â0(−i) and â1(−i) represent the regression coefficients given by carrying out the maximum
likelihood method after the i-th data has been deleted. Moreover, when the maximum likelihood
method is employed, that is, α̂0 = 1 and α̂1 = 1 are set, the resultant Dc∗ is termed Dc.

Cross-validation in the exact sense should use the values of α̂0 and α̂1 given by deleting the i-th
data. However, the values of α̂0 and α̂1 used here are calculated using all the data because this
reduces the computational cost. The resultant values of (Dc∗ − Dc) are illustrated in Fig. 5. In
these four graphs, the numbers of datasets that make the value of (Dc∗ −Dc) positive are 0 sets, 1
set, 2 sets, and 0 sets, respectively. These results show that (Dc∗−Dc) takes a positive value in rare
settings. We note that although the value of (Dc∗ − Dc) is the approximated value of (D̄∗ − D̄),
the use of a dataset that makes the value of (Dc∗ − Dc) positive does not always result in the
maximum likelihood method outperforming the predictive estimator. However, when the predictive
error provided by cross-validation does not indicate the superiority of the predictive estimator, we
should conclude that the validity of the results given by the parametric bootstrap method is not
confirmed and hence the maximum likelihood method is a safe choice.

An alternative idea is to use cross-validation for estimating the values of α̂0 and α̂1 for constructing
the predictive estimator. This is because we prefer to use cross-validation for constructing a desirable
predictive estimator when the performance of the predictive estimator and that of the maximum
likelihood estimator are compared using cross-validation. However, it is well known that the results
obtained by cross-validation are highly variable (e.g. [21], [22], [23]). We found a similar tendency
with the predictive estimator proposed here, which is that the estimation of α̂0 and α̂1 gives highly
variable results. Therefore, our tentative suggestion is the procedure noted above: (1) α̂0 and α̂1

should be estimated by the parametric bootstrap method and (2) the results should be examined

9
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Fig. 4. Values of (Dc∗ −Dc) derived by 50 sets of simulation data used in each of the

four graphs in Fig. 2.

by cross-validation. Next, we set n = 100 and {xi} = {1, 2, 3, . . . , 100}. Each {mi}(1 ≤ i ≤ n)
are all set to 1 again. We also set a0 = −3 and a1 = 0.05. The value of α0 is one of 11 values
of {0.7, 0.73, 0.76, . . . , 1} again. The value of α1 is also one of 11 values of {0.7, 0.73, 0.76, . . . , 1}.
These settings lead to the results in Fig. 5, which corresponds to Figs. 2 and 4. A total of 48 sets
of values of α̂0 and α̂1 out of the 50 datasets led by the parametric bootstrap method are located
in the region where the value of (D̄∗ − D̄) is negative. Hence, it is very probable that the use of
α̂0 and α̂1 derived by the bootstrap method creates a predictive estimator that outperforms the
maximum likelihood estimator. The results in Fig. 5(right), given by cross-validation, show that
49 out of 50 datasets led to predictive estimators that yielded better results than the maximum
likelihood estimator in terms of prediction. Consequently, the predictive estimator is recommended
for 49 data sets and the maximum likelihood estimator is recommended for the remaining data set.
Next, we newly set n = 30 and {xi} = {1, 2, 3, . . . , 30}. Each {mi}(1 ≤ i ≤ n) are all 1 again. We
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Fig. 5. Results corresponding to Fig. 2 and Fig. 4 when n = 100,

{xi} = {1, 2, 3, . . . , 100}, a0 = −3, and a1 = 0.05 are assumed. In the left graph, α̂0 = 0.899

and α̂1 = 0.904(indicated by ‘+’) minimizes the value of (D̄∗ − D̄). The right graph

shows the values of (Dc∗ −Dc) given by 50 sets of simulation data.

also newly set a0 = −1 and a1 = 0.08. The value of α0 is one of 11 values of {0.2, 0.28, 0.36, . . . , 1}.
The value of α1 is also one of 11 values of {0.2, 0.28, 0.36, . . . , 1}. These settings lead to the results
in Fig. 6 which corresponds to Figs. 2 and 4.

The values of (D̄∗ − D̄) are shown in Fig. 6(left). All 50 sets of values of α̂0 and α̂1 out of the 50
datasets obtained by the parametric bootstrap method are located in the region where the value of
(D̄∗ − D̄) is negative. Hence, it is very probable that use of α̂0 and α̂1 derived by the bootstrap
method creates a predictive estimator that outperforms the maximum likelihood estimator.

Figure 6(right) given by cross-validation shows that all 50 datasets yielded predictive estimators
that lead to better results than the maximum likelihood estimator in terms of prediction. Thus,
the predictive estimator is recommended for all 50 data sets.

Figure 7(left) compares a regression curve given by the averages of α̂0 and α̂1 obtained by the
parametric bootstrap method with that given by the maximum likelihood method. This graph
shows that the regression curve derived by the predictive estimator using the bootstrap method
is somewhat different from that derived by the maximum likelihood estimator. Figure 7(right)
compares the regression curve given by the values of α̂0 and α̂1 that minimize the value of (D̄∗−D̄)
(Fig. 6(left)) with that given by the maximum likelihood method. We find that when the values
of (D̄∗ − D̄) obtained by a large number of future data are employed, the resultant regression
curve is appreciably different from those given by the maximum likelihood estimator. This example
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Fig. 6. Results corresponding to Figs. 2 and 4 when n = 30, {xi} = {1, 2, 3, . . . , 30},
a0 = −1, and a1 = 0.08 are assumed. In the left graph, α̂0 = 0.503 and α̂1 = 0.434

minimizes the value of (D̄∗ − D̄). The right graph presents the values of (Dc∗ −Dc)

given by 50 sets of simulation data.
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Fig. 7. Results corresponding to Fig. 3 when n = 30, {xi} = {1, 2, 3, . . . , 30}, a0 = −1,

and a1 = 0.08 are assumed.

emphasizes the fact that the difference between fitting to available data and fitting to future data
is sometimes too large to be neglected. Although the regression curve given by the predictive
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estimator using the parametric bootstrap method is a little bit different from that obtained by
(D̄∗ − D̄), we conclude that the parametric bootstrap method led to favourable changes in the
maximum likelihood method with respect to prediction because Figs. 6(left) and 6(right) show that
many of the predictive estimators derived by the parametric bootstrap method are better from the
perspective of prediction than the maximum likelihood estimators.

It is true that the conditions of these numerical simulation are very limited. The number of
independent variables in all numerical simulations is one because implementation of parametric
bootstrap method for multiple independent variable data is too computer intensive for us. Further,
convergence of bootstrap data are not investigated here; this will be a topic of future research.
Nevertheless, these simulation studies show that further consideration will be needed for the maximum
likelihood method and principle of maximum likelihood.

6 Conclusions

The maximum likelihood estimator is widely used for estimating parameters in logistic regression.
The background of this tradition is the naive belief that a regression model that fits well to data
in the past will fit well to data in the future. However, the results of numerical simulations
in the last section indicate that the predictive estimator (Eq. (3.7)) given by estimating the
values of α0 and α1 using the parametric bootstrap method provides more favourable results than
the maximum likelihood estimator from the aspect of prediction. Moreover, the high practical
utility of the predictive estimator obtained using the parametric bootstrap method can be verified
in terms of prediction by applying cross-validation to the results. The findings given by these
simulation studies imply that in many estimations such as generalized linear regression in which
the maximum likelihood estimator is universally used, the construction of predictive estimators by
making straightforward prediction can provide more desirable results than the maximum likelihood
estimator.

For this purpose, diverse forms of predictive estimator should be investigated; the form should
not be limited to multiplication of the maximum likelihood estimator and constants (Eq. (3.7)).
Another promising choice is the construction of an estimator for the purpose of prediction using
regularization such as ridge regression, LASSO, or both; ‘glmnet’ ([24]; [25]) is a typical example.
Moreover, if the analytical maximization of Eq. (2.3) is realized, that is, the constants in the
predictive estimator such as α0 and α1 in Eq. (3.7) are derived analytically, numerical methods
such as the parametric bootstrap method will no longer be needed. Even if the constants in the
predictive estimator are not obtained analytically, further analytical studies on the constants should
provide more efficient predictive estimators than those given by the parametric bootstrap method.

Estimators for beneficial prediction play an important role in prediction, control, and decision-
making. The advent of a predictive estimator has freed us from the constraints of the maximum
likelihood estimator. That is, we have reached a new stage at which we have obtained a clear
understanding that the best prediction using the available data is different from constructing
regression equations that fit closely to the available data. This notion is commonly known in
the field of statistical learning. On page 30 in [15], it says:

Rather, we are interested in the accuracy of the predictions that we obtain when we apply our method
to previously unseen test data (emphasis in original).

The concept of a predictive estimator is created by generalizing this philosophy to the whole of
statistical estimation methods. We firmly hope that various features of the predictive estimator
are elucidated by analytical methods and numerical ones to create predictive estimators of high
practical value.
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