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Abstract
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1 Introduction

The Adomian Decomposition Method (ADM) is used to find solutions to a wide range of equations.
Among the equations where ADM is employed include differential equations [1], [2], [3], [4], integral
equations [5], algebraic equations [6], [7] , [8], [9] and integral-differential equations or systems of
equations. [10], [11]. The ADM is a decomposition method which requires the splitting of the
unknown function u(x) into components which are infinite and are expressed as u0, u1, u2, · · · .
For nonlinear terms Adomian polynomials denoted by An are calculated and they depend on the
nonlinearity. The solution of a given problem is then expressed in the form of the equation [12],

u(x) =

∞∑
n=0

un(x). (1.1)

The convergence of the solution series (1.1) has been proved by some authors [13], [14]. For example,
[13] discussed the convergence of the Adomian method by using the Cauchy Kowalevskaya theorem.

It is started in section 2 of this paper that the ADM has been modified since its introduction. In
this paper, we present a modification of the ADM called the New Modified Adomian Decomposition
Method (NMADM) which is applied to solve boundary value problems with Neumann conditions.
The modification is basically the use of inverse linear operator theorem in combination with the
modified Adomian decomposition method. The mathematical analysis of the new method is
presented in section 3 of this paper.

2 The Mathematical Analysis of the Adomian Decompo-
sition Method

Let us consider an Initial Value Problem (IVP) of the form,

Lu+Ru+Nu = g. (2.1)

Here L is the linear operator to be inverted, N represents the nonlinear term, R is the remaining
linear operator and g is the source term. We choose L = d

dx
and assume that its inverse L−1 =∫ x

0
(.)dx exists. Solving for u by applying L−1 on both sides of equation (2.1) and considering the

initial value we get the following equation,

u = φ(x) + L−1g − L−1[Ru+Nu]. (2.2)

The ADM decomposes the solution in the form of equation (1.1), and the nonlinear term Nu is
decomposed into a series

Nu =

∞∑
n=0

An. (2.3)

Upon substituting (1.1) and (2.3) in (2.2) it gives the following,

∞∑
n=0

un(x) = φ(x) + L−1g − L−1

[
R

∞∑
n=0

un +

∞∑
n=0

An

]
. (2.4)

The solution components un(x) can be determined by the recursive scheme

u0(x) = φ(x) + L−1g,

un+1 = −L−1 [Run +An] , n ≥ 0.
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Thus the n− term approximation of the solution is given by

ϕn(x) =

n−1∑
k=0

uk(x). (2.5)

Since its introduction there have been several modifications of the method [15], [16], [17]. Here,
we describe one of the modifications to the ADM termed as the Modified Adomian Decomposition
Method (MADM) [18], [19], [5], [20]. MADM requires that we put the expression L−1

[∑∞
n=0 anx

n
]
−

pL−1
[∑∞

n=0 anx
n
]
into equation (2.4), where p is an artificial parameter and for all i ∈ N ∪ {0},

ai are unknown coefficients [21], [22], [23], [24]. We thus obtain the following

∞∑
n=0

un(x) = φ(x) + L−1

[
∞∑

n=0

anx
n

]
− pL−1

[
∞∑

n=0

anx
n

]

+ L−1g − L−1

[
R

(
∞∑

n=0

un

)
+

∞∑
n=0

An

]
.

(2.6)

From equation (2.6), we can define the following recursive scheme

u0 = φ(x) + L−1
[∑∞

n=0 anx
n
]
,

u1 = L−1g − pL−1
[∑∞

n=0 anx
n
]
− L−1 [R(u0) +A0] ,

un+1 = −L−1 [R(un) +An] .

To avoid calculation of An, n = 0, 1, 2, · · · , we calculate the values of the coefficients an, for
n = 0, 1, 2, · · · , by setting u1 = 0. Immediately we verify that un = 0 for all n ≥ 1. Setting p = 1
we find the solution of equation (2.1) in the form of:

u(x) = φ(x) + L−1

[
∞∑

n=0

anx
n

]
. (2.7)

Unlike the ADM, MADM requires the calculation of u0 and u1 only hence reducing the number of
iterations, [23], [24], [17].

Let us consider the two-point nonlinear equation of the form.

u′′(x) +m(x)u′(x) + n(x)h(u(x)) = g(x), for x ∈ [a, b] (2.8)

with Nuemann boundary conditions u′(a) = β1, u′(b) = β2.

We rewrite equation (2.8) as

u′′(x) = g(x)−m(x)u′(x)− n(x)h(u(x)). (2.9)

Integrating the left hand side of equation (2.9) first from x to b and then integrating the resulting
expression from a to x and solve for u(x) we obtain the following

u(x) = u′(b)x− u′(b)a+ u(a)− L−1
xx [g(x)−m(x)u′(x)− n(x)h(u(x))]. (2.10)

Using MADM we rewrite equation (2.10) as follows

∞∑
n=0

un(x) = u′(b)x− u′(b)a+ u(a) + L−1

[
∞∑

n=0

anx
n

]
− pL−1

[
∞∑

n=0

anx
n

]

− L−1 [g(x)] + L−1

[
∞∑

n=0

un +

∞∑
n=0

An

]
.

(2.11)
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From equation (2.11) we can define the following recursive scheme

u0 = u′(b)x− u′(b)a+ u(a) + L−1
xx

[∑∞
n=0 anx

n
]
,

u1 = L−1
xx [g(x)]− pL−1

xx

[∑∞
n=0 anx

n
]
− L−1

xx [(u0) +A0] ,

un+1 = −L−1
xx [(un) +An] .

Now in u0, the method allows us only to use one boundary condition u′(b) and not u′(a). Hence
we can not proceed with MADM. We therefore, propose an alternative procedure to solve equation
(2.8). The proposed procedure incorporates the inverse linear operator theorem [25], in calculating
u0.

This arrangement of this paper is as follows. In section 3, we present the New Modified Adomian
Decomposition Method. Section 4 has examples to show the applicability of the new method and
the conclusion is presented in section 5.

3 The New Modified Adomian Decomposition Method

In this section we give the analysis of the New Modified Adomian Decomposition Method. It is a
modification of ADM as we have incorporated the inverse linear operator theorem in MADM. It
solves linear and nonlinear boundary value problems with Neumann conditions with less complications.
This is so because the modified scheme avoids the unnecessary computations especially in the
calculation of the Adomian polynomials by involving A0 only in nonlinear cases.

3.1 The Inverse Linear Operator Theorem [25].

This method is based on the MADM and the inverse linear operator theorem [25] which is presented
without prove. The proof is in [25].

Theorem If u′(a) = α and u′(b) = β are Neumann boundary conditions of a second-order ordinary
differential equation then,

L−1
xxu

′′(x) = u(x)− (x− Ω)u′(a)− Ω
2
u′(b)− 1

Ω

∫ Ω

0
u(x)dx a ≤ x ≤ b

where,

L−1
xx [

.] =
∫ x

Ω
dx′ ∫ x′

a
[.]dx′′ + 1

Ω

∫ Ω

0
dx′(x′ ∫ x′

b
[.]dx′′)

where Ω is an arbitrary finite constant.

3.2 Theoretical Presentation of the NewModified Adomian Decompo-
sition Method

Let us consider equation (2.8). By evaluating the left hand side of equation (2.8) using the inverse
linear operator theorem and solving for u(x) we get the following equation,

u(x) = (x− Ω)u′(a) +
Ω

2
u′(b) +

1

Ω

∫ Ω

0

u(x)dx+ L−1
xx g(x)

− L−1
xx

[
m(x)u′(x) + n(x)h(u(x))

]
.

(3.1)
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Using MADM, we rewrite equation (3.1) as follows

u(x) = (x− Ω)u′(a) +
Ω

2
u′(b) +

1

Ω

∫ Ω

0

u(x)dx+ L−1
xx

[
∞∑

n=0

anx
n

]

− pL−1
xx

[
∞∑

n=0

anx
n

]
+ L−1

xx g(x)− L−1
xx

[
m(x)u′(x) + n(x)h(u(x))

]
.

(3.2)

Substituting equations (1.1) and (2.3) into equation (3.2) gives the following

∞∑
n=0

un(x) = (x− Ω)u′(a) +
Ω

2
u′(b) +

1

Ω

∫ Ω

0

u(x)dx+ L−1
xx

[
∞∑

n=0

anx
n

]

− pL−1
xx

[
∞∑

n=0

anx
n

]
+ L−1

xx g(x)− L−1
xx

[
∞∑

n=0

(m(x)u′
n(x)) +

∞∑
n=0

An

]
.

(3.3)

From equation (3.3) we deduce the following recursive scheme

u0 = (x− Ω)u′(a) + Ω
2
u′(b) + 1

Ω

∫ Ω

0
u(x)dx+ L−1

xx

[∑∞
n=0 anx

n
]
,

u1 = −pL−1
xx

[∑∞
n=0 anx

n
]
+ L−1

xx g(x)− L−1
xx [m(x)u′

0(x) +A0] ,

...

un+1 = −L−1
xx [m(x)u′

n(x) +An] n ≥ 1.

It should be noted that in the evaluation of u0, Ω → 0. We compute the coefficients an, n ≥ 0,
by putting u1 = 0 and setting p = 1. This yields the solution of equation (2.8) in the form

u(x) = xβ1 + L−1
xx

[
∞∑

n=0

anx
n

]
. (3.4)

4 Illustrations

In this section, seven examples are solved to illustrate the use of NMADM. All the examples
are taken from [25], where they are solved using the Advanced Adomian Decomposition Method
(AADM). The results confirm the validity of the NMADM.

Example 1

Consider the following linear ordinary boundary problem [25],

u′′(x) + u(x) + x = 0, 0 ≤ x ≤ 1 (4.1)

with boundary conditions

u′(0) = −1 + csc(1), u′(1) = −1 + cot(1).
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Solution

Let

∞∑
n=0

un(x) = (x− Ω)u′(a) +
Ω

2
u′(b) +

1

Ω

∫ Ω

0

u(x)dx+ L−1

[
∞∑

n=0

anx
n

]

− pL−1

[
∞∑

n=0

anx
n

]
− L−1

xx (u(x))− L−1
xx (x).

(4.2)

Then

u0 = (x− Ω)u′(a) +
Ω

2
u′(b) +

1

Ω

∫ Ω

0

u(x)dx+ L−1

[
∞∑

n=0

anx
n

]
. (4.3)

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = −x+ x csc(1) + a0x
2

2
+ a1x

3

6
+ a2x

4

12
+ a3x

5

20
+ a4x

6

30
+ a5x

7

42
+ · · · .

And using equation (4.2), we write u1 as follows:

u1 = −pL−1
[∑∞

n=0 anx
n
]
− L−1

xx (u(x))− L−1
xx (x)

= −
∫ x

0

∫ x

0
(x)dxdx− p

∫ x

0

∫ x

0

[∑∞
n=0 anx

n
]
dxdx−

∫ x

0

∫ x

0
(u0)dxdx.

= − 1
6
x3 − 1

2
a0px

2 − 1
6
a1px

3 − 1
12
a2px

4 − · · ·+ 1
6
x3 − 1

6
x3 csc(1)− 1

24
a0x

4 + · · · .

Putting u1 = 0 and p = 1, we calculate the values of un, for n = 0, 1, 2, 3, 4, 5, · · · and we obtain
the following,

a0 = 0, a1 = − csc(1), a2 = 0, a3 = 1
6
csc(1), a4 = 0, a5 = − 1

120
csc(1), · · · .

The solution to equation (4.1) using equation (3.4) is therefore given by,

u(x) = −x+ csc(1)
(
x− 1

6
x3 + 1

120
x5 − 1

5040
x7 + . . .

)
= −x+ csc(1) sin(x)

as obtained in [25].

Example 2

Consider the following nonlinear BVP, [25].

u′′ − (u′)2 = 0, 0 ≤ x ≤ 1 (4.4)

u′(0) = −1, u′(1) = −1

2
.

Solution

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = −x+ a0x
2

2
+ a1x

3

6
+ a2x

4

12
+ a3x

5

20
+ a4x

6

30
+ a5x

7

42
+ · · · .

Then,

u1 = L−1
[∑∞

n=0 anx
n
]
− pL−1

[∑∞
n=0 An(u

′)2
]
.

= −p
∫ x

0

∫ x

0

[∑∞
n=0 anx

n
]
−
∫ x

0

∫ x

0
(A0(u

′)2)
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= − 1
2
a0px

2 − 1
6
a1px

3 − 1
12
a2px

4 − · · ·+ 1
2
x2 − 1

3
a0x

3 − 1
12
a1x

4 + · · · .

Putting u1 = 0 and p = 1, we calculate the values of un, for n = 0, 1, 2, 3, 4, 5, · · · and we obtain
the following,

a0 = 1, a1 = −2, a2 = 3, a3 = −4, · · · .

The solution to equation (4.4) using equation (3.4) is found as

u(x) = −x+ 1
2
x2 − 1

3
x3 + 1

4
x4 − 1

5
x5 · · ·

= − log(x+ 1)

as obtained in [25].

Example 3

Consider the following nonlinear Burger equation, [25].

u′′ + uu′ + u =
1

2
sin(2x), 0 ≤ x ≤ π

2
(4.5)

u′(0) = 1, u′
(π
2

)
= 0.

Solution

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = x+ 1
2
a0x

2 + 1
6
a1x

3 + 1
12
a2x

4 + 1
20
a3x

5 + 1
30
a4x

6 + 1
42
a5x

7 + · · · .

Then

u1 = −p
[∑∞

n=0 anx
n
]
+ L−1

xx

(
sin(2x)

2

)
− L−1

xx (An(uu
′))− L−1

xx (un).

= −p
∫ x

0

∫ x

0

[∑∞
n=0 anx

n
]
+
∫ x

0

∫ x

0

(
sin(2x)

2

)
−
∫ x

0

∫ x

0
(A0(uu

′))−
∫ x

0

∫ x

0
(u0),

= − 1
2
a0px

2 − 1
6
a1px

3 − 1
12
a2px

4 − · · · − 1
4
x+ 1

6
x3 − 1

30
x5 + · · · .

Putting u1 = 0 and p = 1, we calculate the values of un for n = 0, 1, 2, 3, 4, 5, · · · and we obtain the
following

a0 = 0, a1 = −1, a2 = 0, a3 = 1
6
, a4 = 0, a5 = − 1

120
, a6 = 0, a7 = 1

5040
, · · · .

Therefore, the solution to equation (4.5) by using equation (3.4) is given by

u(x) = x− x3

3!
+ x5

5!
− x7

5!
+ x9

9!
· · · ,

= sin(x),

as obtained in [25].

Example 4

Consider the following linear partial boundary value problems for the heat equation, [25].

∂u

∂t
=

∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0 (4.6)

ux(0, t) = et, ux(1, t) = et cosh(1).
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Solution

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = xet + a0x
2

2
+ a1x

3

6
+ a2x

4

12
+ a3x

5

20
+ a4x

6

30
+ a5x

7

42
+ a6x

8

56
+ a7x

9

72
+ · · · .

And

u1 = −pL−1
xx

[∑∞
n=0 anx

n
]
+ L−1

xx (un).

= −p
∫ x

0

∫ x

0

(
a0 + a1x+ a2x

2 + · · ·
)
dxdx+

∫ x

0

∫ x

0

(
xet + a0x

2

2
+ a1x

3

6
+ · · ·

)
dxdx,

= −pa0x
2

2
− pa1x

3

6
− pa2x

4

12
− · · ·+ x3

6
et + a0x

4

24
+ a1x

5

120
+ · · · .

Putting u1 = 0 and p = 1, we calculate the values of un for n = 0, 1, 2, 3, 4, 5, · · · and we obtain the
following

a0 = 0, a1 = et, a2 = 0, a3 = et

6
, a4 = 0, a5 = et

120
, a6 = 0, a7 = et

5040
, · · · .

Therefore, the solution to equation (4.6) using equation (3.4) is given by

u(x) = et
(
x+ x3

6
+ x5

120
+ x7

5040
+ x9

362880
+ · · ·

)
,

= et
(
x+ x3

3!
+ x5

5!
+ x7

7!
+ x9

9!
+ · · ·

)
,

= et sinh(x)

as obtained in [25].

Example 5

Consider the following nonlinear Burger equation [25].

ut + uux − uxx = 0, 0 ≤ x ≤ π

2
, t ≥ 0 (4.7)

ux(0, t) =
1

t
− π2

2t2
, ux(2, t) =

1

t
− π2

2t2
sech2

(π
t

)
.

Solution

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = x
t
− xπ2

2t2
+ a0x

2

2
+ a1x

3

6
+ a2x

4

12
+ a3x

5

20
+ a4x

6

30
+ a5x

7

42
+ · · · .

Then.

u1 = −pL−1
xx

[∑∞
n=0 anx

n
]
+ L−1

xx

[
∂
∂t
(un) +An(uux)

]
= −p

∫ x

0

∫ x

0

(
a0 + a1x+ a2x

2 + · · ·
)
dxdx+

∫ x

0

∫ x

0

(
∂
∂t
u0 + u0

∂
∂x

u0

)
dxdx

= −pa0x
2

2
− pa1x

3

6
− pa2x

4

12
− · · · − x3

6t2
+ x3π2

6t3
+ x3

6 t2
+ · · ·

Putting u1 = 0 and p = 1, we calculate the values of un for n = 0, 1, 2, 3, 4, 5, · · · and we obtain the
following

a0 = 0, a1 = π4

4t4
, a2 = 0, a3 = π4

6t5
− π6

12t6
, a4 = 0, a5 = π4

20t6
− π2

20t7
+ 17π8

960t8
, · · · .

Therefore, the solution to equation (4.7) using equation (3.4) is given by

u(x) = x
t
− π

t

[(
πx
2t

)
− 1

3

(
xπ
2t

)3
+ 2

15

(
xπ
2t

)5 − 17
315

(
xπ
2t

)7
+ · · ·

]
+ ξ7,
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= x
t
− x

t
tanh

(
xπ
2t

)
+ ξ7,

where ξ7 is a constant,

as obtained in [25].

Example 6

Consider the following linear ordinary boundary value problem [25].

u′′ = ex (4.8)

u′(0) = 1 u′(1) = e.

Solution

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = x+ a0x
2

2
+ a1x

3

6
+ a2x

4

12
+ a3x

5

20
+ a4x

6

30
+ a5x

7

42
+ · · · .

Then,

u1 = −pL−1
xx

[∑∞
n=0 anx

n
]
+ L−1

xx e
x,

= −p
∫ x

0

∫ x

0
(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · )dxdx+

∫ x

0

∫ x

0
exdxdx,

= −a0px
2

2
− a1px

3

6
− a2px

4

12
− a3px

5

20
− a4px

6

30
− a5px

7

42
+ · · ·+ ex − x− 1.

In the expression for u1 we replace ex by its Taylor series to get

u1 = −a0px
2

2
− a1px

3

6
− a2px

4

12
− · · ·+

(
1 + x+ 1

2
x2 + 1

6
x3 + . . .

)
− x− 1,

= −a0px
2

2
− a1px

3

6
− a2px

4

12
+ · · ·+ 1

2
x2 + 1

6
x3 + 1

24
x4 + · · · .

Putting u1 = 0 and p = 1 we calculate the values of un for n = 0, 1, 2, 3, 4, 5, · · · and we obtain the
following

a0 = 1, a1 = 1, a2 = 1
2
, a3 = 1

6
, a4 = 1

24
, a5 = 1

120
, · · · .

Thus the solution of equation (4.8) by using equation (3.4) is

u(x) = x+ x2

2
+ x3

6
+ x4

24
+ x5

120
+ x6

720
+ x7

5040
+ · · ·

= x+ x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
+ x7

7!
+ · · ·

= ex

as obtained in [25].

Example 7

Let us consinder Bratu equation which is used in some application, [25]. For example it is used
in fuel ignition in the thermal combustion theory as well as in the Chandrasekhar model of the
expansion of the universe [25].

u′′ − 2eu = 0 0 ≤ x ≤ 1 (4.9)

u′(0) = 0 , u′(1) = 2 tan(1).

Solution

By using equation (4.3) we calculate u0 and we obtain the following,

u0 = a0x
2

2
+ a1x

3

6
+ a2x

4

12
+ a3x

5

20
+ a4x

6

30
+ a5x

7

42
+ · · · .
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Then

u1 = −pL−1
xx

[∑∞
n=0 anx

n
]
+ L−1

xx e
u0

= −p
∫ x

0

∫ x

0
(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · )dxdx+

∫ x

0

∫ x

0
eu0dxdx

We replace eu0 by its Taylor series and evaluate to get

u1 = −a0px
2

2
− a1px

3

6
− a2px

4

12
− · · ·+ x2 + 1

12
a0x

4 + 1
360

(3a2
0 + 2a2)x

6 + · · · .

Putting u1 = 0 and p = 1 we calculate the values of un for n = 0, 1, 2, 3, 4, 5, · · · and we obtain the
following

a0 = 2, a1 = 0, a2 = 2, a3 = 0, a4 = 4
3
, a5 = 0, . . . .

Thus the solution of equation (4.9) by using equation (3.4) is

u(x) = x2 + x4

6
+ 2x6

45
+ · · ·

as obtained in [25].

5 Conclusions

We introduced the New Modified Adomian Decomposition Method (NMADM) which is used for
solving two-point Boundary Value Problems (BVPs) with Neumann boundary conditions. NMADM
is founded on the inverse linear operator theorem and MADM to calculate u0 and MADM only to
find u1. To illustrate the applicability and efficiency of the new method, SageMath software for
computational work has been used to obtain solutions to several homogeneous and nonhomogeneous
differential equations. Noise terms phenomena is applicable to nonhomogeneous differential equations.
From the results of the examples illustrated, one can infer that NMADM is an efficient and reliable
method for solving BVPs with Neumann boundary conditions.
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