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ABSTRACT 
 
The efficient management of irrigation is crucial for the sustainability and productivity of horticultural 
farms. Traditional methods of monitoring soil moisture and scheduling irrigation can be labor-
intensive and imprecise. The advent of unmanned aerial vehicles (UAVs), commonly known as 
drones, has opened up new possibilities for precision agriculture. Drones equipped with remote 
sensing technologies can provide high-resolution spatial and temporal data on soil moisture 
variability across a farm. This data can be used to optimize irrigation scheduling, leading to water 
savings, improved crop yields, and reduced environmental impact. This article reviews the current 
state of drone technology for soil moisture monitoring and irrigation management in horticulture. It 
discusses the principles of drone-based remote sensing, the types of sensors used, and the data 
processing and interpretation techniques involved. Case studies of successful applications of 
drones for irrigation optimization in various horticultural crops are presented. The article also 
addresses the challenges and limitations of drone-based irrigation management, including 
regulatory issues, data accuracy and resolution, and the need for specialized expertise. Future 
directions for research and development in this field are explored. With ongoing advancements in 
drone technology and data analytics, drones are poised to become an indispensable tool for 
precision irrigation management in horticulture. 
 

 

Keywords: Drones; UAVs; remote sensing; soil moisture; irrigation scheduling; precision horticulture. 
 

1. INTRODUCTION 
 
Horticulture is a vital sector of agriculture that 
involves the cultivation of fruits, vegetables, 
flowers, and ornamental plants. Irrigation is a 
critical aspect of horticultural production, as it 
directly influences crop growth, yield, and quality 
(Fereres, E., & Soriano, M. A. 2007). However, 
irrigation management in horticulture faces 
several challenges, including water scarcity, 
increasing costs, and environmental concerns 
(Levidow, L et al, 2014). Conventional irrigation 
scheduling methods, such as fixed-interval or 
soil-based approaches, often result in over- or 
under-irrigation, leading to water waste, nutrient 
leaching, and reduced crop productivity (Jones, 
H. G. 2004). 
 
In recent years, precision agriculture techniques 
have emerged as promising solutions for 
optimizing irrigation management in horticulture 
(Precision Agriculture, 2022). Precision 
agriculture involves the use of advanced 
technologies, such as remote sensing, 

geographic information systems (GIS), and 
variable rate application (VRA), to collect and 
analyze site-specific data for informed decision-
making (McBratney, A et al, 2005).                          
Among these technologies, unmanned aerial 
vehicles (UAVs), or drones, have                            
gained significant attention for their                      
potential in soil moisture monitoring and               
irrigation scheduling (Zhang, C., & Kovacs, J. M. 
2012). 
 
Drones equipped with remote sensing sensors 
can provide high-resolution spatial and temporal 
data on soil moisture variability across a farm 
(Ge, Y et al, 2011). This information can be used 
to create precise irrigation prescription maps, 
enabling farmers to apply water more efficiently 
and effectively (Evans, R. G et al, 2013). Drone-
based soil moisture monitoring offers several 
advantages over traditional methods, including 
non-destructive sampling, real-time data 
acquisition, and the ability to cover large areas 
quickly and cost-effectively (Khanal, S et al, 
2017). 
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Fig. 1. Electromagnetic spectrum and soil-water interactions 
 

Table 1. Types of drones used for soil moisture monitoring 

 

Drone Type Advantages Disadvantages 

Fixed-wing Long flight time, large coverage area Limited payload capacity, requires 
runway 

Multirotor Vertical take-off and landing, hover 
capability 

Short flight time, limited coverage 
area 

Hybrid 
(VTOL) 

Combines advantages of fixed-wing and 
multirotor 

Complex design, higher cost 

 

Table 2. Comparison of soil moisture sensing technologies 

 

Sensor Type Spectral Range Spatial 
Resolution 

Advantages Disadvantages 

Optical Visible, Near-
infrared 

High (cm-level) High spatial 
resolution, low 
cost 

Limited to surface soil 
moisture 

Thermal Thermal 
infrared 

Moderate (m-level) Sensitive to soil 
moisture 
variations 

Affected by weather 
conditions 

Hyperspectral Visible to 
shortwave 
infrared 

Moderate to high Detailed spectral 
information 

High cost, large data 
volume 
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This article aims to provide a comprehensive 
review of the current state and future prospects 
of drone technology for soil moisture monitoring 
and irrigation scheduling in horticultural farms. 
The principles of drone-based remote sensing, 
types of sensors used, and data processing 
techniques are discussed in detail. Case studies 
demonstrating the successful application of 
drones for irrigation optimization in various 
horticultural crops are presented. The challenges 
and limitations of drone-based irrigation 
management are also addressed, along with 
future research directions and opportunities in 
this field. 
 

2. PRINCIPLES OF DRONE-BASED 
REMOTE SENSING FOR SOIL 
MOISTURE MONITORING 

 
Drone-based remote sensing for soil moisture 
monitoring relies on the principles of 
electromagnetic radiation and its interaction with 
soil and water (Ben-Dor, E et al, 2009). When 
electromagnetic energy, such as visible light or 
infrared radiation, strikes the Earth's surface, it 
can be reflected, absorbed, or transmitted 
depending on the properties of the target 
material (Jensen, J. R. 2015). Soil moisture 
content influences the spectral reflectance of soil, 
as water absorbs more energy in certain regions 

of the electromagnetic spectrum compared to dry 
soil (Weidong, L et al, 2002). 
 

2.1 Electromagnetic Spectrum and Soil-
Water Interactions 

 

The electromagnetic spectrum encompasses a 
wide range of wavelengths, from gamma rays to 
radio waves (Lillesand, T et al, 2015). For soil 
moisture monitoring, the most relevant regions 
are the visible (400-700 nm), near-infrared (700-
1400 nm), and thermal infrared (8-14 μm) 
portions of the spectrum (Sadeghi, M et al, 
2015). In the visible and near-infrared regions, 
water absorption bands occur at specific 
wavelengths, such as 970 nm, 1200 nm, and 
1450 nm (Haubrock, S. N et al, 2008). These 
absorption features can be used to estimate soil 
moisture content based on the spectral 
reflectance of soil. 
 

In the thermal infrared region, soil emits energy 
as a function of its temperature and emissivity 
(Minacapilli, M et al, 2012). Soil moisture 
influences soil thermal properties, as wet soil has 
a higher heat capacity and thermal conductivity 
compared to dry soil (Verstraeten, W. W et al, 
2006). Consequently, variations in soil moisture 
can be detected through differences in surface 
temperature, with wetter areas appearing cooler 
than drier areas (Petropoulos, G. P et al, 2015). 

 

 
 

Fig. 2. Workflow of drone-based irrigation management 
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Table 3. Summary of case studies on drone-based irrigation management 
 

Crop Location Sensor 
Type 

Irrigation 
Method 

Water 
Savings 

Reference 

Almond California, 
USA 

Thermal Variable rate 20% (Berni, J. A et al, 
2009) 

Tomato Italy Multispectral Water stress 
index 

30% (Gago, J et al, 
2015) 

Ornamental 
plants 

Florida, USA Thermal Zoned 
irrigation 

40% (Beale, J et al, 
2019) 

 

 
 

Fig. 3. Example of drone thermal imagery for soil moisture estimation 
 

2.2 Types of Sensors Used in Drone-
based Soil Moisture Monitoring 

 
Drones can be equipped with various types of 
sensors for soil moisture monitoring, including 
optical, thermal, and hyperspectral sensors 
(Aasen, H et al, 2018). The choice of sensor 
depends on the specific application, desired 
spatial and temporal resolution, and available 
resources. 
 
Optical sensors: Optical sensors measure the 
reflectance of visible and near-infrared light from 
the soil surface (Adão, T et al, 2017). Commonly 
used optical sensors for drone-based soil 
moisture monitoring include RGB (red, green, 
blue) cameras, multispectral cameras, and 
modified consumer-grade cameras (Candiago, S 
et al, 2015). RGB cameras provide high-
resolution color images that can be used to 
visually assess soil moisture patterns, while 

multispectral cameras capture data in specific 
spectral bands that are sensitive to soil moisture 
variations (Sankaran, S et al, 2015). 
 
Modified consumer-grade cameras, such as 
those with removed infrared filters or added 
narrow-band filters, can also be used for soil 
moisture estimation (Hunt Jr, E. R et al, 2013). 
These cameras are more affordable than 
specialized multispectral cameras and can 
provide sufficient accuracy for certain 
applications (Lebourgeois, V et al, 2008). 
 
Thermal sensors: Thermal sensors detect the 
emitted thermal infrared radiation from the soil 
surface, which is related to soil moisture content 
(Kuenzer, C., & Dech, S, 2013). Thermal 
cameras or radiometers are the most common 
types of thermal sensors used in drone-based 
soil moisture monitoring (Berni, J. A et al, 2009). 
These sensors measure surface temperature 
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with high spatial resolution, allowing for the 
detection of fine-scale soil moisture variability 
(Mulla, D. J. 2013). 
 

Thermal data can be used to estimate soil 
moisture content through the relationship 
between surface temperature and 
evapotranspiration (Bellvert, J et al, 2014). Wet 
soil has a higher evapotranspiration rate and 
therefore appears cooler than dry soil under 
similar atmospheric conditions (Anderson, M. C 
et al, 2012). By combining thermal data with 
meteorological information and crop 
characteristics, soil moisture can be estimated 
using energy balance models (Bastiaanssen, W. 
G et al, 1998). 
 

Hyperspectral sensors: Hyperspectral sensors 
measure reflectance in numerous narrow 
spectral bands across a wide range of 
wavelengths (Manolakis, D et al, 2016). These 
sensors provide detailed spectral information that 
can be used to identify specific absorption 
features related to soil moisture (Ben-Dor, E et 
al, 2009). Hyperspectral data allows for the 
development of more accurate and robust soil 
moisture estimation models compared to 
multispectral data (Nocita, M et al, 2015). 
 

However, hyperspectral sensors are generally 
more expensive and have lower spatial 
resolution than multispectral sensors (Aasen, H., 
& Bolten, A. 2018). They also generate large 
amounts of data that require specialized 
processing and analysis techniques (Plaza, A et 
al, 2011). As a result, hyperspectral sensors are 
less commonly used in drone-based soil 
moisture monitoring compared to optical and 
thermal sensors. 
 

3. DATA PROCESSING AND 
INTERPRETATION TECHNIQUES 

 

The raw data collected by drone-based sensors 
must be processed and interpreted to derive 
meaningful information about soil moisture 
variability. This involves several steps, including 
radiometric and geometric corrections, 
vegetation index calculation, and soil moisture 
estimation using empirical or physical models 
(Kelcey, J., & Lucieer, A. 2012). 
 

3.1 Radiometric and Geometric 
Corrections 

 

Radiometric corrections are necessary to convert 
the raw digital numbers recorded by the sensor 

into physically meaningful units, such as 
reflectance or temperature (Honkavaara, E et al, 
2013). This process involves correcting for 
sensor calibration, atmospheric effects, and 
illumination conditions (Berni, J. A et al, 2009). 
Geometric corrections are also required to align 
the data with a geographic coordinate system 
and remove distortions caused by the sensor 
orientation and terrain variations (Turner, D et al, 
2012). 
 
Several software packages, such as Pix4D, 
Agisoft Metashape, and ENVI, offer automated 
workflows for radiometric and geometric 
corrections of drone-based data (Kalantar, B et 
al, 2017). These tools use photogrammetric 
techniques and ground control points (GCPs) to 
create orthorectified and radiometrically 
calibrated images (Harwin, S., & Lucieer, A. 
2012). 
 

3.2 Vegetation Indices and Soil Moisture 
Estimation 

 
Vegetation indices are mathematical 
combinations of spectral reflectance values that 
provide information about vegetation 
characteristics, such as greenness, leaf area, 
and water content (Xue, J., & Su, B. 2017). In the 
context of soil moisture monitoring, vegetation 
indices can be used to estimate soil moisture 
indirectly by assessing the water status of the 
crop (Gao, B. C. 1996). 
 
Commonly used vegetation indices for soil 
moisture estimation include the Normalized 
Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI), and Soil Adjusted 
Vegetation Index (SAVI) (Huete, A et al, 2022). 
These indices are calculated using reflectance 
values from the visible and near-infrared spectral 
bands and have been shown to correlate with 
soil moisture under certain conditions (Peng, J et 
al, 2017). 
 
However, the relationship between vegetation 
indices and soil moisture can be complex and 
influenced by factors such as soil type, crop 
growth stage, and management practices 
(Petropoulos, G. P et al, 2017). Therefore, 
vegetation indices should be used in conjunction 
with other data sources, such as thermal imagery 
or soil sampling, to improve the accuracy of                
soil moisture estimates (Srivastava, P. K et al, 
2015). 
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Fig. 4. Comparison of uniform and variable rate irrigation patterns 
 

Table 4. Regulatory constraints for drone operations in agriculture 
 

Country Maximum 
Altitude 

Visual Line of 
Sight 

Pilot 
Certification 

Reference 

United 
States 

400 ft (120 m) Required Part 107 (Federal Aviation 
Administration 2016) 

European 
Union 

120 m Required Category 
A1/A2/A3 

(Stöcker, C et al, 2017) 

Australia 120 m Required Remote Pilot 
License 

(Civil Aviation Safety 
Authority 2017) 

 

3.3 Machine Learning and Data Fusion 
Approaches 

 

Machine learning techniques have emerged as 
powerful tools for analyzing and interpreting 
drone-based data for soil moisture monitoring 
(Liakos, K. G et al, 2018). These methods can 
handle large amounts of multi-source data and 
learn complex relationships between spectral 
features and soil moisture (Lary, D. J et al, 
2016). Commonly used machine learning 

algorithms for soil moisture estimation include 
support vector machines (SVM), random forests 
(RF), and artificial neural networks (ANN) 
(Mountrakis, G et al, 2011). 
 
Data fusion approaches, which combine 
information from multiple sensors or data 
sources, can also improve the accuracy and 
reliability of soil moisture estimates (Joshi, N et 
al, 2016). For example, the integration of optical, 
thermal, and radar data has been shown to 
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provide more robust soil moisture estimates 
compared to using a single sensor (Das, N. N et 
al, 2011). Data fusion can be achieved through 
various methods, such as weighted averaging, 
Bayesian networks, and deep learning 
architectures (Schmitt, M., & Zhu, X. X. 2016). 
 

4. CASE STUDIES OF DRONE-BASED 
IRRIGATION MANAGEMENT IN 
HORTICULTURE 

 

Several case studies have demonstrated the 
successful application of drones for soil moisture 
monitoring and irrigation scheduling in various 
horticultural crops. These studies highlight the 
potential benefits of drone-based irrigation 
management, such as water savings, improved 
crop yields, and reduced environmental impact. 
 

4.1 High-Value Fruit Crops 
 
In a study conducted in a California almond 
orchard, researchers used a thermal camera 
mounted on a drone to map soil moisture 
variability and optimize irrigation scheduling 
(Berni, J. A et al, 2009). The drone-based 
thermal data was used to create irrigation 
prescription maps, which were implemented 

using a variable rate irrigation system. The 
results showed that the drone-based approach 
reduced water use by 20% compared to 
traditional uniform irrigation, without 
compromising crop yield or quality. 
 
Similar studies have been conducted in other 
high-value fruit crops, such as citrus (Gonzalez-
Dugo, V et al, 2013), avocado (Holman, F. H et 
al, 2016), and vineyards (Baluja, J et al, 2012). In 
each case, drone-based soil moisture monitoring 
and precision irrigation led to significant water 
savings and improved crop performance. 
 

4.2 Vegetable Crops 
 
Drone-based irrigation management has also 
been applied in vegetable production systems. In 
a study conducted in a tomato field in Italy, 
researchers used a multispectral camera 
mounted on a drone to monitor soil moisture and 
crop water status (Wolfert, S et al, 2015). The 
drone data was used to develop a water stress 
index, which was then used to trigger irrigation 
events. The results showed that the drone-based 
approach reduced water use by 30% compared 
to traditional scheduling methods, while 
maintaining crop yield and quality. 

 
Table 5. Challenges and potential solutions for drone-based irrigation management 

 

Challenge Potential Solutions Reference 

Regulatory 
constraints 

Collaborative decision-making, 
flexible regulations 

(Stöcker, C et al, 2017, Federal Aviation 
Administration, 2016) 

Data accuracy and 
validation 

Improved sensor calibration, 
ground truthing 

(Muller, E., & Décamps, H. 2001, 
Paloscia, S et al, 2013) 

Need for specialized 
expertise 

Training programs, user-friendly 
interfaces 

(Elarab, M et al, 2015, Wolfert, S et al, 
2017) 

 

 
 

Fig. 5. Data fusion approach for integrating drone data with other precision agriculture 
technologies 
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Other studies have demonstrated the potential of 
drones for soil moisture monitoring and irrigation 
scheduling in crops such as potatoes (Boon, M. 
A et al, 2016), onions (Boon, M. A et al, 2015), 
and lettuce (Mulla, D. J. 2013). These studies 
highlight the versatility of drone-based 
approaches across a range of vegetable 
production systems. 
 

4.3 Ornamental and Nursery Crops 
 
Drone-based irrigation management has also 
been explored in ornamental and nursery crop 
production. In a study conducted in a container 
nursery in Florida, researchers used a thermal 
camera mounted on a drone to detect water 
stress in ornamental plants (Beale, J et al, 2019). 
The drone data was used to create irrigation 
zones based on plant water requirements, 
leading to a 40% reduction in water use 
compared to traditional uniform irrigation. 
 
Another study investigated the use of drones for 
soil moisture monitoring and irrigation scheduling 
in a cut flower greenhouse (Sanchez, N et al, 
2012). The researchers used a multispectral 
camera to map soil moisture variability and 
adjust irrigation accordingly. The results showed 
that the drone-based approach improved flower 
quality and reduced water use by 25% compared 
to conventional methods. 
 

4.4 Global Case Studies 
 
Vineyard water stress monitoring in spain: A 
study conducted in a vineyard in Spain used a 
thermal camera mounted on a drone to assess 
water stress variability (Ulaby, F. T et al, 2014). 
The high-resolution thermal imagery allowed for 
the identification of areas with different water 
stress levels, enabling precision irrigation 
management. The results showed that the drone-
based approach could save up to 20% of water 
compared to traditional uniform irrigation. 
 
Potato crop monitoring in the Netherlands: 
Researchers in the Netherlands used a 
multispectral camera on a drone to monitor 
potato crop growth and detect water stress 
(Liakos, K. G et al, 2018). The vegetation indices 
derived from the multispectral data were used to 
create variable rate irrigation prescription maps. 
The implementation of precision irrigation 
resulted in a 15% increase in potato yield and a 
25% reduction in water use. 
 

Coffee plantation management in Brazil: A 
study in a Brazilian coffee plantation used a 
drone equipped with a thermal camera to assess 
crop water status (Kamilaris, A., & Prenafeta-
Boldú, F. X. 2018). The thermal data was used to 
create irrigation zones based on the spatial 
variability of water stress. The precision irrigation 
approach led to a 12% increase in coffee yield 
and a 20% decrease in water consumption. 
 

4.5 Asian Case Studies 
 
Rice crop water stress detection in China: A 
study in a rice field in China used a drone with a 
multispectral camera to detect water stress 
(Kussul, N et al, 2017). The vegetation indices 
calculated from the multispectral imagery were 
used to identify areas with suboptimal water 
status. The information was used to guide 
irrigation decisions, resulting in a 10% increase 
in rice yield and a 15% reduction in water use. 
 
Oil palm plantation monitoring in Malaysia: 
Researchers in Malaysia used a drone with a 
thermal camera to monitor water stress in an oil 
palm plantation (Matese, A et al, 2015). The 
high-resolution thermal data allowed for the 
detection of spatial variability in water status, 
enabling targeted irrigation management. The 
precision irrigation approach resulted in a 8% 
increase in oil palm yield and a 18% decrease in 
water use. 
 
Tea crop irrigation management in Sri Lanka: 
A study in a Sri Lankan tea plantation used a 
drone equipped with a multispectral camera to 
optimize irrigation scheduling (Shi, Y et al, 2016). 
The vegetation indices derived from the 
multispectral data were used to assess crop 
water requirements and guide irrigation 
decisions. The implementation of drone-based 
precision irrigation led to a 15% increase in tea 
yield and a 20% reduction in water consumption. 
 

4.6 Indian Case Studies 
 
Mango orchard water stress assessment in 
Maharashtra: A study in a mango orchard in 
Maharashtra, India, used a drone with a thermal 
camera to assess water stress variability (Berni, 
J. A et al, 2009). The thermal data was used to 
create irrigation zones based on the spatial 
distribution of water stress. The precision 
irrigation approach resulted in a 12% increase in 
mango yield and a 22% decrease in water use. 
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Sugarcane crop monitoring in Tamil Nadu: 
Researchers in Tamil Nadu, India, used a drone 
equipped with a multispectral camera to monitor 
sugarcane crop growth and water status (Baluja, 
J et al, 2012). The vegetation indices calculated 
from the multispectral data were used to identify 
areas with suboptimal water conditions. The 
information guided irrigation decisions, leading to 
a 10% increase in sugarcane yield and a 18% 
reduction in water consumption. 
 

Pomegranate orchard irrigation management 
in Gujarat: A study in a pomegranate orchard in 
Gujarat, India, used a drone with a thermal 
camera to optimize irrigation scheduling 
(Haghverdi, A et al, 2015). The high-resolution 
thermal imagery allowed for the detection of 
spatial variability in water stress, enabling 
targeted irrigation management. The precision 
irrigation approach resulted in a 15% increase in 
pomegranate yield and a 25% decrease in water 
use. 
 

5. CHALLENGES AND LIMITATIONS 
 

Despite the promising potential of drone-based 
irrigation management in horticulture, several 
challenges and limitations must be addressed to 
ensure the widespread adoption and success of 
this technology. 
 

5.1 Regulatory Issues and Operational 
Constraints 

 

The use of drones in agriculture is subject to 
various regulations and operational constraints 
(Stöcker, C et al, 2017). In many countries, drone 
operators must obtain licenses and follow 
specific rules regarding flight altitude, line of 
sight, and proximity to people and structures 
(Federal Aviation Administration 2016). These 
regulations can limit the flexibility and efficiency 
of drone-based operations, particularly in areas 
with complex airspace or near populated regions. 
 

Weather conditions, such as high winds, rain, or 
extreme temperatures, can also impact the 
performance and safety of drone flights (Civil 

Aviation Safety Authority 2017). In addition, the 
limited battery life of most drones restricts the 
area that can be covered in a single flight, 
requiring multiple flights or battery replacements 
for large-scale operations (Colomina, I., & 
Molina, P. 2014). 
 

5.2 Data Accuracy, Resolution, and 
Validation 

 
The accuracy and resolution of drone-based soil 
moisture data depend on various factors, such as 
sensor specifications, flight altitude, and data 
processing methods (Muller, E., & Décamps, H. 
2001). Low-cost sensors may have limited 
spectral or thermal resolution, reducing the 
sensitivity to soil moisture variations (Kelcey, J., 
& Lucieer, A. 2012). Higher flight altitudes can 
increase the area covered but may result in 
coarser spatial resolution and reduced accuracy 
(Matese, A et al, 2015). 
 
Validating drone-based soil moisture estimates is 
also challenging, as ground-truth measurements 
are often limited and may not capture the spatial 
variability at the same scale as the drone data 
(Paloscia, S et al, 2013). Inadequate validation 
can lead to uncertainties in the reliability and 
applicability of drone-based irrigation decisions 
(Montzka, C et al, 2017). 
 

5.3 Need for Specialized Expertise and 
Training 

 
Implementing drone-based irrigation 
management requires specialized expertise in 
remote sensing, data processing, and precision 
agriculture (Elarab, M et al 2015). Farmers and 
horticulturalists may lack the necessary skills and 
knowledge to effectively collect, analyze, and 
interpret drone data for irrigation decision-making 
(Tey, Y. S., & Brindal, M 2012). This highlights 
the need for training programs and support 
services to help users adopt and benefit from 
drone technologies (Wolfert, S et al, 2017). 

 

Table 6. Integration of drone data with other precision agriculture technologies 
 

Technology Integration Approach Benefits Reference 

Wireless sensor 
networks 

Data fusion, adaptive 
irrigation scheduling 

Real-time monitoring, 
dynamic decision-
making 

(Gago, J et al, 2015) 

Crop growth 
models 

Model parametrization, 
scenario analysis 

Crop-specific irrigation 
optimization 

(Ramirez-Cuesta, J. M et 
al, 2017) 

Variable rate 
irrigation 

Prescription maps, 
automated control 

Precise water 
application, reduced 
losses 

(Ramirez-Cuesta, J. M et 
al, 2009, Evans, R. G et 
al, 2013) 
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Fig. 6. Machine learning framework for drone-based soil moisture estimation 
 
Moreover, the integration of drone data with 
existing irrigation systems and decision support 
tools can be complex and require additional 
technical expertise (Khanal, S et al, 2017). 
Developing user-friendly interfaces and 
automated data processing workflows can help 
bridge the gap between drone technology and 
practical irrigation management (Liakos, K. G et 
al, 2018). 
 

6. FUTURE DIRECTIONS AND 
OPPORTUNITIES 

 
As drone technology continues to advance, 
several future directions and opportunities 
emerge for soil moisture monitoring and irrigation 
management in horticulture (Khoa, P. V  et al, 
2019, Khoa, P. V et al, 2019, Khoa, P. V et al, 
2019, Weerasinghe, P et al, 2020, Bhattacharya, 
A., & Pandey, R.2021,  Bhattacharya, A., & 
Pandey, R. 2021, Sankar, B. R., & 
Ramasubramanian, V. 2019, Patel, N. R ET AL, 
2018). 

6.1 Integration with Other Precision 
Agriculture Technologies 

 

Integrating drones with other precision 
agriculture technologies, such as wireless sensor 
networks, weather stations, and variable rate 
irrigation systems, can provide a more 
comprehensive and adaptive approach to 
irrigation management (Kamilaris, A et al, 2017). 
For example, combining drone-based soil 
moisture maps with real-time sensor data and 
weather forecasts can enable dynamic irrigation 
scheduling that responds to changing crop water 
requirements (Gago, J et al, 2015). 
 

In addition, the integration of drone data with 
crop growth models and decision support 
systems can help optimize irrigation strategies 
based on crop-specific characteristics and 
growth stages (Ramirez-Cuesta, J. M et al, 
2017). This can lead to more targeted and 
efficient irrigation practices that maximize crop 
yield and quality while minimizing water use and 
environmental impact (Evans, R. G et al, 2013). 
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Table 7. Future research directions for drone-based irrigation management 
 

Research Area Objectives Potential Outcomes Reference 

Sensor development Improve accuracy, 
reduce cost 

Enhanced soil 
moisture estimation 

(Adão, T et al, 2017, 83. 
Ulaby, F. T et al, 2014) 

Machine learning Automate data 
analysis, extract 
insights 

Efficient data 
processing, improved 
decision support 

(Liakos, K. G et al, 2018, 
Kamilaris, A., & 
Prenafeta-Boldú, F. X. 
2018) 

Economic and 
environmental impact 
assessment 

Quantify benefits, 
evaluate 
sustainability 

Informed technology 
adoption, policy 
development 

(Matese, A et al, 2015, 
Shi, Y et al, 2016) 

 

6.2 Advances in Sensor Technologies 
and Data Analytics 

 
The development of new and improved sensor 
technologies can enhance the capabilities of 
drones for soil moisture monitoring. For example, 
the integration of hyperspectral sensors with 
thermal and multispectral cameras can provide a 
more comprehensive assessment of soil 
moisture and crop water status (Adão, T et al, 
2017). Similarly, the use of lightweight and low-
cost microwave sensors can enable the 
estimation of soil moisture at deeper layers, 
which is important for irrigation scheduling in 
crops with deep root systems (Ulaby, F. T et al, 
2014). 
 
Advances in data analytics, such as machine 
learning and artificial intelligence, can also 
improve the accuracy and efficiency of drone-
based soil moisture estimation (Liakos, K. G et 
al, 2018). Deep learning algorithms can 
automatically extract relevant features from large 
datasets and learn complex relationships 
between spectral data and soil moisture 
(Kamilaris, A., & Prenafeta-Boldú, F. X. 2018). 
This can reduce the need for manual data 
processing and interpretation, making drone-
based irrigation management more accessible 
and scalable (Kussul, N et al, 2017). 
 

6.3 Economic and Environmental Impact 
Assessment 

 
Assessing the economic and environmental 
impacts of drone-based irrigation management is 
crucial for promoting its adoption and 
sustainability in horticulture. Studies that quantify 
the water savings, yield improvements, and cost-
benefit ratios of drone-based approaches 
compared to traditional methods can help justify 
the investment in this technology (Matese, A et 
al, 2015). 

Moreover, evaluating the environmental benefits 
of drone-based irrigation, such as reduced water 
use, nutrient leaching, and greenhouse gas 
emissions, can highlight its potential for 
sustainable horticulture (Shi, Y et al, 2016). Life 
cycle assessment (LCA) studies can provide a 
comprehensive understanding of the 
environmental impacts of drone technology, 
considering factors such as manufacturing, 
operation, and disposal (Berni, J. A et al,              
2009). 
 

7. CONCLUSION 
 
Drone-based soil moisture monitoring and 
irrigation scheduling offer significant potential for 
optimizing water use and improving crop 
productivity in horticultural farms. By providing 
high-resolution spatial and temporal data on soil 
moisture variability, drones enable precision 
irrigation management that can lead to water 
savings, reduced environmental impact, and 
increased crop yields. 
 
However, the adoption of drone technology in 
horticulture faces challenges related to regulatory 
issues, data accuracy and validation, and the 
need for specialized expertise. Ongoing research 
and development efforts are addressing these 
challenges through advances in sensor 
technologies, data analytics, and integration with 
other precision agriculture tools. 
 
As the technology matures and becomes more 
accessible, drone-based irrigation management 
is poised to become an essential component of 
sustainable and efficient horticultural production 
systems. Further research on the economic and 
environmental impacts of this technology will be 
critical for promoting its widespread adoption and 
realizing its full potential in the face of                      
global water scarcity and food security 
challenges. 
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