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Abstract 

 
An open channel fluid flow is characterized by presence of a free surface. The interface between two 

homogeneous fluids of different densities is regarded as free surface. It is the surface of the liquid that is in 

contact with air. Generally, this interface is subject to zero parallel shear stress. The survival of lives and 

livelihoods has greatly been hampered by occurrence of floods. When there is heavy downpour, accumulation 

of flooded water has led to bridges being washed away, increased pot holes on the roads and this has led to 

increased cases of accidents leading to loss of lives. This has posed a huge financial burden to the 

Government in terms of budgetary allocations to import human capital for maintenance and repair of worn 

out roads and bridges. This study has developed a model for fluid flow past an open channel with a 

trapezoidal cross-section with a segment base having lateral inflow channel that has optimal dimensions for 
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maximum discharge. The fluid particles throughout the flow do not crisscross each other and hence the entire 

flow is assumed to be laminar. The developed model equations are non-dimensionalized, discretized and 

solved using finite-difference method and numerical values are simulated using Matlab Mathematical 

software. The findings are discussed, analyzed and presented graphically. It is reported that an increase in 

length of the lateral channel leads to decrease in flow velocity of the main channel. An angle of inclination of 

the lateral channel at a range of 300 to 450 exhibit higher values of flow velocity in the main channel 

compared to other angles. However, maximum velocity at the main channel is attained at an inclination angle 

of 300. At this angle, there is minimum shear stress hence less resistance to the flow profile. The results of 

this study is highly applicable in the design of drainage systems for road construction, sewer building, street 

drainage, airport construction and dams for electric power plants in Kenya and elsewhere. 

 

 
Keywords: Lateral channel; laminar; homogeneous; angle of inclination; shear stress. 

 

1 Introduction 
 

“The accumulation of stagnant water occurs when the velocity reaches a steady value where the gravitational 

force is equal to the resistance to the flow” [1]. “ Water flows through a channel, whose cross-section may be 

closed or open at the top” [2]. “ The structures with closed tops are referred to as closed channels while those 

whose tops are in contact with the atmospheric air are called open channels” [3].  

 

Open channels have been with man for long time. To divert flood water from flood-stricken areas to the desired 

areas such as farms, dams and lakes, man has constructed open channels of different cross-sectional shapes where 

water flows with a free surface [4]. The free surface is the interface between two fluids of different densities [5]. 

 

Most road networks, both in urban and rural areas lack efficient drainage systems [5]. When it rains, flooded water as 

well as overhead run off has led to road carnage, fatalities and other forms of economic devastation [6]. This has 

impacted negatively on the achievement of Kenya’s vision 2030 that aims to create a high-quality, 

internationally competitive and prosperous Nation around the globe. The government of kenya aims to 

accomplish the three main pillars that are anchored on economic, political and social platforms in line with 

vision 2030 [7]. This study is connected to these pillars in that poor drainage systems directly or indirectly affects 

the economic, political and social aspects of the nation at large.  

 

“Floods at large hamper transport since roads are cut off by runoff and this affects the flow of goods and services” 

[8]. “Disease outbreaks and other related health issues pose a danger to the population’s health if drainage is poor” 

[9]. As a result, this study seeks to find solutions to these drainage related issues in order to contribute to the 

vision 2030. 
 

Chagas and Souza [10] “sought to provide solution of Saint Venant’s Equation to study flood in rivers through 

Numerical methods. The study emphasized on discretization for the equations that govern the propagation of a 

flood wave, in natural rivers, with the objective of a better understanding of this propagation process. The 

findings showed that the hydraulic parameters play important role in the propagation of a flood wave”. 
 

Moshirvaziri et al. [11] “examined numerically, the nature of pollutant connectivity be- tween unsealed forest roads 

and adjacent nearby streams in terms of spatial and temporal patterns of runoff generation, erosion, and sediment 

transport with the aim of improving the ability to scale-up the impacts of forest roads on catchment water quality 

in future works. The study considered the relative effects of rainfall intensity and duration, sur- face roughness, 

infiltration rate, macro pore flow and sediment detachment and transport with an objective of identifying the 

dominant processes and parameters that affect the degree of pollutant connectivity between roads and streams.The 

study applied St.Venant equations to extract a two-dimensional diffusion wave model with variable conductiv- 

ity and diffusivity. Through the study, the behavior of flow dynamics was represented mathematically”. 
 

For open rectangular channels with lateral inflow, the study conducted by Macharia et al. [3] reported that 

increasing the length of the lateral inflow channel led to a decrease in the flow velocity in the main channel. 

Moreover, increasing the velocity of fluid in the lateral inflow channel led to an increase in the fluid flow 

velocity in the main channel. The study reported that an angle of inclination between thirty and fifty degrees of the 

lateral inflow channel led to higher fluid flow velocity in the main channel compared to other angles. 



 
 

 

 
Nyaga et al.; J. Adv. Math. Com. Sci., vol. 39, no. 9, pp. 46-55, 2024; Article no.JAMCS.119853 

 

 

 
48 

 

Mohammed [12] “studied how the discharge coefficient varies with respect to the side of the channel wall in the 

flow direction for four different angles using an oblique weir. The four angles were 300, 600, 750 and 900 of 

which all were varied along the flow direction. The findings established that maximum discharge was achieved 

at angle 300 of the side weir compared to that of other angles in consideration”. 

 

Chirchir et al. [7] conducted a study on the effect of varying the inclination angle of two lateral inflow channels 

on the flow velocity of the main rectangular channel. The findings established that the flow velocity at the main 

channel increases at inclination angles of 300 and 720, but the flow velocity is at maximum at an inclination angle 

of 450 to the main channel. 

 

Rotich [6] developed a model of fluid flow past an open channels with parabolic cross-section. The study reported 

that when the slope of the channel and energy coefficient is increased, the velocity of the fluid flow is increased. 

Further, when the top width is decreased, the velocity along the channel increases. 

 

Norman et al. [13] studied the rate of discharge through a culvert and established that discharge is controlled by 

inlet or outlet conditions. Inlet control means that the flow through a culvert is limited by culvert entrance 

characteristics. Outlet means that flow through a culvert is limited by friction between the flowing water and 

culvert barrel. 

 

Marangu et al. [14] developed a model on open trapezoidal channel with a segment base. T h e  s t u d y  reported 

that increasing the cross sectional area of the flow leads to decrease in the flow velocity. An increase in channel 

radius and manning coefficient of surface roughness leads to a decrease in flow velocity. As the channel slope 

increases, the flow velocity along the channel also increases. 

 

The study by Mose et al. [9] developed a model on fluid flow past an open channel with elliptic cross-section. 

The findings established that an increase in channel friction resulted to decrease in fluid flow velocity. An 

increase in hydraulic radius leads to an increase in fluid flow depth. 
 

In order to minimize floods, Engineers have designed channels of different cross-sections to convey maximum 

discharge to designated areas but still the problem of flooding continue to persist. The analysis of this study 

focuses on appropriate cross sectional area and surface roughness of the lateral channel to align with the main 

channel in order to maximize discharge of water from flooded areas, which is a frequent occurrence in rainy 

seasons. A lot of study appears to have been done in open channels of rectangular, elliptic and circular cross-

sections. The study on trapezoidal channel with a base segment and a lateral inflow channel, on the other hand, 

has received little attention. As a result, this study aims at developing a model of a trapezoidal cross-section 

with a segment base having a lateral inflow channel that will have maximum discharge of water [15-17]. 
  

1.1 Research objectives 
 

i. To develop a model for fluid flow past an open channel with a trapezoidal cross-section with a segment 

base having lateral inflow channel. 

ii. To determine the effect of the length of the lateral channel to the flow velocity of the main channel 

iii. To determine the effect of angle of inclination of the lateral channel on the flow velocity of the main 

channel 
 

1.2 Basic assumptions 
 

i.      The fluid has an invariant density. 

ii.      The cross-section area of the lateral channel is half that of main channel. 

iii. The fluid in consideration is Newtonian. 

iv.     The flow is natural hence is caused by gravitational forces only 

v.      The flow is laminar and unsteady. 
 

2 Geometric Representation of the Model 
 

Fig. 1 illustrates the geometric model of the trapezoidal channel with a segment base, having the trapezoidal lateral 

inflow channel at an angle. The discharge in the main channel and the lateral inflow channel is denoted by Q 
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and q respectively, while θ and L represent the inclination angle and length respectively of the lateral inflow 

channel. 

 

 
 

Fig. 1. Geometric representation of the model 

 

3 The Mathematical Formulation of the Model 
 

3.1 Continuity equation 
 

The continuity equation is based on the principal of conservation of mass, which states that  mass cannot be 

created nor destroyed. For any given shape of an open channel with a lateral inflow channel, the continuity 

equation for   unsteady incompressible fluid flow is given by equation (1.1) 

 

      
A 

T

∂V 

∂x
+

∂y 

∂t
+ V

∂y 

∂x
=

q 

LT
Sin θ                                                                                                          (1.1)       

                    

Consider Fig. 2, the cross section of a trapezoidal channel with a segment base. 

 

 

 

Fig. 2. Cross-section of a trapezoidal channel with a segment base 

 

The cross-sectional area of trapezium ABCD (Fig. 2) is given by equation 1.2 

 

A1 = (b2d2 + bd)                                                                                                                                   (1.2) 

 

while that of the bottom segment is given by equation 1.3 

  

A2 = R2(− sin θ cos θ + θ)                                                                                                                    (1.3) 

  

Total area of the cross-section is thus given by equation 1.4 

 

A = (b2d2 + bd ) + R2(− sin θ cos θ + θ)                                                                  (1.4) 
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Let the length b increase by a factor b1, and Radius R increase by a factor R1. The new cross section area, A is 

given by equation 1.5 

 

A = [b2d2 +(b + b1)d )] + [(R + R1)2(− sin θ cos θ + θ)]                                                  (1.5) 

 

Let the angle of inclination be defined by 
𝜋

𝑚
 where m is the set of positive integers and the length of the channel be 

𝛾+L where 𝛾  is the set of positive integers. The lateral discharge along the direction of flow will be defined by  
1

2

𝑞

(𝛾+𝐿)𝑇
 𝑠𝑖𝑛 

𝜋

𝑚
 . Therefore, the modified continuity equation becomes equation 1.6  

     

     
[𝑏2𝑑2  +(b + 𝑏1)d )] + [(R + R1)2(− sin θ cos θ + θ)] 

T

∂V 

∂x
+ V

∂y 

∂x
+

∂y 

∂t
=

1

2

q 

(γ+L)T
Sin

 π

𝑚
                               (1.6)   

       

3.2 Momentum equation 
 

The equation is derived from the Newton’s second law of motion that relates the sum of forces acting on the fluid 

element to the rate of change of momentum. According to the conservation law, the momentum equation is 

defined by equation 1.7 

 

V
∂V 

∂x
+ g

∂v 

∂x
+

∂V 

∂t
+ g(Sf − S0) =

q

AL
Sin θ(u cos θ − V)                                                                    (1.7) 

 

Where A is the cross section area and u is the flow velocity of the channel.  

 

With previous assumptions and that the cross-section area of the lateral channel is half the cross-section area of the 

main channel, the modified momentum equation becomes equation (1.8) 

 

        V
∂V 

∂x
+ g

∂v 

∂x
+

∂V 

∂t
+ g(Sf −  S0) = 

 
q

[𝑏2𝑑2  +(b + 𝑏1)d )] + [(R + R1)2(− sin θ cos θ + θ)]  (γ+L)
Sin 

π

𝑚
(u cos 

π

𝑚
− V)                                            (1.8) 

 

4 Methodology 
 

 The model equations are first expressed in dimensionless form, discretized and then solved using finite 

difference method. Finite difference method has the advantage over other methods because of its highly 

consistency, convergence and stability for one dimensional fluid flows. Numerical values are simulated using 

Matlab mathematical software, where the velocity profiles of the main channel are plotted against time as 

various parameters are varied. The results are demonstrated graphically for various values of the parameters 

involved in the study. 

 

4.1 Model equations in finite difference form 
 

In order to express the model equations in finite difference form, the Taylor series approximations are taken as 

equations 1.9a, 1.9b, 1.9c, and 1.9d. 

 
𝜕𝑣

𝜕𝑡
=  

𝑣(𝑖,𝑗 +1) − 𝑣(𝑖,𝑗)

∆𝑡
                                                                                                                             (1.9a)       

 
𝜕𝑦

𝜕𝑡
=  

𝑦(𝑖,𝑗 +1)− 𝑦(𝑖,𝑗)

∆𝑡
                                                                                                                             (1.9b) 

 
𝜕𝑣

𝜕𝑥
=  

𝑣(𝑖 +1,𝑗) − 𝑣(𝑖−1,𝑗)

2∆𝑥
                                                                                                                         (1.9c) 

 

  
𝜕𝑦

𝜕𝑥
=  

𝑦(𝑖+1,𝑗 +1) − 𝑦(𝑖−1,𝑗)

2∆𝑥
                                                                                                                   (1.9d) 

 

Substituting these equations in our model Continuity equation we get equation 1.10 
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v(i,j) 
𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
 + (

[𝑏2𝑑2  +(b + 𝑏1)d )] + [(R + R1)2(− sin θ cos θ + θ)]  (γ+L)

𝑇
 )

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
  

 

+     
𝑦(𝑖,𝑗+1)−𝑦(𝑖,𝑗)

∆𝑡
 =  

1

2
 

𝑞

(𝛾+𝐿)𝑇
 sin 

𝜋

𝑚
                                                                                                     (1.10) 

 

Rearranging equation 1.10 yields equation 1.11 

 

𝑦(𝑖, 𝑗 + 1) = ∆𝑡 {−v(I, j)
𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
} − 

 

∆𝑡 {(
[𝑏2𝑑2+(b+𝑏1)d )]+[(R + R1)2(−sin θ cos θ+ θ)](γ+L)

𝑇
 )

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
+

1

2
 

𝑞

(𝛾+𝐿)𝑇
sin

𝜋

𝑚
 } + y(i,j)       (1.11)

           

Substituting equation 1.9 in our model Momentum equations we get equation 1.12 

 
𝑣(𝑖,𝑗+1)−𝑣(𝑖,𝑗)

∆𝑡
 + v(i,j) 

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
 + g 

𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
 + g(𝑆𝑓 − 𝑆0) =  

 
1

2
 

𝑞

[𝑏2𝑑2 +(b + 𝑏1)d )] + [(R + R1)2(− sin θ cos θ + θ)]  (γ+L)
 Sin 

π

𝑚
{(u cos 

π

𝑚
− V(i, j)}                               (1.12) 

      

Rearranging the above equation yields 

 

𝑣(𝑖, 𝑗 + 1) =  ∆𝑡 {− v(i, j)
𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
−  g 

𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
−  g(𝑆𝑓 − 𝑆0) } + 

 

∆𝑡 { 
1

2
 

𝑞

[𝑏2𝑑2+(b + 𝑏1)d )] + [(R + R1)2(− sin θ cos θ + θ)]  (γ+L)
Sin 

π

𝑚
[u cos 

π

𝑚
− V(i, j)]} + 𝑣(𝑖, 𝑗)         (1.13) 

 

The initial and boundary conditions were taken as; 

 

Initial conditions: 

 

y(0,x) = 0.5                               v (0,x) = 0.1 

boundary conditions: 

y (t, x initial ) = 1                       v(t, x initial ) = 1 

 

y (t, x final ) = 12                     v(t, x initial ) = 20 

 

The following constants were also taken 

 

T = 1,         𝑆0= 0.002,      L= 1,      𝜃 =  
𝜋

3.33
,    q = 0.3,       

 B = 0.5,      g = 9.82,        d=2         R = 0.4,     
 

5 Results and Discussions 
 

The Matlab software is used to simulate the equation by varying i and j at various nodal points. Then the graphs 

were plotted using the values of the velocity against time at a certain location. Various flow parameters of length 

and angle of inclination of the lateral channel are varied to determine how they affect the fluid velocity in the main 

channel. The graphs are plotted, analyzed, discussed and then conclusions drawn. 
 

5.1 A graph of velocity against time with surface length  𝜸 varying 
 

Fig. 3 illustrates the effects of the length 𝛾 of the lateral channel to the flow velocity on the main channel. 
 

From the Fig. 3, as the length of the lateral channel increases from γ = 0.05 to γ = 0.5, the flow velocity of the main 

channel decreases from 10 to 8. This is because increasing the length of the lateral channel increases the surface of 

contact between the walls and the bottom segment of the channel since the liquid is spread over a wide surface 

area. 
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Fig. 3. A graph of velocity against time with length γ varying 

 

This increases the shear stress which in turn sets the friction that increases the resistance to the flow, leading to 

decrease in the flow velocity of the main channel. From the results, maximum velocity of 9 is attained when the 

length of the lateral channel is 0.05 m. In this regard, Engineers are advised to consider the shorter lengths of 

lateral channels for optimum discharge to be achieved on the main channel. 

 

5.2 A graph of velocity against time with angle of inclination 
𝝅

𝒎
 varying 

 

Fig. 4 illustrates the effects of the angle of inclination,  
𝝅

𝒎
  of the lateral channel to the flow velocity on the main 

channel. 

 

 
                         

Fig. 4. Velocity against time with angle of inclination,  
𝝅

𝒎
  varying 

 

From Fig. 4, increase in the angle of inclination of the lateral channel above 300 leads to a decrease in the flow 

velocity of the main channel. A decrease in the angle of inclination below 300 leads to decrease in the flow 

velocity. An angle of 300 results to maximum flow velocity in the main channel. This is because at this angle, 

there is minimal shear stress of the fluid particles at the entrance, which results to minimal friction hence less 
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resistance to the flow compared to other angles. An inclination angle of 100 records low velocity value at the 

initial stages which progressively but slowly increases with time up to a maximum of 7.5. At the initial stages, 

the shear stress is rampant at the entrance which increases resistance leading to decreased flow velocity. This 

slow but gradual velocity poses a challenge as it may encourage clogging and accumulation of debris at initial 

stages which in turn could lower the flow velocity at the main channel. In this regard, Engineers are advised to 

implement 300 as the angle of inclination of the lateral channel to the main channel for maximum efficiency of 

the channel to be achieved. 

 

6 Conclusions 
 

This study primarily sets to determine the effect of length and angle of inclination of the lateral channel to the 

flow velocity on the main channel. The developed model equations are solved using the finite difference iterative 

scheme. To generate numerical values, simulations are carried out using the MATLAB Mathematical software. 

The results are then presented in graphs. The following are the summary of the findings; 

 

i.  Increasing the length of the lateral channel decreases the flow velocity of the main channel 

ii. An angle of inclination of 300 records the highest velocity value at the main channel. Other angles above 

or below this records low velocity values at the main channel. 

 

7 Recommendations 
 

It is recommended that future study be carried out on: 

 

i.   The flow of the same orientation in three Dimensions. 

ii. The effect of length and cross-section area of the lateral channel to the flowrate at the main channel when 

the flow is assumed to be turbulent. 
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Appendix: Matlab Code for Simulating Velocity Profiles for Various Flow 

Parameters 
 

function OpenChan−v2() clear all;clc; 

%% ==============constants============== g=9.81; L=1; T=1;d=2; R=0.4; b=0.5; So=0.002; 

%% ==============parameters============== b1=0.2; % 0.1; 0.2; 0.3; 

theta=pi/3.3; % pi/2; pi/3.3; pi/4 b2=b-2*R*sin(theta); 

R1=0.2; % 0.03; 0.2; 0.3 

gamma=0.2; % 0.05; 0.2; 0.5 

n=0.05; % 0.012; 0.05; 0.1 

m=18; % 3; 4; 6; 18; 

u=15; % 10; 15; 20; 

%% ==============parameters============== 

color=':b'; % blue(b); black(k); red(r) 

 

x0=0;xN=2;N=51; dx=(xN-x0)/(N-1); x=x0:dx:xN; t0=0;tK=2;K=151; dt=(tK-t0)/(K-1); t=t0:dt:tK; 

%% constitutive relations 

A=((b+b1)*d+b2*d*d)+((R+R1)
2
) ∗ (theta-sin(theta)*cos(theta)); h=sqrt(b2*b2+d*d); P=2*h+2*R*theta; Rs=A/P; 

q=(A/2)*u; %verify the other 1/2 in equation 

 

%% boundary and initial conditions y0=0.5; v0=0.1; 

y=zeros(N,K); v=zeros(N,K); 

%% evaluation of finite difference scheme 

for j=1:K-1 for i=2:N-1 

v(:,1)=v0; y(:,1)=y0; %IC 

 

y(i,j+1)=0.5*(y(i-1,j)+y(i+1,j))-dt*(v(i,j)*(y(i+1,j)- 

y(i-1,j))/(2*dx)... +(A/T)*((v(i+1,j)-v(i-1,j))/(2*dx))- (q/(T*(gamma+L)))*sin(pi/m)); 

v(i,j+1)=0.5*(v(i-1,j)+v(i+1,j))-dt*(v(i,j)*(v(i+1,j)- 

v(i-1,j))/(2*dx)... +g*(y(i+1,j)-y(i-1,j))/(2*dx)+ 

g*((n*n/(2*(Rs
(
4/3)))) ∗ 0.5 ∗ (v(i − 1, j)2 + v(i + 1, j)2) − So)... 

-(q/(A*(gamma+L)))*sin(pi/m)*(u*cos(pi/m)-v(i,j))); 
 

v(1,:)=v(2,:); y(1,:)=y(2,:); %BC at x=x0 
 

v(N,:)=v(N-1,:); y(N,:)=y(N-1,:); %BC at x=xN 
 

end 

end 

figure(1); 

hold on; plot(t,y(N,:),color,'linewidth',2); xlabel('Time (t)'); ylabel('Depth (y)'); 

hold off figure(2); 

hold on; plot(t,v(N,:),color,'linewidth',2); xlabel('Time (t)'); ylabel('Velocity (v)'); 

hold off figure(3) 

hold on; plot3(y(N,:),v(N,:),t,color,'linewidth',2); xlabel 

('Depth (y)');ylabel('Velocity (v)'); view(2); hold off 

end 
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