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ABSTRACT

The GRAFCET standard (IEC 60848) is one of the convenient formalisms used to specify the
behaviour of the automated systems. Being just a semi-formal language, the usual practice is to go
through an unambiguous formalism such as time Petri net (TPN) in order to validate a specification
expressed by a GRAFCET model. In this paper, we propose how to perform model-checking on
a GRAFCET model translated into a ε-TPN, specifically with State-Event Linear Temporal Logic
(SE-LTL). Especially, we provide a way to take into account quantitative time constraints verification
by integrating observers in the ε-TPN intermediate model, since TPN state-space abstractions do
not allow directly such kind of model-checking.
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1 INTRODUCTION

Formal verification is essential during the
conception of critical automated systems [1].
Several techniques are available for checking
properties about such systems: theorem proof,
test, simulation and model-checking [2]. A model-
checking software takes as input the model of the
system (an automaton) and the property to check
on it (a formula in Temporal Logic), and aswers
if this property is satisfied or not (by providing a
counter-example).

The GRAFCET formalism [3] is used to describe
by the means of charts the behaviour of the
sequential control part of an automated system.
This standard is intended for specification
purposes, contrary to SFC standard [4] intended
for implementation purposes.

However, GRAFCET and SFC semantics
are only semi-formal, and so contain some
ambiguities to clarify via a translation of the chart
into another formalism, such as SMV textual
language [5], timed automata [6] or time Petri
nets (TPN) [7]: timed automata are used in
[8] for SFC, and in [6] for GRAFCET. TPNs
are structurally and historically closer to the
GRAFCET than the other formalisms, and are
adopted here.

A Petri net state (the marking) changes when a
transition is fired by modifying token numbers in
the input and output places of this transition. For
a TPN, delay bounds related to each transition
determine the possible relative instant of the
successive firings. The work in [7] has proposed
a procedure of translating a grafcet into a TPN
model called ε-TPN, of which syntax is extended
by ε infinitesimal delays as bounds on some
transitions, allowing to simulate the synchronous
semantics of GRAFCET.

In this paper, we propose how to perform model-
checking on a GRAFCET chart (or grafcet for
short) translated into a ε-TPN, specifically with
the temporal logic fragment called State-Event
Linear Temporal Logic (SE-LTL) [9]. Compared
to the more popular fragment called CTL
(Computation Tree Logic) [8], the main interest

of SE-LTL is allowing integration of transition
firings (i.e. events) in a property formula, offering
more user comfort. Especially, we provide
a way to take into account quantitative time
constraints verification by defining related time
events; Indeed, TPN state-space abstractions
do not allow directly quantitative time model-
checking. Each time event corresponds to an
observer [10] (a TPN module) to add to the ε-TPN
before computing the state-space abstraction.

The remainder of this paper is organized as
follows. Section 2 newly defines the restricted
GRAFCET formal syntax used in the context
of ε-TPN. Section 3 recalls the principle of the
translation of a grafcet into ε-TPN, and the
state-space computing. Then, SE-LTL model-
checking fragment is presented in Section 4: the
application to grafcet is described, by pointing
out some specificities due to ε-TPN; Practical
implementation with TINA-SELT tool1 [11] is
also evoked. In Section 5, verifications about
quantitative time constraints are proposed and
illustrated in SE-LTL, by the means of TPN
module observers to add to the ε-TPN. Finally,
Section 6 summarizes this paper and gives some
outlooks.

2 GRAFCET CHARTS

A GRAFCET chart [3] is a graphical
representation to model the behaviour of the
control part of a system. The representation
consists of two parts:

• the structure describes the possible
evolutions between the situations: a
situation is the set of the active steps at
a given time. The structure is composed
of steps, transitions and directed links;

• the interpretation enables the relationship
between the literal variables (inputs,
outputs, delays, internal variables, ...) and
the structure, by means of the transition
conditions (containing inputs, rising/falling
edges of boolean inputs, delays, ...) and
the actions (continuous actions and stored
actions).

1TIme petri Net Analyzer (TINA): http://projects.laas.fr/tina
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2.1 Formal Syntax of a Simple
Timed Grafcet

Here is newly proposed the formal syntax of a
classical chart, in accordance with the restrictions
used to define the translation into a ε-TPN [7].
The semantics (with the required clarifications
and the related restrictions) is neither formally
defined here, nor recalled: it is the one already
described in [7].

The interpretation of a grafcet often involves
logical expressions (called conditions) based on
the literal variables and associated to transitions
or continuous actions. We denote by ϕ such an
expression related to a transition or a continuous
action.

Definition 2.1. A grafcet is a 5-tuple
(S,Sinit, T ,V,A):

• S is the non-empty finite set of steps;
• Sinit is the non-empty finite subset of

initial steps defining the initial situation:
Sinit ⊆ S;

• T is the finite set of transitions; each
transition tj ∈ T is defined by a 3-tuple
(•tj , t

•
j , ϕj): •tj ⊆ S is the non-empty set

of input steps of tj , t•j ⊆ S is the non-
empty set of output steps of tj , and ϕj is
the condition of tj (true by default);

• V is the non-empty finite set of literal
variables: V def

= X ∪ I ∪ O ∪ B ∪ C ∪ D
such as:

– the set X maps bijectively to S: for
each step Si ∈ S, Xi ∈ X is the
boolean variable denoting that Si is
active (true) or inactive (false) in a
given situation;

– the set I represents the boolean
input variables; especially, for Ik ∈
I, propositions ↑ Ik (rising edge of
Ik) and ↓ Ik (falling edge of Ik) also
state the boolean value at a given
instant;

– the set of boolean outputs O def
=

Oc ∪ Os (with Oc ∩ Os = ∅): Oc

(the assigned outputs) is related
to continuous actions and Os (the
allocated outputs) is related to
stored actions;

– the set B contains the boolean
internal variables (internal because
not intended for output order) to
handle by the control program;

– the set C represents the counters
(internal variables);

– the set D represents the defined
timed variables about steps: the
GRAFCET conventional form of an
element in D is either T1/Xi/T2 or
T/Xi (for a step Si, and constant
time values T , T1 and T2).

• A is the set of actions: A def
= As ∪Ac (with

As ∩ Ac = ∅): As is the set of stored
actions and Ac is the set of continuous
actions.

A logical expression ϕ uses literal variables in
V (except O) composed by logical operators
(usually ¬, ∧ and ∨). A non-boolean variable
C ∈ C is involved as a predicate of the form
C ◃▹ n (for ◃▹∈ {<,≥,=, ̸=} and n ∈ N).

Stored actions (As) act on outputs Os or on
internal variables B∪C by logical or mathematical
operations. The set OP of simple operations for
stored actions are: set or reset a boolean in Os ∪
B, reset a counter in C, or increment/decrement
a counter in C by a constant integer. The instant
of allocation of a stored action may be at a step
activation (denoted Act) or at a step deactivation
(denoted Deact).

Thus, any stored action as ∈ As is a 3-tuple
element in S ×OP × {Act,Deact}.

Continuous actions are only performed in a stable
situation, that is when no transition firing is
possible before some change on a variable in I ∪
D due to the environment (inputs or time elapse).
A continuous action ac ∈ Ac sets one output
in Oc, possibly under a condition ϕc. However,
an expression ϕc for a continuous action excepts
event terms such as edges of inputs (↑ Ik,↓ Ik).
So, ac ∈ Ac is a 3-tuple (S ∈ S, O ∈ Oc, ϕc), with
ϕc = true if ac gets no condition.

It should be noticed that several actions may act
on a same variable at the same time, which then
allows the possibility of contradictory orders in
the case of stored actions: model-checking can
detect such contradictions.
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2.2 An Example of Grafcet

Fig. 1 shows a grafcet edited with the software
JGrafchart2 , which respects only partially the
GRAFCET standard. For instance, a continuous

action (resp. a stored action on activation) is
defined with qualifier N (resp. S) like in the SFC
standard; a timed variable Tj/Xi on a step i is
denoted by Si.s > Tj . Fig. 1 describes a simple
traffic light system at the junction of two streets.

Fig. 1. Case study

3 TRANSLATION OF A GRAFCET INTO ε-TPN

The work [7] has proposed a procedure of translating a grafcet into a TPN model, of which syntax is
extended by ε infinitesimal delays as bounds on some transitions, allowing to simulate the synchronous
semantics of GRAFCET.

ε0 is the infinitesimal constant delay: εn
def
= ε0 × (n+ 1) (n ∈ N), E def

= {ε0, ε1, ε2} and E0
def
= E ∪ {0}.

Definition 3.1. A ε-TPN [12] is a tuple (P, T,W,WI ,WR, ED,LD,M0) such as:

• the nodes: P is the set of places and T is the set of transitions (P ∩ T = ∅);

2JGrafchart: http://www.control.lth.se/Research/tools/grafchart.html
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• the regular arcs and the corresponding weights between nodes, W : P × T ∪ T × P −→ N;

• the read arcs, WR : P × T −→ N;

• the inhibitor arcs, WI : P × T −→ N∗ ∪ {∞};

• the TPN initial marking, M0 : P −→ N;

• the earliest firing delays of transitions, ED : T −→ E ∪ Q+;

• the latest firing delays of transitions, LD : T −→ E ∪ Q+ ∪ {∞};

• the set of transitions is made of three subsets, T = TE0 ∪ TT ∪ {t∞} such as:

a) ED(t) = LD(t) ∈ E0 when t ∈ TE0 ;

b) ED(t) = LD(t) ∈ Q+∗ when t ∈ TT ;

c) ED(t) = 0 and LD(t) = ∞ when t = t∞.

A transition t is enabled by a marking M : P −→ N when: ∀p ∈ P, (M(p) ≥ W (p, t) ∧ M(p) ≥
WR(p, t))∧@p ∈ P,M(p) ≥ WI(p, t). The semantics of ε-TPN is defined in [12]: besides the adopted
TPN standard semantics [11], transitions in TE0 always have priority to be fired over transitions in
TT ∪ {t∞}.

A ε-TPN is composed with several connected modules translating the different elements constituting
a grafcet.

Fig. 2. Phase sequencer

A extra module, called phase sequencer (Fig.
2), is necessary to allow a transient evolution
without modification of inputs as external events:
it forces alternation between the reaction phase
(called evolution with grafcets) and an external
event production (an input change or some
timed variable becomes true) in a stable
situation. Indeed, the place Evolution is
marked during an evolution phase: transition
Firing is fired every time a grafcet transition
model is fired (causing the marking of the place
Occurrence) to remain in this evolution state.
At the end of the evolution phase (meaning
that no more grafcet transition is fireable),
firing Evolution end transition makes entering

the stability phase: either an input change
authorizing (firing transition Change input = t∞
marks the place One input changing, which will
instantaneously change one input state modelled
in some input module) or a timed variable
becoming true (which causes the marking of
the place Occurrence and then the firing of the
transition T ime out).

After adding this first module, the generation
of the complete TPN is done by translating
sequentially: the steps, the inputs, the timed
variables, the outputs, the counter variables, the
continuous and conditional actions, the stored
actions and the grafcet transitions. These grafcet

5



Sogbohossou et al.; CJAST, 38(6): 1-12, 2019; Article no.CJAST.53246

elements (steps, transitions, input variables,
actions, ...) correspond to different but connected
blocks in the resulting TPN.

For the gracet at Fig.1, an illustration of the
translation of some elements is given in Fig. 3-
5: the output action yellow street A with the
related continuous actions (Fig. 3), the time
variable on step S8 (Fig. 4) and the transitions 11
and 12 (Fig. 5). For each figure, related nodes
in gray are already contained in a previously
generated module. It should be noticed that:
1s X 8 to true ∈ TT (TT is the set of delay
events for the timed variables); only one firing in
the set {t∞}∪TT triggers a reaction from a stable
sate in the ε-TPN.

A translation of a grafcet (free of unbounded
counters) gives a bounded ε-TPN, thereby
building a finite state-space abstraction on which
model-checking may be applied [12]. Such an
abstraction called state class graph (SCG) is

of several kinds: the one called LSCG (Linear
SCG) preserves LTL properties. In the context
of ε-TPN, computing LSCG copes with the state-
space explosion problem, by avoiding useless
interleaving of concurrent firings. Moreover, two
levels of LSCG were proposed in order to abstract
the informations too specific to the target ε-TPN
model: the all situations state-space (denoted
L1-SCG) containing all the stable and unstable
situations of the grafcet, and the stable situations
state-space (denoted L2-SCG) containing only
the stable situations of the grafcet. L2-SCG is
more compact than L1-SCG, but in the sequel we
only consider L1-SCG since SE-LTL properties
often include events as grafcet transition firings.

For the case study at Fig.1, we have generated
the equivalent ε-TPN made of: 75 places, 96
transitions, 205 regular arcs, 110 read arcs and
20 inhibitor arcs. The corresponding L1-SCG (as
an .aut file for TINA model-checking tool) is made
of 42 states and 42 transitions.

Fig. 3. Continuous action on
yellow street A

Fig. 4. Timed variable
1s/X 8 Fig. 5. Transitions 11 and 12

4 MODEL-CHECKING WITH SE-LTL

A model-checking software takes as input an abstraction of the system behaviour (a transition system
such as L1-SCG in our case) and a property expressed in Temporal Logic [2] to check on the model,
and answers if the abstraction satisfies or not this property. Here, we only focus on the type of
temporal logic called LTL (Linear Temporal Logic) to express properties to verify on every path
of the transition system. More specifically, State-Event LTL (SE-LTL) [9] allows using events (i.e.
transition firings) in properties. SE-LTL is used to express properties about situations and actions of
a GRAFCET chart.

6



Sogbohossou et al.; CJAST, 38(6): 1-12, 2019; Article no.CJAST.53246

4.1 Syntax and Semantics of SE-
LTL

A property p verified on a model M is denoted:
M |= p. Here, M is L1-SCG such as each state
is labeled with some atomic propositions (in a set
AP ) true in this state and a transition between
two states is labeled by a subset A of events in
Σ. The propositions AP concerns the marking
of the different places in the ε-TPN. The set Σ
includes the grafcet transition firings.

Model-checking consists in inspecting each path
(or execution) of the model M, representing a
particular behaviour, to check a property. A
path π = (s0, A0, s1, A1, s2, A2, ...) of M is an
alternating infinite sequence of states (s0, s1, ...
with s0 the initial state) and events (A0, A1, ... with
Ai ⊆ Σ). Notation πi stands for the suffix of π
starting in the state si.

The syntax of SE-LTL path formula is given by
(where p ranges over AP and a ranges over Σ) :

φ := p | a | ¬φ | φ∨φ | φ∧φ | X φ | F φ | G φ | φ U φ

For the SE-LTL semantics, a path-satisfaction of
formulas is defined inductively as follows (L(s0)
is a subset of AP labeling s0):

1. π |= p iff p ∈ L(s0), and π |= a iff a ∈ A0,

2. π |= ¬φ iff π ̸|= φ,

3. π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2,

4. π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2,

5. π |= X φ iff π1 |= φ,

6. π |= F φ iff ∃k ≥ 0 s.t. πk |= φ,

7. π |= G φ iff ∀k ≥ 0, πk |= φ,

8. π |= φ1 U φ2 iff ∃k ≥ 0 s.t. πk |= φ2 and
∀ 0 ≤ j < k, πj |= φ1.

4.2 Kinds of Properties on a
GRAFCET Chart

In the context of the translation into ε-TPN,
state and event properties are related to TPN
places and transitions respectively, modelling
the grafcet elements. State propositions are

about continuous actions, steps and situations,
or other literal variables (such as a counter
value, an active or inactive delay, an input edge,
...). Event propositions concern stored actions,
grafcet transitions, or else, edges on timed
variables.

Besides, some properties may depend on the
specificities of ε-TPN. Indeed, some elements
report the evolution phase and the stability phase
of a grafcet: it is the case of the places
called Stable and Evolution, and the transition
Evolution end.

Naturally, a more general property may mix up
several of these types of propositions.

4.2.1 Examples of State Properties

Examples of elementary state LTL properties
related to steps may be the followings:

1. to find out whether the step Si is
permanently active: G Xi;

2. to verify that a step Si is never active:
G ¬Xi;

3. to know if in the future the step Si could
not become permanently active: ¬FG Xi;

4. to check3 whether the activeness of the
step Sj is reachable since the one of the
step Si: G (Xi ⇒ F Xj);

5. To check that the steps Si, ..., Sn

are always activated simultaneously:
F ((¬Xi ∧ ... ∧ ¬Xn) ∧ X (Xi ∧ ... ∧Xn)).

The meanings of
∨

Xi∈X
G Xi and

∨
Xi∈X

¬FG Xi

are straightforward.

To express properties on continuous actions, the
specific place Stable in ε-TPN is useful. Let
Xj ⊆ X be the set of step states associated with
the continuous action actionj . The proposition
corresponding to actionj is: (

∨
Xi∈Xj

Xi) ∧

Stable. For a conditional action actionj , with
the condition conditionj (a logical expression),
that becomes obviously: (

∨
Xi∈Xj

Xi) ∧ Stable ∧

conditionj .
3ϕ ⇒ φ is equivalent to ¬ϕ ∨ φ.

7
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As an example of action property (continuous or
stored), to show that an action action2 always
follows an action action1: action1 ⇒ F action2.

4.2.2 Examples of event properties

About stored actions, let Tj1 ⊆ TG (resp. Tj2 ⊆
TG) be the set of succeeding (resp. preceding)
transitions of the steps associated with the action
actionj . The stored action is:

• on activation : actionj =
∨

tri∈Tj2

tri,

• on deactivation : actionj =
∨

tri∈Tj1

tri.

As examples of properties with events depending
on specific elements of ε-TPN (namely, transition
Evolution end and place Evolution):

• to check that there is never a
total instability in the system:
¬FG ¬Evolution end;

• to check if there is no grafcet situation
with deadlock (that is to say a situation
from which no more firing of grafcet
transition is possible): ¬FG (Evolution ⇒
Evolution end).

This last property is equivalent to this one:
GF (

∨
trj∈TG

trj).

4.3 Illlustration on Fig. 1
To implement SE-LTL model-checking with
TINA software, our implementation of L1-

SCG algorithm generates the corresponding
automaton as a .aut file from the JGrafchart XML
file of the grafcet. Then, TINA ktzio tool takes
this .aut file as input to generate a TINA compact
binary format as a .ktz extension file. Finally,
the tool SELT of TINA is launched to check the
properties on the .ktz file, as shown Fig. 6.

The grafcet at Fig. 1 models two traffic lights
located respectively on a street A and a street
B. It contains a transient mode (yellow lights blink
three times) and a steady state.

Fig. 6 illustrates the following property (TRUE):
the system finally leaves the transient mode
(firing of transition 13) to enter the steady state,
that is4 G (tr 13 ⇒ X (S0 ∧ S4)).

These three examples of state properties are also
TRUE:

• green light cannot be displayed
on the two streets simultaneously:
¬F (green street A ∧ green street B);

• light cannot become permanently green
on the street A: ¬FG green street A;

• yellow lights in the transient mode will not
blink more than three times: ¬F (Ct > 3).

Other properties such as no deadlock and no
total instability (specific to the ε-TPN) are also
TRUE.

Fig. 6. Verification of the exit from the transient mode

4With SELT, operators G, X and ∧ are denoted resp. [ ], ( ) and /\.
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5 OBSERVER INTEGRATION
TO VERIFY QUANTITATIVE
TIME PROPERTIES

Since quantitative time model-checking is not
applicable on state-space abstractions of TPN
such as SCG, here we propose an event-based
method consisting in integrating observers in the
grafcet model translation to allow the quantitative
time verifications.

An observer [10] is a subnet added in a TPN to
observe in an non-intrusive way the occurrence
of some particular events about this TPN at a
given date. Combined with a non-quantitative
state-based and event-based temporal logic
like SE-LTL, observers implanted in a ε-TPN
will allow quantitative time model-checking, by
considering logic propositions related to events
of the observers to state on the possibility of a
grafcet event or couple of events to occur or not
in some time interval.

5.1 Definition of the Observers

The observers proposed here, at Fig. 7 and
8, are modifications of those given in [10],
and contain delay transitions respecting the
semantics of ε-TPNs; the observer at Fig. 9
is a novel modelling. Three kind of observers
are considered here corresponding respectively
to the following three types of quantitative time
constraints to check on events of the grafcet
model:

• absolute constraint applied on the jth

occurrence of an event evt i, at Fig.
7: when the jth occurrence of evt i is
produced at an absolute date di such as
di < δi,min or di > δi,max, transitions
OUT 1 evt i j or OUT 2 evt i j are
respectively fired. But when δi,min <
di < δi,max, transition IN evt i j is fired.
Obviously, the value of j may impact
proportionally the size of the state-space;

• relative constraint applied on every two
consecutive occurrences (jth and (j +
1)th) of the same event ei, at Fig.8: when
the delay di between any two consecutive
occurrences is such as di < δi,min or

di > δi,max, transitions OUT 1 evt i or
OUT 2 evt i are respectively fired. But
when δi,min < di < δi,max, transition
IN evt i is fired;

• relative causality constraint applied on
every same order occurrence (jth) of
the two different events ec (the cause)
and ee (the effect), at Fig. 9: if the
delay dc e between the jth instances and
subsequent occurrences of ec and ee are
produced within interval ]δc e,min, δc e,max[
(and without the (j + 1)th instance of
ec occurs before), then IN evt c e is
fired. OUT 1 evt c e is fired whenever
two consecutive firings of ec are possible
without an intermediate occurrence of ee,
and OUT 3 evt c e is fired whenever an
instance of ee is produced before the
same instance of ec: these two cases
are evidently violation of the causality
between ec and ee. OUT 2 evt c e
and OUT 4 evt c e are fired when the
causality is fulfilled for the instance, but
with dc e < δc e,min and dc e > δc e,max

respectively. It should be noticed that
the authors of [10] rather adopted a
two verification steps, not practical for
verification with temporal logic since two
state-space models must be considered.

Thereby, the proposed observers especially allow
checking a delay constraint d, with strict bounds,
between a couple of events: the delay may be
of the kinds δmin < d < δmax, d < δmin or
d > δmax. It is assumed that δmin < δmax,
δmin > 0 and δmax ̸= ∞ always hold.

An execution of an observer always follows one
possible interleaving (no possible concurrency
between its firings) in accordance with the
triggers induced by the grafcet events. This
guarantees the unequivocalness of the answer
about the constraint satisfaction to check, by a
firing of one of the ”IN ” and ”OUT ” transitions
(”IN ” for delay in the interval ]δmin, δmax[, ”OUT ”
for delay out this interval) in the observer.

Definition 5.1. TO is defined as the set of
transitions in the observers with intervals of the
form [δmin, δmin] or [δmax − δmin, δmax − δmin].

TO is similar to the set TT . So, the extension of
ε-TPN definition to integrate observer modules

9



Sogbohossou et al.; CJAST, 38(6): 1-12, 2019; Article no.CJAST.53246

is straightforward. TO firings are only possible
in a stable state, concurrently with transitions in
TT ∪ {t∞}.

The grafcet events which may trigger an
observer for doing the model-checking on a
delay constraint are the followings, for the L1-
SCG: firings in TT related to timed variable
modellings, t∞ (any input change) or firings in
Tinput (particular input changes) and firings in TG

(grafcet transition modellings).

Atomic propositions involving ”IN ” and ”OUT ”
transitions of the observers is then usable in
temporal expressions to state about quantitative
time properties. In practice, a list of the events
in the ε-TPN to observe should be defined,
for instance in a specific file. Then, the
corresponding observers will be added to the ε-

TPN before computing L1-SCG automaton (the
.ktz file for TINA-SELT). These events (numbers
and corresponding transitions) with their time
interval may be defined as lines of the file:

• absolute constraint about the jth

occurrence of evt i (Observer of type 1):

evt i/j : transition i, δ1, δ2

• relative constraint about two consecutive
occurrences of evt i (Observer of type 2):

evt i : transition i, δ1, δ2

• relative causality constraint about two
events evt c and evt e (Observer of type
3):

evt c e : transition c, transition e, δ1, δ2

Fig. 7. Observer 1 Fig. 8. Observer 2 Fig. 9. Observer 3

5.2 Examples of model-checking on time events

Fig. 10. Observer 1 for the first property (P1)
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Fig. 11. List of timed events

The tool SELT of TINA is used (as in Fig. 6) to
check the following three properties on the .ktz
file:

(P1) the transient mode lasts between 8 and
10 seconds (observer of type 1): event
evt 1 on the firing tr 13 (with j = 1). To
check this property, the related observer
is shown at Fig. 10;

(P2) the global cycle of the lights (in the steady
state) lasts between 42 and 44 seconds
(observer of type 2): event evt 2 on the
firing tr 7;

(P3) the green lights do not last less than 14
seconds (observer of type 3):

– on street A: event evt 3 with
transitions tr 1 (cause) and tr 2
(effect);

– on street B: event evt 4 with
transitions tr 7 (cause) and tr 4
(effect).

So, the list of events to consider is given at Fig.
11.

Formally, the properties to check are respectively:

(P1) G (evt 1 ⇒ F IN evt 1)

(P2) G (evt 2 ⇒ F IN evt 2)

(P3) G (evt 3 ⇒ F ¬ OUT 2 evt 3) ∧
G (evt 4 ⇒ F ¬ OUT 2 evt 4)

These properties are TRUE after model-checking
with TINA-SELT tool.

6 CONCLUSION

This paper shows how to check SE-LTL
properties on a GRAFCET chart after the
translation into an equivalent ε-TPN, and
subsequently into an automaton representing
the state-space. To take into account properties
about quantitative time constraints, observers

related to the time events appearing in SE-LTL
formulas have to be implanted into the ε-TPN
previously, before generating the state-space.
SELT-TINA model-checking tool is used for the
possibility to experiment the verifications.

A short-term perspective may be to make
expressing grafcet LTL properties more
independent of the knowledge of the ε-TPN
structure, by acting on the resulting SCG
before model-checking. Similarly, time events
in formulas may be made more user-friendly.
Moreover, creating a software with a convivial
interface (to be independent of TINA tools) will
be another step before to consider an extensive
evaluation on a great number of grafcets, with the
related complexity analyses.

The subset of temporal logic called SE-LTL is
chosen here firstly, because allowing the facility
of using events as propositions in a property
formula and secondly, because SELT-TINA is
a unique tool to perform event-based model-
checking tests with TPNs.

Other subsets of temporal logic may be
considered for future developments. On
the one hand, UCTL (Action/State-Based
Temporal Logic) [13] not only takes into account
event propositions, but also branching in CTL
(Computation Tree Logic) seems more valuable
in model-checking practices [8]. On the other
hand, quantitative time model-checking in a
temporal logic such as TCTL (Timed CTL)
[14, 15]) is applicable to TPN [16] via a structural
translation to timed automata [17]: this method
must be adapted for ε-TPN.
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