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Abstract

Tuberculosis, an airborne infectious disease, remains a major threat to public health in Kenya.
In this study, we derived a system of non-linear ordinary differential equations from the SLICR
mathematical model of TB to study the effects of hygiene consciousness as a control strategy
against TB in Kenya. The effective basic reproduction number (R0) of the model was determined
by the next generation matrix approach. We established and analyzed the equilibrium points.
Using the Routh-Hurwitz criterion for local stability analysis and comparison theorem for global
stability analysis, the disease-free equilibrium (DFE) was found to be locally asymptotically stable
given that R0 < 1.
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Also by using the Routh-Hurwitz criterion for local stability analysis and Lyapunov function and
LaSalle’s invariance principle for global stability analysis, the endemic equilibrium (EE) point
was found to be locally asymptotically stable given that R0 > 1. Using MATLAB ode45 solver,
we simulated the model numerically and the results suggest that hygiene consciousness can help
in controlling TB disease if incorporated effectively.

Keywords: Tuberculosis; reproduction number; stability; numerical simulation.

2019 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

Tuberculosis is a bacterial infection disease that is common and potentially fatal if not timely
treated. It is caused by the mycobacterium tuberculosis. Tuberculosis usually affects the lungs; it
can also affect the brain, the central nervous system, the lymphatic system, the kidneys and spine.

TB is transmitted from one person to another through the air. When a person with lung TB coughs,
sneezes, speaks or spits, TB germs (bacterium) are propelled into the air. These germs enter into
the respiratory system through the air inhaled. Any uninfected individual inhaling the bacteria is
possibly exposed to infectious mycobacterium tuberculosis. An individual needs to inhale only a few
of these bacteria to become infected.

Mathematical modeling is an important tool for a better understanding of the dynamics of infectious
[1]. Modeling of tuberculosis was first carried out by Frost [2]. Since then, several researchers
have continuously researched on how tuberculosis can be reduced using mathematical models by
incorporating interventions such as treatment of tuberculosis-infected persons by using of drug
chemotherapy [3], treatment of actively and latently infected persons [4], health education (see [5],
[6],[7]), therapy of tuberculosis transmission [8], early treatment for latent patients and treatment of
infective [9] and so on. Based on the result of these studies, the researchers found that tuberculosis
could be controlled.

To this end, we seek to investigate analytically the dynamics of tuberculosis by incorporating hygiene
as a control strategy in order to eradicate the disease.

2 Model Formulation

We formulate a model with total population N(t), which is divided into five classes: S(t)-Susceptible
individuals, L(t)-Latently Infected individuals, I(t)- Infectious individuals (Actively Infected indi-
viduals), C(t)- Hygiene conscious individuals (Infectious individuals who have become hygiene
conscious) and R(t)- Recovered individuals with natural death rate µ in all classes and TB related
death rate δ in Infectious and hygiene consciousness compartments. People are recruited to Suscepti-
ble class at the rate Λ and become Latently infected at the rate of βI where β is the effective contact
rate between susceptible and infectious individuals. νβ(0 < ν < 1) is the reduced effective contact
rate between susceptible and infectious individuals as a result of hygiene consciousness where ν
is the rate at which infectious individuals become hygiene conscious. Latently infected individuals
progress to infectious class at σ rate and these infectious individuals recover at the rate π and others
progress to hygiene consciousness class at the rate ν. The hygiene conscious individuals recover at
ω rate. From the above description we have the following assumptions and flow diagram;
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Assumptions:

i The population birth and death rate occur at different rates.

ii Infectious individuals observe hygiene willingly.

iii Infectious individuals recover as result of effective treatment.

iv There is permanent immunity after recovery.

v All the newly born individuals join only susceptible class.

vi Individuals in infectious and hygiene Conscious classes die naturally and as result of TB
infection while those in other classes die naturally.

Fig. 1. Flow chart

From Fig. 1. we have the following equations of the model are:

dS

dt
= Λ− (1− ν)βIS − µS

dL

dt
= (1− ν)βIS − (σ + µ)L

dI

dt
= σL− (ν + π + δ + µ)I

dC

dt
= νI − (ω + δ + µ)C

dR

dt
= ωC + πI − µR

(2.1)

3 Model Analysis

3.1 Positivity and boundedness of solutions

The state variables of the model represent classes of human population and therefore should be
non-negative for the model to be well posed. The model will make epidemiological sense where the
feasible region is positively invariant. All the solutions are non-negative and bounded in the feasible
region Ω = {(S,L, I, C,R) ∈ R5

+ : S > 0;L, I, C,R ≥ 0;N ≤ Λ
µ
}
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Because the first four equations of system (2.1) are independent of variable R(t), we reduce the
system by to obtain;

dS

dt
= Λ− (1− ν)βIS − µS

dL

dt
= (1− ν)βIS − (σ + µ)L

dI

dt
= σL− (ν + π + δ + µ)I

dC

dt
= νI − (ω + δ + µ)C

(3.1)

3.2 Existence of equilibrium points

At the equilibrium point, the right hand side of the system (3.1) is equal to zero. In that;

Λ− (1− ν)βIS − µS = 0

(1− ν)βIS − (σ + µ)L = 0

σL− (ν + π + δ + µ)I = 0

νI − (ω + δ + µ)C = 0

(3.2)

For Disease Free Equilibrium point E0, the disease is not present. Hence S = S0, L = 0, I = 0 and
C = 0. Upon substitution of these (S = S0, L = 0, I = 0 and C = 0) in (3.2), we obtain S0 = Λ

µ

Such that E0 = (Λ
µ
, 0, 0, 0)

Next, we investigate the existence of Endemic equilibrium point Ee(Se, Le, Ie, Ce) by substituting
S = Se, L = Le, I = Ie, C = Ce in (3.2) to get

Λ− (1− ν)βIeSe − µSe = 0

(1− ν)βIeSe − (σ + µ)Le = 0

σLe − (ν + π + δ + µ)Ie = 0

νIe − (ω + δ + µ)Ce = 0

(3.3)

then by solving for Se, Le, Ie and Ce we obtain

Ee


Se

Le

Ie
Ce

 = Ee



2(1−ν)βσΛ−µ(σ+µ)(ν+π+δ+µ)
(1−ν)µσβ

µ(σ+µ)(ν+π+δ+µ)−(1−ν)βσΛ
σ(1−ν)β(σ+µ)

µ(σ+µ)(ν+π+δ+µ)−(1−ν)βσΛ
(1−ν)β(σ+µ)(ν+π+δ+µ)

νµ(σ+µ)(ν+π+δ+µ)−(1−ν)νβσΛ
(1−ν)β(σ+µ)(ν+π+δ+µ)(ω+δ+µ)


3.3 The basic reproduction number (R0)

The basic reproduction number R0 is the average number of secondary infection cases arising from
a typical primary infection case in an entirely susceptible population. Using the next generation
matrix approach by Van den Driessche and Watmough [10], R0 is given by the spectral radius
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ρ(FV−1) where F is the Jacobian matrix of fj at E0, where fj contains terms that directly lead to
new infections entering each compartment j and V is the Jacobian matrix of vj at E0, where vj is
the rate of transfer of individuals into and out of compartment j. The disease compartments are L,
I and C. Their equations are;

dL

dt
= (1− ν)βIS − (σ + µ)L

dI

dt
= σL− (ν + π + δ + µ)I

dC

dt
= νI − (ω + δ + µ)C

(3.4)

System (3.4) can be expressed as; dL
dt
dI
dt
dC
dt

 = fj − vj =

 (1− ν)βIS
0
0

−

 (σ + µ)L
(ν + π + δ + µ)I − σL
(ω + δ + µ)C − νI


We can see;

fi =

 (1− ν)βIS
0
0

 and vi =


(σ + µ)L

(ν + π + δ + µ)I − σL

(ω + δ + µ)C − νI


The jacobian of fj at E0 is

F=

 0 (1−ν)βΛ
µ

0

0 0 0
0 0 0


and that of vj at E0 is

V=

 (σ + µ) 0 0
−σ (ν + π + δ + µ) 0
0 −ν (ω + δ + µ)


The determinant of V is given by ;

det(V0) = (σ + µ)(ν + π + δ + µ)(ω + δ + µ)

Therefore

V−1 =



1
(σ+µ)

0 0

σ
(σ+µ)(ν+π+δ+µ)

1
(ν+π+δ+µ)

0

σν
(σ+µ)(ν+π+δ+µ)(ω+δ+µ)

ν
(ν+π+δ+µ)(ω+δ+µ)

1
(ω+δ+µ)


By definition, R0 = ρ(FV−1).

Where

FV−1 =


(1−ν)βσΛ

µ(σ+µ)(ν+π+δ+µ)
(1−ν)βΛ

µ(ν+π+δ+µ)
0

0 0 0

0 0 0


Therefore

R0 = (1−ν)βσΛ
µ(σ+µ)(ν+π+δ+µ)
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4 Stability Analysis

In this section we will analyse local and global stability of the disease-free equilibrium and endemic
equilibrium of the system (3.1).

4.1 Local stability of the disease free equilibrium point

In this section we study local stability of the disease-free equilibrium of the system (3.1).

Theorem 1. The disease-free equilibrium of the system (3.1) is locally asymptotically stable when
the reproduction number R0 < 1.

Proof. Evaluating the jacobian matrix of system (3.1) at E0, we have;

J(E0) =


−µ 0 − (1−ν)βΛ

µ
0

0 −(σ + µ) (1−ν)βΛ
µ

0

0 σ −(ν + π + δ + µ) 0
0 0 ν −(ω + δ + µ)


From J(E0) the determinant is given by

DetJ(E0) = −µ[−(σ + µ)(ν + π + δ + µ)(ω + δ + µ) + σ(ω + δ + µ) (1−ν)βΛ
µ

]

and the trace is given by
tr(J(E0)=−µ− (σ + µ)− (ν + π + δ + µ)− (ω + δ + µ)

Since all the parameters are positive, it can be seen that the tr(J(E0) < 0 and Det(J(E0) > 0 when

R0 < 1 i.e (σ + µ)(ν + π + δ + µ) > (1−ν)βσΛ
µ

Applying Routh-Hurwitz criterion for necessary and sufficient conditions as in Enagi et al. [11], the
characteristic polynomial has all roots with negative real part since tr(J(E0)) < 0 andDet(J(E0)) >
0 when R0 < 1 .

Thus, by Routh-Hurwitz criteria, the disease-free equilibrium is locally asymptotically stable when
R0 < 1

4.2 Global stability of the disease free equilibrium point

Now we use comparison theorem as in [12], to prove the global stability of DFE

Theorem 2. The disease-free equilibrium of the system (3.1) is glocally asymptotically stable when
the reproduction number R0 < 1.

Proof. Using the comparison theorem in [12] we rewrite the disease compartments as dL
dt
dI
dt
dC
dt

 =(F-V)

 L
I
C

-
 (1− ν)βI(S0 − S)

0
0


Where F and V are defined in section (3.2.4)
Since S ≤ S0 = Λ

µ
∀ t > 0, it follows that dL

dt
dI
dt
dC
dt

 ≤(F-V)

 L
I
C


Where F−V =

 −(σ + µ) (1−ν)βΛ
µ

0

σ −(ν + π + δ + µ) 0
0 −ν −(ω + δ + µ)


The characteristic equation is given by
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−((σ + µ) + λ)((ν + π + δ + µ) + λ)((ω + δ + µ) + λ) + σ((ω + δ + µ) + λ) (1−ν)βΛ
µ

= 0

Which upon expansion gives

((ω + δ + µ) + λ)[λ2 + a1λ+ a2] = 0 (4.1)

where
a1 = (σ + µ) + (ν + π + δ + µ)

a2 = (σ + µ)(ν + π + δ + µ)− (1−ν)βσΛ
µ

From equation (4.1) it is clear that one of the eigenvalues is −(ω+ δ+µ) and other eigenvalues are
given by the roots of

λ2 + a1λ+ a2 = 0 (4.2)

By using Routh Hurwitz criterion, equation (4.2) has roots with negative real part if a1a2 > 0.

We can see that a1 > 0, this implies that for a1a2 > 0 to be satisfied, a2 > 0.

Clearly a2 > 0 when R0 < 1 i.e (σ + µ)(ν + π + δ + µ) > (1−ν)βσΛ
µ

Since we have shown that F−V has negative eigenvalues whenR0 < 1, it means that (L(t), I(t), C(t))
−→ (0, 0, 0) as t −→ ∞. Using comparison theorem, it follows that (L(t), I(t), C(t)) −→ (0, 0, 0)
and S(t) −→ Λ

µ
as t −→ ∞ (S(t), L(t), I(t), C(t)) −→ E0

Therefore the disease free equilibrium is globally asymptotically stable when R0 < 1.

4.3 Local stability of the endemic equilibrium point

Theorem 3. The endemic equilibrium point (Ee) of system (3.1) is locally asymptotically stable
when R0 > 1

Proof. We prove the theorem by determining if there exist negative eigenvalues when R0 > 1. We
start by evaluating the Jacobian matrix of system (3.1) at the endemic equilibrium point. Thus

J(Ee) =


−(1− ν)βIe − µ 0 −(1− ν)βSe 0

(1− ν)βIe −(σ + µ) (1− ν)βSe 0
0 σ −(ν + π + δ + µ) 0
0 0 ν −(ω + δ + µ)


We see that −(ω + δ + µ) is one of the eigenvalues, the rest can be determined by reducing J(Ee)
to

J1(Ee) =

 − [(1− ν)βIe + µ] 0 −(1− ν)βSe

(1− ν)βIe −(σ + µ) (1− ν)βSe

0 σ −(ν + π + δ + µ)


From J1(Ee),
tr(J1(Ee)) = −((1− ν)βIe + 3µ+ σ + ν + π + δ)

Det(J1(Ee)) = − [(1− ν)βIe + µ] { 2µ(σ+µ)(ν+π+δ+µ)−2(1−ν)βσΛ
µ

}
Clearly Det(J1(Ee)) > 0 for R0 > 1 i.e (1− ν)βσΛ > µ(σ + µ)(ν + π + δ + µ)
Applying Routh-Hurwitz criterion for necessary and sufficient conditions as in Enagi et al. [11],
tr(J1(Ee)) < 0 and Det(J1(Ee)) > 0 when R0 > 1. Implying that all eigenvalues of J1(Ee), have
negative real part when R0 > 1. Thus Ee is locally asymptotically stable when R0 > 1.

4.4 Global stability of the endemic equilibrium point

We study the global asymptotic stability of the endemic equilibrium using LaSalles invariance
principle [13].
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Theorem 4. The Endemic Equilibrium Point Ee of the system (3.1) is globally asymptotically
stable if R0 > 1.

Proof. We apply [13] approach to prove global stability of Ee. Consider the following Lyapunov
function

G(S,L, I, C) = (S − Seln
S
Se

) +M(L− Leln
L
Le

) + P (I − Ieln
I
Ie
) +Q(C − Celn

C
Ce

)
The derivative of G is ;

dG
dt

= (1− Se
S
) dS
dt

+M(1− Le
L
) dL
dt

+ P (1− Ie
I
) dI
dt

+Q(1− Ce
C
) dC

dt

Next, we substitute dS
dt

, dL
dt

, dI
dt

and dC
dt

from system (3.1), to have;

dW
dt

=
(
1− Se

S

)
(Λ− (1− ν)βIS − µS) +M

(
1− Le

L

)
((1− ν)βIS − (σ + µ)L)+

P
(
1− Ie

I

)
(σL− (ν + π + δ + µ)I) +Q

(
1− Ce

C

)
(νI − (ω + δ + µ)C)

(4.3)

At endemic equilibrium, system (3.1) become;

Λ = (1− ν)βIeSe + µSe

(σ + µ) =
(1− ν)βIeSe

Le

(ν + π + δ + µ) =
σLe

Ie

(ω + δ + µ) =
νIe
Ce

(4.4)

Substituting (4.4)in (4.3), we get;

(4.5)

dG

dt
=

(
1− Se

S

)
[(1− ν)βIeSe + µSe − (1− ν)βIS − µS]

+M

(
1− Le

L

)
[(1− ν)βIS − (1− ν)βIeSeL

Le
]

+ P

(
1− Ie

I

)
[σL− σLeI

Ie
] +Q

(
1− Ce

C

)
[νI − νIeC

Ce
]

Equation (4.5) can be written as

(4.6)

dG

dt
= −µ

(S − Se)
2

S
+

(
1− 1

w

)
(1− ν)βIeSe −

(
1− 1

w

)
(1− ν)wyβIeSe

+M(1− ν)βIeSe

(
1− 1

x

)
(wy − x)

+ PσLe

(
1− 1

y

)
(x− y) +QνIe

(
1− 1

z

)
(y − z)

where w = S
Se

, x = L
Le

, y = I
Ie

and z = C
Ce

Further, equation (4.6) can be written as
dG
dt

= −µ (S−Se)
2

S
+ f(w, x, y, z)

Where

f(w, x, y, z) =
(
1− 1

w

)
(1− ν)βIeSe −

(
1− 1

w

)
(1− ν)wyβIeSe

+M(1− ν)βIeSe(1 + wy − wy
x

− x)
+PσLe(1 + x− x

y
− y) +QνIe(1 + y − y

z
− z)

(4.7)
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To determine M, P and Q, set the coefficients of wy, y and z of equation (4.7) equal to zero. Thus
we obtain,

M(1− ν)βIeSe = 0

−PσLe = 0

−QνIe = 0

let M=1, solving for P and Q, we have;

P =
(1− ν)βIeSe

σLe
, Q =

(1− ν)βSe

ν

Substituting for M, P and Q in equation (4.7), we obtain

f(w, x, y, z) =

(
1− 1

w

)
(1− ν)βIeSe −

(
1− 1

w

)
(1− ν)wyβIeSe

+ (1− ν)βIeSe(1 + wy − wy

x
− x)

+ (1− ν)βIeSe(1 + x− x

y
− y) + (1− ν)βIeSe(1 + y − y

z
− z)

Which upon simplification gives

f(w, x, y, z) = (1− ν)βIeSe(4 + y − y
z
− z − x

y
− 1

w
− wy

x
)

Using geometric mean inequality , we obtain

y
z
+ z + x

y
+ 1

w
+ wy

x
− y > 4

Thus f(w, x, y, z) ≤ 0. Hence dG
dt

≤ 0 in Ω The equality dG
dt

= 0 iff w=x=y=z=1 and S = Se,
L = Le,I = Ie ,C = Ce. Therefore, using LaSalle’s invariance principle,the endemic equilibrium
point of the system (3.1) is globally asymptotically stable.

5 Numerical Simulation

We carry out numerical simulations of the model (3.1), using MATLAB ode45 solver. The
parameter values used are presented in Table 1. Simulation results are presented in Figures (a)
to (d).

Table 1. Parameter values of the model

Parameter symbol Value Source

Λ 8.7× 10−3/day CIA (2014)

µ 7.0× 10−3/day CIA (2014)

β 0.0011/day Estimate

π 106 8.0× 10−1/day Bhunu and Garira (2009)

δ 3.95× 10−1/day Roeger et al. (2009)

ω 8.7× 10−1/day Estimate

σ 5.0× 10−1/day KAIS (2012)

ν 0 < ν < 1 Assumed

Fig. 2(a) is graphical representation indicating the trends of population classes in the absence
of hygiene consciousness. It can be seen that susceptibles fall to zero because they are infected
by Infectious individuals whereas latently Infected and Infectious individuals increase rapidly to
approximately 9900 and 3400 respectively then start declining and eventually converge to zero. Fig.
2(b) to 2(d) demonstrate the trends of population classes in the presence hygiene consciousness. In
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(a) (b)

(c) (d)

Fig. 2. Simulation results demonstrating the trends of (a) S(t), L(t) and I(t) when
there is no hygiene consciousness , (b) all population classes when ν = 0.3, (c) all

population classes when ν = 0.6 and (d) all population classes when ν = 0.9

Fig. 2(b) it is observed that for ν = 0.3 the number of latently Infected and Infectious individuals
increases to a certain point and then start declining, implying that ν = 0.3 is not effective in
controlling tuberculosis. From Fig. 2(c) it can be observed that ν = 0.6, number of latently
Infected and Infectious individuals increases to a certain point and then start declining but the
peaks of the two graphs in Fig. 2(c) are a bit lower as compared to those in Fig. 2(b). Fig. 2(d)
shows that for ν = 0.9, the numbers of all population classes fall off and eventually converge to
zero. This suggest that effective hygiene consciousness is sufficient in controlling TB epidemic. The
infectious individuals can observe hygiene through cough etiquette, ensuring that windows are open
while in congested area and not spitting everywhere. Also, hygiene can be observed through proper
cleaning and sterilization of hospital equipments.

6 Conclusion

A mathematical model of TB which captures the effects of hygiene consciousness is formulated.
We proved the positivity of the solutions and determined the equilibrium points. We carried out
stability analysis of the model and it showed that the disease-free equilibrium point is both locally
and globally asymptotically stable given that R0 < 1, implying that TB can be eliminated from
the population. Whereas the endemic equilibrium point is both locally and globally asymptotically
stable given that R0 > 1, implying that TB will eventually be able to invade the population but
its transmission levels can be kept at manageable levels in the presence of hygiene consciousness.
The obtained numerical simulations results suggest that in the absence of hygiene consciousness
TB disease could invade the population while in the presence of effective hygiene consciousness,
the development of TB disease is slowed down. Hence this implies that there is a need to embrace
hygiene consciousness as a control measure of TB.
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