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Abstract

The purpose of this paper is to show the existence results for the following abstract equation

Jpu = Nfu,

where Jp is the duality application on a real reflexive and smooth X Banach space, that
corresponds to the gauge function φ(t) = tp−1, 1 < p < ∞. We assume that X is compactly
imbedded in Lq(Ω), where Ω is a bounded domain in RN , N ≥ 2, 1 < q < p∗, p∗ is the Sobolev
conjugate exponent.
Nf : Lq(Ω) → Lq′(Ω), 1

q
+ 1

q′ = 1, is the Nemytskii operator that Caratheodory function
generated by a f : Ω × R → R which satisfies some growth conditions. We use topological
methods (via Leray-Schauder degree), critical points methods (the Mountain Pass theorem)
and a direct variational method to prove the existence of the solutions for the equation Jpu = Nfu.
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1 Introduction

The subject of this paper is the existence of the solutions for the abstract equation

Jpu = Nfu, (1.1)

in the following functional framework:

(H1) 1 < p <∞;

(H2) X is a real smooth and reflexive Banach space, compactly imbedded in Lq(Ω), where Ω ⊂
RN , N ≥ 2, is a bounded domain with smooth boundary and

1 < q < p∗ =

{
Np
N−p

if N > p

+∞ if N ≤ p
;

(H3) For any gauge function φ : R+ → R+, the corresponding duality mapping Jφ : X → X∗

is continuous and satisfies the (S+) condition: if xn ⇀ x (weakly) in X and
lim sup
n→∞

⟨Jφxn, xn − x⟩ ≤ 0 then xn → x (strongly) in X;

(H4) Jp : X → X∗ is the duality mapping corresponding to the gauge function
φ(t) = tp−1, t ≥ 0;

(H5) Nf : Lq(Ω) → Lq′(Ω), where 1
q
+ 1

q′ = 1, defined by (Nfu)(x) = f(x, u(x)), for u ∈ Lq(Ω),
x ∈ Ω, is the Nemytskii operator generated by the Caratheodory function f : Ω × R → R,
which satisfies the growth condition

|f(x, s)| ≤ c|s|q−1 + b(x), for x ∈ Ω, s ∈ R, (1.2)

where c > 0 is constant and b ∈ Lq′(Ω), 1
q
+ 1

q′ = 1.

We establish the fact that in the case of a Caratheodory function, the assertion ”x ∈ Ω” must be
understood as ”a.e.x ∈ Ω”.

In order to show the existence of the problem’s (1.1) solutions, we use topological methods(via
Leray-Schauder degree), critical points methods(the Mounain Pass theorem) and a direct variational
method. The growth condition (1.2) is the one adoptated by Dinca, Jebelean and Mawhin [1] in
the study of the existence of the solutions for the following Dirichlet problem:

−∆pu = f(x, u) in Ω,

u = 0 on ∂Ω. (1.3)

By the solution of the problem (1.3) we mean an element u ∈W 1,p
0 (Ω) which satisfies∫

Ω

|∇u |p−2 ∇u∇v dx =

∫
Ω

f(x, u)v dx for all v ∈W 1,p
0 (Ω). (1.4)

On the other hand, if W 1,p
0 (Ω) is defined with the norm

∥ u ∥1,p = ∥ |∇u | ∥0,p ,

the duality mapping corresponding to the gauge function φ(t) = tp−1 is exactly −∆p:

Jp = −∆p :W 1,p
0 (Ω) →

(
W 1,p

0 (Ω)
)∗

=W−1,p′(Ω),
1

p
+

1

p′
= 1,

⟨−∆pu, v⟩ =
∫
Ω

|∇u |p−2 ∇u∇v dx for all u, v ∈W 1,p
0 (Ω),
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(see e.g.[1] or [2]). Let i :W 1,p
0 (Ω) → Lq(Ω) be the compact imbedding of W 1,p

0 (Ω) into Lq(Ω) and

i′ : Lq′(Ω) →W−1,p′(Ω) be its adjoint. If Nf : Lq(Ω) → Lq′(Ω) is the Nemytskii operator generated
by f , it is easy to check that u ∈ W 1,p

0 (Ω) is a solution of the problem (1.3) in the sens of (1.4) if
and only if u is a solution of the operator equation

Jpu =
(
i′Nf i

)
u.

This remark was the departure point in considering the abstract equation (1.1) in the hypotheses
(H1) - (H5). Returning to the equation (1.1), by its solution we mean an element u ∈ X which
satisfies

Jpu = (i′Nf i)u, (1.5)

where i is the compact imbedding of X into Lq(Ω) and i′ : Lq′(Ω) → X∗ is its adjoint.

Let us remark that according to (1.2), Nf is well-defined, continuous and bounded from Lq(Ω) into

Lq′(Ω), such that i′Nf i is also well-defined and compact from X into X∗ (see e.g.[1]). Also, the
functional ψ : Lq(Ω) → R, defined by ψ(u) =

∫
Ω
F (x, u)dx, is C1 on Lq(Ω) and then on X and

ψ′(u) = Nfu for all u ∈ X (see e.g.[3]), and notice that (1.5) is equivalent with

⟨Jpu, v⟩ = ⟨Nf (iu), iv⟩Lq′ (Ω),Lq(Ω) =

∫
Ω

f(x, u)v dx for all v ∈ X. (1.6)

The abstract model reprezented by (1.1) allows us to find, in a unitary manner, the existence results
given in [1] for the Dirichlet problem (1.3) and also for the following Neumann problem:

−∆pu+ |u |p−2 u = f(x, u) in Ω, (1.7)

|∇u |p−2 ∂u

∂n
= 0 on ∂Ω, (1.8)

(see[4]).

2 Preliminary Results

2.1 Duality mappings

Let (X, ∥ · ∥) be a real Banach space, X∗ its dual and ⟨·, ·⟩ the duality pairing between X∗ and
X. The norm on X∗ is denonted by ∥ · ∥∗. A continuous function φ : R+ → R+ is called a gauge
function if it is strictly increasing, φ(0) = 0, and φ(r) → ∞ with r → ∞. By duality mapping
corresponding to the gauge function φ we mean the operator Jφ : X → P(X∗) defined by

Jφx = {x∗ ∈ X∗ : ⟨x∗, x⟩ = φ(∥ x ∥) ∥ x ∥ , ∥ x∗ ∥ = φ(∥ x ∥)} , for x ∈ X.

By the Hahn-Banach theorem we have

Jφx ̸= ∅ for all x ∈ X.

The following theorem contains some of the most important properties of the duality mapping as
in:

Theorem 2.1. If φ is a gauge function, therefore: (i) for every x ∈ X, Jφx is a bounded, closed
and convex subset of X∗; (ii) Jφ is monotone:

⟨x∗1 − x∗2, x1 − x2⟩ ≥ (φ(∥ x1 ∥)− φ(∥ x2 ∥)) (∥ x1 ∥ − ∥ x2 ∥) ≥ 0

for each x1, x2 ∈ X and x∗1 ∈ Jφx1, x∗2 ∈ Jφx2;
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(iii) for every x ∈ X, Jφx = ∂Φ(x), where Φ(x) =

∫ ∥ x ∥

o

φ(t)dt and ∂Φ : X → P(X∗) is the

subdifferential of Φ in the sense of convex analysis, i.e.

∂Φ(x) = {x∗ ∈ X∗ : Φ(y)− Φ(x) ≥ ⟨x∗, y − x⟩ , for all y ∈ X} .

For the proof see Browder [5], Cioranescu [6] or Lions [2].

Remark 2.1. We notice that a functional f : X → R is said to be Gateaux differentiable at x ∈ X
if there exists f ′(x) ∈ X∗ such that

lim
t→0

f(x+ th)− f(x)

t
=
⟨
f ′(x), h

⟩
for all h ∈ X.

If the convex function f : X → R is Gâteaux differentiable in x ∈ X then it verifies that ∂f(x) =
{f ′(x)}.

In the following propositions we recall other properties of the duality mapping:

Proposition 2.1. Jφ : X → P(X∗) is single valued ⇔ X is smooth ⇔ the norm of X is Gateaux
differentiable on X \ {0}.

Proposition 2.2. If X is reflexive and Jφ : X → X∗, then Jφ is demicontinuous :
if xn → x (strongly) in X, then Jφxn ⇀ Jφx (weakly) in X∗.

Notice that X has the Kadeč-Klee property ((K − K) in short terms) if it is strictly convex
and for any sequence (xn) ⊂ X such that xn ⇀ x (weakly) in X and ∥ xn ∥ → ∥ x ∥ it follows that
xn → x (strongly) in X.

Proposition 2.3. If X has the (K−K) property and Jφ is single valued then Jφ satisfies the (S+)
condition.

We remark that if X is locally uniformly convex then X has the (K −K) property and then, if in
addition, Jφ is single valued, we obtain that Jφ satisfies the (S+) condition. At the same time, if
X is reflexive and X∗ has the (K −K) property then Jφ : X → X∗ is continuous.

Proposition 2.4. Jφ is single valued and continuous if and only if the norm of X is Fréchet
differentiable.

Proposition 2.5. If X is reflexive and Jφ : X → X∗ then Jφ is surjective. If, in addition X
is locally uniformly convex then Jφ is bijective, with its inverse J−1

φ bounded, continuous and
monotone.

For the details and the proofs see e.g. [5], [6] or [1]. The propositions 2.3 and 2.4 offer sufficient
conditions to satisfy hypothesis (H3). Furthermore, (X, ∥ ∥X) is a reflexive real Banach space,
compactly imbedded in the real Banach space (Z, ∥ ∥Z), the continuity of the imbedding i being
given by

∥ iv ∥Z ≤ cZ ∥ v ∥X for all v ∈ X. (2.1)

Using these hypotheses we denote

λ1 = inf

{
∥ v ∥pX
∥ iv ∥pZ

: v ∈ X \ {0}
}

=

= inf
{
∥ v ∥pX : v ∈ X, ∥ iv ∥Z = 1

}
. (2.2)

Then λ1 is attained (see e.g.[7]) and λ
− 1

p

1 is the best constant cZ for the imbedding of X into Z
(inequality (2.1)). Using the following theorem we can emphasize another meaning of λ1: if X
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and Z have both G-differentiable norm, then λ1 is the first eigenvalue of the pair of the duality
mapping. So, from the hypotheses on X and Z written at the begining of this section, we denote
by Jp,XX∗ : X → X∗ and Jp,ZZ∗ : Z → Z∗ the duality mappings (assumed to be single-valued) on
X, respectively on Z, corresponding to the same gauge function φ(t) = tp−1. We say that λ ∈ R is
an eigenvalue of the pair (Jp,XX∗ , Jp,ZZ∗) if there exists
u ∈ X \ {0} such that

Jp,XX∗u = λJp,ZZ∗u. (2.3)

Equality (2.3) is meant in the sense

⟨Jp,XX∗u, v⟩X∗,X = λ ⟨Jp,ZZ∗(iu), iv⟩Z∗,Z for all v ∈ X.

The function u in (2.3) is called eigenfunction of the pair (Jp,XX∗ , Jp,ZZ∗) corresponding to the
eigenvalue λ.

Theorem 2.2. (see [7], Theorem 4) If both of X and Z are with G-differentiable norm, then:

(i) If λ is an eigenvalue of the pair (Jp,XX∗ , Jp,ZZ∗) then λ ≥ λ1; (ii) λ1 is an eigenvalue of
the pair (Jp,XX∗ , Jp,ZZ∗).

Let us remark that, if Z = (Lp(Ω), ∥ · ∥0,p), then the duality mapping

Jp,ZZ∗ : Lp(Ω) → Lp′(Ω) is defined by

⟨Jp,ZZ∗u, v⟩Lp′ (Ω),Lp(Ω) =

∫
Ω

|u |p−2 uvdx for all u, v ∈ Lp(Ω).

So, if Z = (Lp(Ω), ∥ · ∥0,p), then λ ∈ R is an eigenvalue of the pair (Jp,XX∗ , Jp,ZZ∗) (for short we
say that λ is an eigenvalue for Jp) if there exists a certain u ∈ X \ {0} such that

⟨Jpu, v⟩X∗,X = λ

∫
Ω

|u |p−2 uvdx for all v ∈ X.

Moreover,

λ1 = inf
v∈X
v ̸=o

∥ v ∥pX
∥ v ∥p0,p

> 0 (2.4)

is attained and it is the smallest eigenvalue for Jp. By theorem 2.1 we have

Jpu = ∂Φ(u) for all u ∈ X, where

Φ(u) =

∫ ∥ u ∥

0

φ(t)dt =
1

p
∥ u ∥p for all u ∈ X.

Since Φ is convex and X is smooth, it results that Φ is Gateaux differentiable on X and

∂Φ(u) =
{
Φ′(u)

}
for all u ∈ X.

So, Jpu = Φ′(u) for all u ∈ X and from the continuity of Jp (see(H3)) it results that Φ ∈ C1(X,R).
Moreover, ⟨Jpu, u⟩ = φ(∥ u ∥) ∥ u ∥ = ∥ u ∥p for all u ∈ X. Therefore, the functional F : X → R
defined by

F(u) = Φ(u)−Ψ(u) =
1

p
∥ u ∥p −

∫
Ω

F (x, u)dx for all u ∈ X, (2.5)

is C1 on X and
F ′(u) = Φ′(u)−Ψ′(u) = Jpu−Nfu for all u ∈ X.

Then u ∈ X is a solution of the equation (1.1) if and only if u is a critical point for F , i.e.

F
′
(u) = 0.
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2.2 Abstract existence results

In the following section we give some results that will be used furthermore.

Theorem 2.3. (Mountain Pass Theorem) Let X be a real Banach space and
I ∈ C1(X,R), satisfaying the Palais-Smale(PS) condition. Suppose I(0) = 0 and (i) there are
constants ρ > 0, α > 0 such that I∣∣∥ x ∥=ρ

≥ α; (ii) there is an element e ∈ X, ∥ e ∥ > ρ such that

I(e) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover, c can be characterized by

c = inf
g∈Γ

max
u∈g([0,1])

I(u),

where Γ = {g ∈ C([0, 1]), X) : g(0) = 0, g(1) = e} .

Let us remark that each critical point u at level c (I ′(u) = 0, I(u) = c) is a nontrivial one. Notice
that the functional I ∈ C1(X,R) satisfies the (PS) condition if every sequence (un) ⊂ X for which
(I(un)) is bounded and I ′(un) → 0 as n → ∞, possesses a convergent subsequence. The second
result is a surjectivity Fredholm-type result obtained by Dinca [8].

Theorem 2.4. Let X and Y be a real Banach spaces and T, S : X → Y two (generaly nonlinear)
operator such that
(i) T is bijective and T−1 is continuous;
(ii) S is compact. Let λ ̸= 0 be a real number such that
(iii) ∥ (λT − S)x ∥ → ∞ as ∥ x ∥ → ∞;
(iv) there is a constant R > 0 such that (iv1) ∥ (λT − S)x ∥ → ∞ as ∥ x ∥ → ∞; (iv2) dLS(I −
T−1( 1

λ
S), BR, 0) ̸= 0. Then λT − S is surjective from X into Y .

Remark 2.2. A sufficient condition to satisfy hypothesis (iv) in theorem 2.4 is, at the begining,
to exist a constant r > 0 such that, from x = tT−1( 1

λ
S), with x ∈ X and t ∈ [0, 1], it follows that

∥ x ∥ < r(see [8]).

Now we give a multiple version of the ”Mountain Pass Theorem”.

Theorem 2.5. Let X be an infinite dimensional real Banach space and let I ∈ C1(X,R) be even,
satisfying (PS) condition, I(0) = 0, and: (i) there are constants ρ > 0, α > 0 such that I∣∣∥ x ∥=ρ

≥ α;

(ii) for each finite dimensional subspace X1 of X, the set {x ∈ X1 : I(x) ≥ 0} is bounded. Then I
possesses an unbounded sequence of critical values.

For the proof and the details see e.g. Ambrosetti and Rabinowitz[9], Cringanu and Dinca[10],
Kavian[11], Mawhin and Willem[12] or Rabinowitz[13].

3 Existence Results for the Problem (1.1)

3.1 Existence of solution using a Leray-Schauder technique

Since X → Lq(Ω) is compact, the diagram

X
i→ Lq(Ω)

Nf→ Lq′(Ω)
i′→ X∗

shows that Nf (by which we mean i
′
Nf i) is compact. From the proposition 2.5 it results that

the operator Jp : X → X∗ is bijective with its inverse J−1
p bounded continuous, and monotone.

Conseqently (1.1) can be written as:
u = (J−1

p )Nfu,
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with J−1
p Nf : X → X a compact operator. Let be the operator T = J−1

p Nf and using an ”a
priori estimate method” we are going to prove that the compact operator T has at least one fixed
point (see Dinca and Jebelean[7]). For this it is sufficient to show that the set

S = {u ∈ X : u = αTu for some α ∈ [0, 1]}

is bounded in X. By (1.2), for u ∈ X we have

∥ Tu ∥p = ⟨Jp(Tu), Tu⟩ = ⟨Nfu, Tu⟩ =

=

∫
Ω

f(x, u)Tu dx ≤
∫
Ω

(c |u |q−1 + | b |) |Tu | dx.

If u ∈ S, that is u = αTu with α ∈ [0, 1], we have

∥ Tu ∥p ≤
∫
Ω

(c |u |q−1 + | b |) |Tu | dx =

∫
Ω

(cαq−1 |Tu |q−1 + | b |) |Tu | dx ≤

≤ cαq−1 ∥ Tu ∥q0,q + ∥ b ∥0,q′ ∥ Tu ∥0,q ≤ c ∥ Tu ∥q0,q + ∥ b ∥0,q′ ∥ Tu ∥0,q ≤
≤ ccq1 ∥ Tu ∥q + c1 ∥ b ∥0,q′ ∥ Tu ∥ ,

the constant c1 > 0 corresponding to the continuous imbedding X → Lq(Ω). Thererfore, for every
u ∈ S it results

∥ Tu ∥p − c2 ∥ Tu ∥q − c3 ∥ Tu ∥ ≤ 0,

with c2, c3 > 0 constants. Let us remark that, if q ∈ (1, p) then by the above inequality there is a
constant a > 0 such that ∥ Tu ∥ ≤ a for u ∈ S and then

∥ u ∥ = α ∥ Tu ∥ ≤ αa ≤ a, for u ∈ S ,

that means S is bounded. We have obtained:

Theorem 3.1. Assume that X is locally uniformly convex, Jp : X → X∗ and the Caratheodory
function f satisfies (1.2) with q ∈ (1, p). Then the operator J−1

p Nf has one fixed point in X and
consequently the problem (1.1) has solution. In addition, the set of solutions of the problem (1.1)
is bounded in X.

3.2 Existence of solution using the Mountain Pass Theorem

We assume that the Caratheodory function f satisfies the growth condition (1.2). Then F is a
Caratheodory function and there exists c1 > 0, constant and a function c ∈ L1(Ω), c ≥ 0 such that

|F (x, s) | ≤ c1 | s |q + c(x) for x ∈ Ω , s ∈ R. (3.1)

The preliminary results are:

Proposition 3.1. If (un) ⊂ X is bounded and F
′
(un) → 0 as n→ ∞, then (un) has a convergent

subsequence.

Proof. Since X is reflexive, passing to a subsequence, if necessary, we may assume that un ⇀ u

(weakly) in X. By F
′
(un) → 0, un − u ⇀ 0 we obtain

⟨
F

′
(un), un − u

⟩
→ 0, or equivalently

⟨Jpun, un − u⟩ − ⟨Nfun, un − u⟩ → 0.

Since un ⇀ u in X, by the compact imbedding X → Lq(Ω), it results that un → u in Lq(Ω) and
then ⟨Nfun, un − u⟩ → 0, because

| ⟨Nfun, un − u⟩ | ≤ ∥Nfun ∥0,q′ ∥ un − u ∥0,q ,

and (Nfun) is bounded in Lq′(Ω). Consequently, ⟨Jpun, un − u⟩ → 0 and by the (S+) condition of
Jp it results that un → u in X.
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Theorem 3.2. Assume that there exist θ > p and s0 > 0 such that

θF (x, s) ≤ sf(x, s) for x ∈ Ω, | s | ≥ s0. (3.2)

Then F satisfies the (PS) condition.

Proof. According to the proposition 3.1 it is enough to prove that any sequence (un) ⊂ X for which

(F(un)) is bounded and F
′
(un) → 0, is also bounded. Let d ∈ R be such that F(un) ≤ d for all

n ∈ N . For every n ∈ N we define

Ωn = {x ∈ Ω : |un(x) | ≥ s0} , Ω
′
n = Ω \ Ωn.

Therefore

F(un) =
1

p
∥ un ∥p −

(∫
Ωn

F (x, un)dx+

∫
Ω

′
n

F (x, un)dx

)
≤ d. (3.3)

If x ∈ Ωn
′ then |un(x) | < s0 and by (3.1) it holds

|F (x, un) | ≤ c1 |un(x) |q + c(x) ≤ c1s
q
0 + c(x),

and hence ∫
Ω

′
n

F (x, un)dx ≤ c1s
q
0meas(Ω) +

∫
Ω

c(x)dx = k1. (3.4)

If x ∈ Ωn then |un(x) | ≥ s0 and by (3.2) it follows

F (x, un) ≤
1

θ
f(x, un)un,

which gives∫
Ωn

F (x, un)dx ≤
∫
Ωn

1

θ
f(x, un)undx =

1

θ

(∫
Ω

f(x, un)undx−
∫
Ω

′
n

f(x, un)undx

)
. (3.5)

By the growth condition (1.2) we have∣∣∣∣∣
∫
Ω

′
n

f(x, un)undx

∣∣∣∣∣ ≤
∫
Ω

′
n

(c |un |q + | b(x) | |un |) dx ≤ csq0meas(Ω) + s0

∫
Ω

| b(x) |dx = k2,

which yields

− 1

θ

∫
Ω

′
n

f(x, un)undx ≤ k2
θ
. (3.6)

Finally, by (3.3), (3.4), (3.5) and (3.6) we obtain

1

p
∥ un ∥p − 1

θ

∫
Ω

f(x, un)undx ≤ d+ k1 +
k2
θ

= k. (3.7)

Since F
′
(un) → 0 as n→ ∞ there is n0 ∈ N such that∣∣∣ ⟨F ′

(un), un

⟩ ∣∣∣ ≤ ∥ un ∥ for n ≥ n0, or∣∣∣ ⟨Φ′
(un), un

⟩
−
⟨
Ψ

′
(un), un

⟩ ∣∣∣ ≤ ∥ un ∥ for n ≥ n0,

that is ∣∣∣∣ ∥ un ∥p −
∫
Ω

f(x, un)undx

∣∣∣∣ ≤ ∥ un ∥ for n ≥ n0,
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which gives

− 1

θ
∥ un ∥p +

1

θ

∫
Ω

f(x, un)undx ≤ 1

θ
∥ un ∥ for n ≥ n0. (3.8)

From (3.7) and (3.8) we obtain (
1

p
− 1

θ

)
∥ un ∥p − 1

θ
∥ un ∥ ≤ k,

and since θ > p > 1 it results that (un) is bounded in X.

Theorem 3.3. If either (i) there are numbers θ > p and s1 > 0 such that

0 < θF (x, s) ≤ sf(x, s) for x ∈ Ω, s ≥ s1, (3.9)

or (ii) there are numbers θ > p and s1 < 0 such that

0 < θF (x, s) ≤ sf(x, s) for x ∈ Ω, s ≤ s1, (3.10)

then F is unbounded from below.

Proof. We are going to prove the sufficiency of the condition (i) (the proof for (ii) is similar). Let
u ∈ X, u > 0 (in fact i(u) > 0) be such that meas (M1(u)) > 0, where

M1(u) = {x ∈ Ω : u(x) ≥ s1} (in fact i(u)(x) ≥ s1).

We shall show that F(λu) → −∞ as λ→ ∞. For λ ≥ 1 we denote Mλ(u) = {x ∈ Ω : λu(x) ≥ s1}.
Since λ ≥ 1, it results that M1(u) ⊂ Mλ(u) and hence meas(Mλ(u)) > 0. By (3.9), for x ∈ Ω and
τ ≥ s1 we have

θ

τ
≤ f(x, τ)

F (x, τ)
=
F

′
τ (x, τ)

F (x, τ)
,

and integrating from s1 to s we get

ln

(
s

s1

)θ

≤ lnF (x, s)− lnF (x, s1),

which implies
F (x, s) ≥ γ(x)sθ for x ∈ Ω, s ≥ s1, (3.11)

where γ(x) =
F (x, s1)

sθ1
> 0 and obviously γ ∈ L1(Ω). For λ ≥ 1 we have

F(λu) =
λp

p
∥ u ∥p −

(∫
Mλ(u)

F (x, λu)dx+

∫
Ω\Mλ(u)

F (x, λu)dx

)
. (3.12)

If x ∈Mλ(u) then λu(x) ≥ s1 and using (3.11)

F (x, λu(x)) ≥ γ(x)λθuθ.

Therefore,∫
Mλ(u)

F (x, λu(x))dx ≥ λθ

∫
Mλ(u)

γ(x)uθdx ≥ λθ

∫
M1(u)

γ(x)uθdx = λθk1(u), (3.13)

with k1(u) > 0. If x ∈ Ω \Mλ(u) then λu(x) < s1 and using (3.1), we have

|F (x, λu(x)) | ≤ c1λ
quq + c(x) ≤ c1s

q
1 + c(x).
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Therefore, ∣∣∣∣∣
∫
Ω\Mλ(u)

F (x, λu(x))dx

∣∣∣∣∣ ≤ c1s
q
1meas(Ω) +

∫
Ω

c(x)dx = k2. (3.14)

From (3.12),(3.13) and (3.14) we obtain

F(λu) ≤ λp

p
∥ u ∥p − λθk1(u) + k2 → −∞ as λ→ ∞,

and the proof is ready.

Remark 3.1. By the theorem 3.3, since F is unbounded from below it results that for each ρ > 0
there exists e ∈ X with ∥ e ∥ > ρ such that F(e) ≤ 0.

Theorem 3.4. Assume that the Caratheodory function f : Ω × R → R satisfies (i) | f(x, s) | ≤
c
(
| s |q−1 + 1

)
for x ∈ Ω, s ∈ R, where q ∈ (1, p∗) and c ≥ 0 constant;

(ii) lim sup
s→0

f(x, s)

| s |p−2 s
< λ1 uniformly with x ∈ Ω, where

λ1 = inf

{
∥ v ∥pX
∥ v ∥p0,p

: v ∈ X, v ̸= 0

}
is the smallest eigenvalue for Jp. Then there are constants

ρ, α > 0 such that F∣∣∥ u ∥=ρ
≥ α.

Proof. Let h : Ω → R be defined by

h(x) = lim sup
s→0

f(x, s)

| s |p−2 s
.

From (ii) there is µ ∈ (0, λ1) such that h(x) < µ uniformly with x ∈ Ω. It results that there is some
δµ > 0 such that

f(x, s)

| s |p−2 s
≤ µ for x ∈ Ω, 0 < | s | < δµ,

or

f(x, s) ≤ µsp−1 for x ∈ Ω, s ∈ (0, δµ), (3.15)

− µ | s |p−1 ≤ f(x, s) for x ∈ Ω, s ∈ (−δµ, 0). (3.16)

Let us notice that f satisfies f(x, 0) = 0, for x ∈ Ω. Then, from (3.15),(3.16) and by the definition
of F we obtain

F (x, s) ≤ µ

p
| s |p for x ∈ Ω, 0 < | s | < δµ. (3.17)

Using (i), we easily see that F satisfies

|F (x, s) | ≤ c1(| s |q + 1) for x ∈ Ω, s ∈ R, (3.18)

with c1 ≥ 0 constant. Let q1 ∈ (max {p, q} , p∗). Then from (3.18) there is a constant c2 ≥ 0 such
that

|F (x, s) | ≤ c2 | s |q1 for x ∈ Ω, | s | ≥ δµ. (3.19)

From (3.17) and (3.19) it follows

|F (x, s) | ≤ µ

p
| s |p + c2 | s |q1 for x ∈ Ω, s ∈ R. (3.20)
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Using (3.20), the variational characterization of λ1 and the imbeding X → Lq1(Ω) we obtain

F(u) =
1

p
∥ u ∥p −

∫
Ω

F (x, u)dx ≥ 1

p
∥ u ∥p − µ

p

∫
Ω

|u |p dx− c2

∫
Ω

|u |q1 dx ≥

≥ 1

p
∥ u ∥p − µ

p
∥ u ∥p0,p − c3 ∥ u ∥q1 =

= ∥ u ∥p
[
1

p

(
1− µ

∥ u ∥p0,p
∥ u ∥p

)
− c3 ∥ u ∥q1−p

]
≥

≥ ∥ u ∥p
[
1

p

(
1− µ

λ1

)
− c3 ∥ u ∥q1−p

]
≥ α > 0,

provided ∥ u ∥ = ρ > 0 is sufficiently small.

Now we can prove the most important result of this section.

Theorem 3.5. Suppose that the hypotheses (H1), (H2), (H3) and (H4) hold. Moreover,
we assume that the Caratheodory function f satisfies: (i) there is q ∈ (1, p∗) such that

| f(x, s) | ≤ c(| s |q−1 + 1) for x ∈ Ω, s ∈ R,

with c ≥ 0 constant; (ii) lim sup
s→0

f(x, s)

| s |p−2 s
< λ1 uniformly with x ∈ Ω,

where λ1 is the smallest eigenvalue for Jp; (iii) there exist the constants θ > p and s0 > 0 such
that

0 < θF (x, s) ≤ sf(x, s) for x ∈ Ω, | s | ≥ s0.

Then the problem (1.1) has at least a nontrivial solution u ∈ X.

Proof. It is enough to prove that F has at least a nontrivial critical point u ∈ X. For this we are
going to use theorem 2.3. Obviously, F(0) = 0. From (i), (iii) and the theorem 3.2, F satisfies the
(PS) condition. Furthermore, from (i), (ii) and the theorem 3.4 there are constants ρ, α > 0 such
that F∣∣∥ u ∥=ρ

≥ α. Finally, from (i), (iii) and the theorem 3.3 (also see the remark 3.1) there is an

element e ∈ X, ∥ e ∥ > ρ such that F(e) ≤ 0 and the proof is complete.

3.3 Existence of the solution using a direct variational method

Theorem 3.6. Assume that the hypotheses (H1), (H2), (H3) and (H4) hold. Moreover, assume that
the Caratheodory function f satisfies the growth condition (1.2) with
1 < q < p. Then the problem (1.1) has at least a solution u ∈ X.

Proof. For u ∈ X, using (3.1) we have

F(u) =
1

p
∥ u ∥p −

∫
Ω

F (x, u)dx ≥ 1

p
∥ u ∥p − c1 ∥ u ∥qo,q −

∫
Ω

c(x)dx.

By the imbedding X → Lq(Ω) it results

F(u) ≥ 1

p
∥ u ∥p − c2 ∥ u ∥q − c3,

where c2, c3 > 0 are constants. Since p > q > 1 it follows that F is coercive and bounded
from below on X. Let l = inf

X
F and (un) ⊂ X such that F(un) → l. Since F is coercive it

results that (un) is bounded in X and by the reflexivity of X, passing to a subsequence, we may
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assume that un ⇀ u (weakly) in X. Since the imbedding X → Lq(Ω) is compact, it results that
un → u (strongly) in Lq(Ω). We have

F(u) = Φ(u)−Ψ(u) = Fc(u) =
1

p
∥ u ∥p −

∫
Ω

F (x, u)dx.

Since Φ is C1 on X and it is convexe, it results that Φ is weakly lower semicontinuous and then

lim inf
n→∞

Φ(un) ≥ Φ(u).

From the continuity of Ψ on Lq(Ω) we have

Ψ(un) → Ψ(u),

and then

l = lim inf
n→∞

F(un) ≥ lim inf
n→∞

Φ(un)−Ψ(u) ≥ Φ(u)−Ψ(u) = F(u) ≥ l,

which implies F(u) = l. Conseqently, u is a minimum point for F and then it is a critical point,
which means that it is a solution for the problem (1.1).

Remark 3.2. Another proof of the theorem (3.6) can be given by using the Fredholm - type result
recalled in theorem 2.4.

Indeed, we apply the theorem 2.4, choosing Y = X∗, T = Jp, S = Nf (by which means

i
′
Nf i : X → X∗). Since the imbedding X → Lq(Ω), is compact it results that Nf is compact.

By the proposition 2.5, T is bijective and T−1 continuous. For u ∈ X we have

∥ λJpu−Nfu ∥∗ ≥ ∥ λJpu ∥∗ − ∥Nfu ∥∗ ≥ |λ | ∥ u ∥p−1 − c ∥ u ∥q−1
0,q − c1 ≥

≥ |λ | ∥ u ∥p−1 − c2 ∥ u ∥q−1 − c1 → ∞ as ∥ u ∥ → ∞,

because p > q > 1. To verify the hypothesis (iv) we use the remark 2.2 following the calculus used
in 3.1.

Remark 3.3. The advantage of using the Mountain Pass Theorem in order to prove the existence
of the problem’s (1.1) solution is given by the fact that we show its nontriviality.

Let us remark yet that in the particular case of f(x, 0) ̸= 0, it results that u = 0 is not a solution ,
hence the nontriavility of the problem’s (1.1) solution is provided by the theorems 3.1 and 3.6, too.

3.4 Multiple solutions

We use the following result:

Proposition 3.2. Assume that the Caratheodory function f : Ω × R → R satisfies (i) there is
q ∈ (1, p∗) such that

| f(x, s) | ≤ c(| s |q−1 + 1) for x ∈ Ω, s ∈ R,

with c ≥ 0 constant. (ii) there are some numbers θ > p and s0 > 0 such that

0 < θF (x, s) ≤ sf(x, s) for x ∈ Ω, | s | ≥ s0.

Then, if X1 is a finite dimensional subspace of X, the set S = {v ∈ X1 : F(v) ≥ 0} is bounded in
X.
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Proof. From (i) F satisfies

|F (x, s) | ≤ c1(| s |q + 1) for x ∈ Ω, s ∈ R, (3.21)

with c1 ≥ 0 constant. We show that there is γ ∈ L∞(Ω), γ > 0 in Ω such that

F (x, s) ≥ γ(x) | s |θ for x ∈ Ω, | s | ≥ s0. (3.22)

So, as in the proof of the theorem 3.3 we get

F (x, s) ≥ γ1(x)s
θ for x ∈ Ω, s ≥ s0, (3.23)

where γ1(x) =
F (x, s0)

sθ0
. By (3.21) it results that γ1 ∈ L∞(Ω) and (ii) yields γ1 > 0 on Ω.

Analogously, we have

F (x, s) ≥ γ2(x) | s |θ for x ∈ Ω, s ≤ −s0, (3.24)

where γ2(x) =
F (x,−s0)

sθ0
. Again γ2 ∈ L∞(Ω) and γ2 > 0 on Ω. Therefore, (3.22) holds with

γ(x) = min {γ1(x), γ2(x)} for x ∈ Ω, as assumed. We are going to show that F satisfies

F(v) ≤ 1

p
∥ v ∥p −

∫
Ω

γ(x) | v |θ dx+K, for all v ∈ X, (3.25)

with K constant. For v ∈ X we denote Ωv = {x ∈ Ω : | v(x) | < s0} . By (3.21) we have∫
Ωv

F (x, v)dx ≥ −c1
∫
Ωv

(| v |p + 1)dx ≥ −c1
∫
Ω

(sq0 + 1)dx = −c1(sq0 + 1)meas(Ω) = k1,

and by (3.22) it holds ∫
Ω\Ωv

F (x, v)dx ≥
∫
Ω\Ωv

γ(x) | v |θ dx.

Then

F(v) =
1

p
∥ v ∥p −

(∫
Ωv

F (x, v)dx+

∫
Ω\Ωv

F (x, v)dx

)
≤

≤ 1

p
∥ v ∥p −

∫
Ω\Ωv

γ(x) | v |θ dx− k1 =

=
1

p
∥ v ∥p −

∫
Ω

γ(x) | v |θ dx+

∫
Ωv

γ(x) | v |θ − k1 ≤

≤ 1

p
∥ v ∥p −

∫
Ω

γ(x) | v |θ +K,

where K = ∥ γ ∥0,∞ sq0meas(Ω) − k1, and (3.25) is proved. The functional ∥ · ∥γ : X → R defined
by

∥ v ∥γ =

(∫
Ω

γ(x) | v |θ dx
) 1

θ

,

is a norm on X. On the finite dimensional subspace X1 the norms ∥ · ∥X and ∥ · ∥γ being equivalent,

there is a constant
∼
K=

∼
K (X1) > 0 such that

∥ v ∥X ≤
∼
K

(∫
Ω

γ(x) | v |θ dx
) 1

θ

for all v ∈ X1.
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Consequently, by (3.25) on X1 it holds

F(v) ≤ 1

p

∼
K

p
(∫

Ω

γ(x) | v |θ dx
) p

θ

−
∫
Ω

γ(x) | v |θ dx+K =

=
1

p

∼
K

p

∥ v ∥pγ − ∥ v ∥θγ +K.

Therefore
1

p

∼
K

p

∥ v ∥pγ − ∥ v ∥θγ +K ≥ 0 for all v ∈ S,

and since θ > p it results that S is bounded.

Now we can state

Theorem 3.7. Suppose that the hypotheses (H1), (H2), (H3) and (H4) are satisfied. Moreover,
assume that the Caratheodory function f is odd in the second argument :
f(x,−s) = −f(x, s) and the conditions (i), (ii), (iii) of the theorem (3.5) are satisfied. Then the
problem (1.1) has an unbounded sequence of solutions.

Proof. Since f is odd it results that F is even. Obviously, F(0) = 0. From (i), (iii) and the
theorem 3.2, F satisfies the (PS) condition. Furthemore, from (i), (ii) and the theorem 3.4, there
are constants ρ, α > 0 such that F∣∣∥ u ∥=ρ

≥ α. The proposition 3.2 and (i), (iii) show that the

set {v ∈ X1 : F(v) ≥ 0} is bounded in X, whenever X1 is a finite dimensional subspace of X. By
the theorem 2.5 it results that F possesses an unbounded sequence of critical values, so that the
problem (1.1) has an unbounded sequence of solutions.

4 Examples

Example 4.1. If X =W 1,p
0 (Ω) then Jp = −∆p and the solutions set of the equation Jpu = Nfu is

the same with the Dirichlet problem’s (1.3) solutions set (see the Introduction). Consequently, the
existence results given in the section 3 imply the existence results obtained in [1] for the Dirichlet
problem (1.3).

Example 4.2. We consider X =W 1,p(Ω), endowed with the norm

|||u |||p1,p = ∥ u ∥p0,p + ∥ |∇u | ∥p0,p for all u ∈W 1,p(Ω),

which is equivalent with the standard norm on the space W 1,p(Ω) (see[14, 4]). In this case, the

duality mapping Jp on
(
W 1,p(Ω), ||| · |||1,p

)
corresponding to the gauge function φ(t) = tp−1 is defined

by

Jp :
(
W 1,p(Ω), ||| · |||1,p

)
→
(
W 1,p(Ω), ||| · |||1,p

)∗
,

Jpu = −∆pu+ |u |p−2 u for all u ∈W 1,p(Ω) (4.1)

(see [4]). By weak solution of the Neumann problem (1.7), (1.8) we mean an element
u ∈W 1,p(Ω) which satisfies∫

Ω

|∇u |p−2 ∇u∇vdx+

∫
Ω

|u |p−2 uvdx =

∫
Ω

f(x, u)vdx for all v ∈W 1,p(Ω). (4.2)

Obviously, u ∈W 1,p(Ω) is a solution for the problem (1.7), (1.8) in the meaning of (4.2) if and only
if

Jpu =
(
i
′
Nf i

)
u,
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where Jp is given by (4.1), i : W 1,p(Ω) → Lq(Ω) is the compact imbedding of W 1,p(Ω) into Lq(Ω)

and i
′
: Lq

′
(Ω) →

(
W 1,p(Ω), ||| · |||1,p

)∗
is its adjoinct. So, we are in the functional framework (H2),

(H3) about X. Indeed,
(
W 1,p(Ω), ||| · |||1,p

)
is a smooth reflexive Banach space, compactly imbedded

in the space Lq(Ω) , Jp :
(
W 1,p(Ω), ||| · |||1,p

)
→
(
W 1,p(Ω), ||| · |||1,p

)∗
is single valued, continuous and

satisfies the (S+) condition (see [4]). Therefore, the existence results obtained in the section 3 imply
the existence results obtained in [4] for the Neumann problem (1.7), (1.8).

5 Conclusion

Taking into account the proofs written above, the existence results have been obtained for the
operational equation (1.1), using variational and topological methods. In particular, these results
allow a unitary approach to the Dirichlet (1.3) and Neumann (1.7, 1.8) problems, which are
operationally written in the same form, using the equation (1.1).
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