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ABSTRACT 
 

With the continuous development of deep learning, object detection algorithms based on deep 
learning have made significant progress in the field of computer vision, widely applied in areas such 
as autonomous driving, industrial inspection, agriculture, transportation, and medicine. Traditional 
object detection algorithms face issues such as low detection efficiency and poor robustness. 
However, deep learning-based object detection algorithms significantly enhance detection accuracy 
and generalization by learning low-level and high-level image features. This article first introduces 
traditional object detection algorithms and their existing problems, then elaborates on the main 
processes, innovations, advantages, disadvantages, and experimental results on datasets of deep 
learning-based object detection algorithms. It focuses on the development of Two-Stage and One-
Stage object detection algorithms, and provides an outlook on the future development of object 
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detection algorithms, discussing challenges such as the coordination of detection speed and 
accuracy, difficulties in detecting small objects, real-time detection tasks, and multi-modal fusion 
applications, and proposes possible future directions. 
 

 
Keywords: Object detection; computer vision; deep learning;  
 

1. INTRODUCTION 
 

Object detection is one of the fundamental tasks 
in computer vision, aiming to identify objects in 
images or videos and determine their positions 
and categories. Tasks in computer vision such as 
object tracking, image segmentation, and face 
recognition are all built upon object detection [1]. 
Computer vision can reduce the consumption of 
human resources, making it of significant 
practical importance, hence object detection has 
become a research hotspot in recent years. With 
the rapid development of deep learning 
technologies like Convolutional Neural Networks 
(CNN), deep learning-based object detection 
algorithms have shown outstanding performance 
in various applications such as autonomous 
driving [2], industrial inspection [3], agriculture 
[4], transportation [5], and medicine [6]. This 
article extensively surveys domestic and 
international object detection methods, firstly 
introducing early object detection algorithms and 
pointing out their shortcomings, then detailing the 
Two-Stage object detection algorithm based on 
candidate windows and the One-Stage object 
detection algorithm based on regression. It 
analyzes the strengths and weaknesses of the 
relevant algorithms, and finally concludes and 
looks ahead to the future of object detection 
algorithms. 
 

2. TRADITIONAL OBJECT DETECTION 
ALGORITHMS 

 

Early object detection algorithms were mostly 
based on manually designed filter features. The 
basic approach [7], as shown in Fig. 1, involves 
preprocessing the input image, constructing 
candidate box regions, extracting candidate 
boxes from the input image using a sliding 
window approach, extracting features, and then 
using a classifier for classification. Non-maximum 
suppression (NMS) can be used to merge 

candidate boxes, eliminating overlapping or 
redundant candidate boxes, and outputting the 
final results. 

 
In 2001, Viola at al. [8] proposed a real-time face 
detection algorithm based on Haar-like features 
and Adaboost classifier, introducing the Integral 
Image for rapid computation of Haar-like features, 
making it the first object detection algorithm 
suitable for real-time applications. In 2005, Dalal 
at al. [9] put forward the Histograms of Oriented 
Gradients (HOG) features for pedestrian 
detection, extracting features through HOG of 
image regions and combining them with SVM for 
detection. In 2008, Felzenszwalb at al. [10] 
introduced the Deformable Part Models (DPM), 
utilizing sliding windows for target localization, 
HOG components for feature extraction, and 
SVM for classification, exhibiting excellent 
detection performance. In 2013, Uijlings at al. [11] 
proposed the Selective Search algorithm, 
segmenting images into multiple regions using a 
hierarchical segmentation approach, then 
merging adjacent regions to generate candidate 
regions, laying the groundwork for later deep 
learning-based object detection algorithms like 
R-CNN. 

 
Although traditional object detection algorithms 
achieved some success in the early stages, they 
have significant drawbacks. Firstly, traditional 
algorithms typically use a sliding window 
approach to generate candidate boxes, leading 
to exponentially increasing computational 
requirements with the growth of image pixels, 
thus demanding higher computational 
capabilities. Secondly, traditional object detection 
algorithms rely on manually designed features, 
which lack robustness against the diversity of 
targets and result in low detection efficiency and 
accuracy. The limitations of traditional object 
detection algorithms in terms of computational

 

 
 

Fig. 1. Basic process of traditional object detection methods 
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efficiency, robustness, and generalization 
capabilities have restricted their widespread 
application. With the development of deep 
learning technology, deep learning-based object 
detection algorithms have gradually overcome 
these shortcomings and become the mainstream 
direction of current research. 
 

3. TWO-STAGE DETECTION ALGORITHM 
BASED ON CANDIDATE WINDOWS. 

 

The two-stage algorithm processes input images 
by first determining possible target regions 
through the generation of candidate boxes 
(Region Proposals). The methods for generating 
candidate boxes mainly include Selective Search 
and Anchor-based methods. Selective Search 
segments the image initially, creating smaller 
regions that are then merged to form larger 
candidate boxes, filtering out the candidate 
boxes most similar to the target objects. The 
Anchor-based method generates fixed-sized 
anchor boxes with specific aspect ratios on the 
image, using convolutional neural networks to 
classify and regress each anchor box, obtaining 
confidence scores and positional offsets for each 
anchor box, and finally selecting candidate boxes 
with higher confidence based on the confidence 
scores. Although multi-step processing can 
improve the accuracy of target localization and 
detection precision, the complex detection 
process can also impact the detection                    

speed of the algorithm. Fig. 2 illustrates the 
development process of object detection 
algorithms. 

 
3.1 R-CNN 
 
In 2014, Girshick et al. [12] proposed the Region-
based Convolutional Neural Network (R-CNN). 
R-CNN utilizes the structure of the AlexNet 
network and replaces the sliding window method 
with selective search to generate candidate 
regions. It introduces Convolutional Neural 
Networks (CNN) into the object detection task, 
uses Support Vector Machines (SVM) for 
classification and box regression, and employs a 
linear regression model to correct the positions of 
candidate boxes, significantly improving 
detection accuracy. R-CNN laid the foundation 
for subsequent two-stage object detection 
algorithms, as shown in the framework process 
in Fig. 3. However, it also has shortcomings. 
Each candidate region needs to input the CNN 
independently for feature extraction, leading to 
large computational requirements and slow 
training speeds. Additionally, storing features for 
each candidate region individually consumes a 
significant amount of storage space. Furthermore, 
the cropping and scaling operations of candidate 
regions may alter the shape of the image, 
potentially disrupting the original information and 
affecting the accuracy of subsequent operations.

 

 
 

Fig. 2. Development history of deep learning-based object detection algorithms 
 

 
 

Fig. 3.  Architecture diagram of the R-CNN network 
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Fig. 4. Comparison of the process between SPP-Net and R-CNN algorithms 

 

 
 

Fig. 5. Network model of the fast R-CNN algorithm 

 
3.2 SPP-Net 
 
The Spatial Pyramid Pooling Network (SPP-Net) 
[13] was proposed to address the slow 
processing speed issue in feature extraction of 
R-CNN, which required convolution of all 
candidate regions individually. The workflow of 
SPP-Net is as follows: first, the input image 
undergoes convolution and pooling layers for 
feature extraction; second, the feature map 
generates a fixed-length feature vector through 
the spatial pyramid pooling layer; finally, the 
feature vector is input into subsequent classifiers 
for target classification. SPP-Net optimizes the 
convolution process by performing a single 
convolution operation on the entire image, 
speeding up the detection process. By 
introducing the spatial pyramid pooling layer, 
SPP-Net solves the issue of variable input image 
sizes, enabling the network to handle images of 
any size. The addition of the SPP structure 
between the convolutional layer and the fully 
connected layer ensures that the output feature 
map is of a fixed size, avoiding shape changes 
during image normalization and improving 

detection accuracy. The comparison of the 
processes between R-CNN and SPP-Net is 
shown in Fig. 4. 
 

3.3 Fast R-CNN 
 
Fast R-CNN [14], proposed by Girshick et al. in 
2015, is an improved object detection algorithm 
based on R-CNN and SPP-Net. It aims to 
address issues such as redundant feature 
extraction and multi-stage pipeline training in the 
R-CNN algorithm, while enhancing detection 
speed and accuracy. Fast R-CNN simplifies the 
SPP structure into the ROI pooling layer, pooling 
candidate regions of different sizes into fixed-size 
feature vectors. At the end of the network, it 
includes two parallel branches: one for 
classification using the Softmax function and the 
other for bounding box regression. By 
simultaneously performing target classification 
and precise localization in a single network and 
introducing a multi-task loss function, Fast R-
CNN reduces computational complexity, 
improving training and detection efficiency. On 
the VOC07 dataset, Fast R-CNN increased mAP



 
 
 
 

Meng et al.; Asian J. Res. Com. Sci., vol. 17, no. 8, pp. 1-12, 2024; Article no.AJRCOS.119695 
 
 

 
5 
 

 
 

Fig. 6. Network architecture diagram of Faster R-CNN 
 

Table 1. Performance comparison of Two-stage target detection algorithms 
 

Algorithms Backbone FPS MAP/% 

VOC2007 VOC2012 COCO 

R-CNN AlexNet 0.03 58.5 — — 

VGG16 0.50 66.0 53.3 — 

SPPNet ZF-5 2.00 59.2 — — 

Fast R-CNN VGG16 7.00 70.0 68.4 19.7 

Faster R-CNN VGG16 7.00 73.2 70.4 21.9 

AlexNet101 5.00 76.4 73.8 34.9 

R-FCN AlexNet101 5.80 79.5 77.6 29.9 

Mask R-CNN AlexNet101+FPN 5.00 — — 39.8 

Libra R-CNN AlexNet101+FPN — — — 43.0 

Grid R-CNN AlexNet101+FPN — — — 43.2 

 
 
from 58.5% (R-CNN) to 70.0% and achieved 
detection speeds over 200 times faster than R-
CNN. By sharing convolutional calculations and 
utilizing the ROI pooling layer, Fast R-CNN 
significantly reduces redundant feature extraction 
computations. However, Fast R-CNN still uses 
selective search to generate candidate regions, 
which is a slow process and a bottleneck in the 
entire detection process. The framework process 
of Fast R-CNN is illustrated in Fig. 5. 

 
3.4 Faster R-CNN 
 
Faster R-CNN [15], proposed by Ren et al. in 
2015, is an advanced version of the object 
detection algorithm, building upon R-CNN and 
Fast R-CNN. This algorithm introduces the 
Region Proposal Network (RPN) to generate 
candidate regions, enabling true end-to-end 
training and significantly improving detection 
speed and accuracy. Faster R-CNN incorporates 
the RPN module to merge candidate region 
generation, feature extraction, classification, and 
regression, achieving end-to-end training. RPN 
utilizes a sliding window mechanism and anchor 
box generation to enhance detection speed and 
accuracy. By sharing convolutional layers with 

the detection network Fast R-CNN, RPN              
avoids redundant computations, enhancing 
computational efficiency. Faster R-CNN 
leverages GPU for computation, resulting in a 
10-fold increase in detection speed compared to 
Fast R-CNN. It integrates candidate region 
generation, feature extraction, classification, and 
regression into a single network structure, 
facilitating end-to-end training. However, the 
adverse effects of the ROI pooling layer on 
network translation invariance lead to decreased 
localization accuracy and poorer detection 
performance for small objects. The network 
structure of Faster R-CNN is depicted in the              
Fig. 6. 
 

3.5 Other Two-Stage Algorithms 
 
R-FCN (Region-based Fully Convolutional 
Networks) [16] is an improved algorithm 
proposed in 2016 to address the heavy 
computational burden in feature extraction of 
Faster R-CNN. By replacing the fully connected 
layers after the ROI pooling layer with 
convolutional layers, R-FCN significantly 
enhances detection speed. This algorithm utilizes 
ResNet as the backbone network, replacing the 
VGG network in Faster R-CNN, thereby 
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improving the network's feature extraction 
capabilities and classification performance. 
 
Mask R-CNN [17], an optimization algorithm 
proposed in 2017 for Faster R-CNN, enhances 
the backbone network by adding a Feature 
Pyramid Network (FPN) on top of ResNet. It 
consists of Faster R-CNN for object detection 
and FPN for semantic segmentation. By 
replacing the ROI pooling part with RoIAlign, it 
addresses the region mismatch issue and 
introduces an independent Mask branch for 
instance segmentation, improving segmentation 
accuracy. Cascade R-CNN [18] is a cascade-
structured object detector designed to address 
overfitting issues that occur during network 
training at low IOU thresholds. By incrementally 
increasing the IOU threshold across multiple 
stages, it aims to improve detection accuracy 
and resolve overfitting problems at low IOU 
thresholds. The proposal of Chained Cascade 
Network [19], an end-to-end learning of more 
than two cascaded classifiers and DCNNs for 
general-purpose object detection, extensions of 
Cascade R-CNN, and applications in 
synchronous object detection and instance 
segmentation [20] achieved success in the 2018 
COCO detection challenge. 
 

3.6 Algorithm Comparison 
 
The two-stage object detection algorithm divides 
the detection process into two main steps: finding 
candidate regions containing the target objects in 
the image and performing classification and 
regression operations on these candidate 
regions to obtain the final detection results. In 
terms of candidate region extraction, early two-
stage object detection algorithms such as R-CNN, 
SPP-Net, and Fast R-CNN primarily used 
selective search algorithms. Although these 
methods achieved good detection results, they 
were slow and less practical. Faster R-CNN 
significantly improved the speed and accuracy of 
candidate region extraction by introducing an 
RPN-based approach. In terms of feature 
utilization, new algorithms propose the use of the 
FPN structure, combining high-level semantic 
information with low-level spatial information to 
improve the detection of small objects. 
 
Representative algorithms include Mask R-CNN, 
among others. While these improvements have 
significantly increased detection accuracy, the 
complexity of the network models has led to a 
decrease in the speed of training and                 
detection, affecting real-time performance. The 

performance comparison of two-stage object 
detection algorithms is shown in Table 1, with "—
" indicating no relevant data in the original 
literature. 
 

4. REGRESSION-BASED ONE-STAGE 
OBJECT DETECTION ALGORITHM 

 
Single-stage detection algorithms can output 
detection results, including classification and 
bounding box prediction, in one network pass. 
These algorithms excel in detection speed and 
are well-suited for use on mobile devices. 
Additionally, this structure allows enough 
flexibility to add various algorithm modules to 
meet different detection requirements. 
 

4.1 Overfeat 
 
The OverFeat [21] algorithm was proposed in 
2013 and is one of the pioneers of single-stage 
object detection. Its main principle is to perform 
image classification on multi-scale regions of the 
image using a sliding window approach and train 
a regressor on the same convolutional layer to 
predict the position of bounding boxes. The 
algorithm combines classification, localization, 
and detection by improving AlexNet, introducing 
a novel pooling method called offsetmax-pooling, 
predicting at different scales, and accumulating 
predictions to obtain bounding boxes. The 
algorithm provides both accurate and fast 
models. In the accurate model, the classification 
error rate is 14.18%, while in the fast model, it is 
16.39%. When using a combination of 7 accurate 
models, the classification error rate decreases to 
13.6%. 
 

4.2 The Yolo Series Algorithms 
 

The YOLO (You Only Look Once) [22] algorithm 
was first introduced in 2016. Inspired by the 
Google Net [23] structure, it has 24 convolutional 
layers for extracting image features and 2 fully 
connected layers for predicting bounding boxes 
and class probabilities. Except for the last layer, 
which uses a linear activation function, the rest of 
the layers utilize Leaky ReLU activation function 
[24]. YOLO, as a single-stage object detection 
algorithm, can simultaneously output 
classification and bounding box predictions in 
one network pass, integrating classification, 
localization, and detection in a single network. 
This approach helps avoid misclassifying the 
background as the target, achieving                         
faster detection speed and lower detection error 
rates. 
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In order to improve the accuracy of YOLO 
detection, YOLOv2 [25] was proposed in 2017. 
Inspired by VGG (Visual Geometry Group) [26] 
and Network-in-Network [27], it utilizes the 
Darknet-19 backbone network to enhance 
feature extraction capabilities and detection 
speed. Batch normalization (BN) is introduced to 
improve convergence, resulting in a 2.4% 
increase in mAP. By fine-tuning the classification 
model with high-resolution images, mAP is 
improved by 3.7%. Removing fully connected 
layers, using anchor box convolution to predict 
bounding boxes, has increased recall rates. 
Employing the K-means clustering method to 
extract prior box scales enhances generalization. 
Additionally, training with multi-scale images 
significantly improves detection speed and 
accuracy, allowing real-time prediction of up to 
9000 categories of objects. 
 
YOLOv3 [28] was introduced in 2018, further 
enhancing the detection capability for small 
objects. YOLOv3 replaces the backbone network 
with Darknet-53, enhancing feature extraction 
capabilities. It achieves multi-scale prediction 
through feature fusion with residual networks, 
improving the performance of small object 
detection. The use of the logistic algorithm's 
binary cross-entropy loss function for 
classification improves the accuracy of multi-
object classification. Object scores and class 
confidences are calculated using the Sigmoid 
function to achieve fine-grained object 
categorization. 
 
YOLOv4 [29], proposed in 2020, further 
optimized YOLOv3. The Neck section utilizes 
SPP (Spatial Pyramid Pooling) [30] and PAN 
(Path Aggregation Network) [31] modules for 
feature fusion, enhancing detection accuracy. 
The use of CutMix and Mosaic data 
augmentation, along with DropBlock 
regularization, reduces overfitting and improves 
generalization. The introduction of CIoU 
(Complete Intersection over Union) [32] 
localization loss enhances the accuracy of 
bounding box localization. YOLOv4 shows 
significant improvements in both detection          
speed and accuracy, making it suitable                       
for applications with high real-time                      
requirements. 
 
YOLOv5 series includes S, M, L, and X versions, 
suitable for different real-time application 
scenarios. Compared to YOLOv4, YOLOv5 
models are smaller, faster in computation speed, 
and have lower memory usage. YOLOv5 uses 

Mosaic data augmentation at the input end, 
reduces the number of GPUs used, calculates 
high-scoring anchors using adaptive anchor box 
computation, and uniformly resizes images to a 
suitable size using adaptive scaling. The 
Backbone section employs the NewCSP-
Darknet53 model, performs slicing operations 
with the Focus module, utilizes CSP1 _ X for 
feature fusion, and obtains fixed-length outputs 
with the SPP module. The Neck section 
incorporates FPN (Feature Pyramid Network) 
and PAN (Path Aggregation Network) modules, 
enhancing multi-scale feature expression and 
strong localization information. CSP2 _ X further 
strengthens the feature fusion from the previous 
step. 
 
YOLOX [33], proposed in 2021, draws inspiration 
from advanced anchor-free object detectors like 
CornerNet [34] and CenterNet [35] to further 
optimize YOLOv3 and YOLOv5. The addition of 
a decoupled head structure improves accuracy 
and convergence speed. By adopting anchor-
free structures and sample matching strategies, 
parameter count is reduced, enhancing                             
the detection performance for small objects. 
Utilizing data augmentation techniques such as 
Mosaic, MixUp [36], SimOTA (Optimal                     
Transport Assignment) [37], and regularization 
techniques enhances the model's robustness. 
YOLOX balances accuracy and speed,                
making it suitable for various application 
scenarios. 
 
YOLOv6 [38], dedicated to industrial applications, 
optimizes the network structure to fully utilize 
hardware computing power. YOLOv6 improves 
the network structure by re-optimizing the 
backbone network based on hardware-aware 
neural network design principles, leveraging 
hardware computing power with strong 
representational capabilities and higher 
parallelism. On the Neck side, it designs Rep-
PAN (Representation-PAN) [39] and introduces 
RepBlock to ensure efficient inference and better 
multi-scale feature fusion capabilities. On the 
Head side, it retains YOLOX's decoupled head 
design but improves the decoupled head 
structure with Hybrid Channels strategy for 
streamlined design, maintaining detection 
accuracy while reducing latency. To further 
enhance detection performance, it introduces 
self-distillation strategies in regression and 
classification tasks, utilizes SimOTA label 
assignment strategy and SIoU (Scylla-IoU) [40] 
bounding box regression loss function to reduce 
regression freedom, accelerate network 
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convergence speed, and improve regression 
accuracy. 
 

YOLOv7 [41], focusing on model architecture 
optimization and training process optimization, 
addresses the issues of model 
reparameterization and dynamic label 
assignment in object detection. It proposes 
planned reparameterization models and a guided 
label assignment method from coarse-grained to 
fine-grained for target detection. The YOLOv7 
algorithm introduces a cascaded model scaling 
strategy to generate models of different sizes, 
reducing parameter count and computational 
load, enabling real-time object detection. When 
trained on large datasets, it achieves higher 
accuracy in detection with overall performance 
improvements. However, its network                   
architecture is relatively complex, requiring 
significant computational resources for training 
and testing, and it shows poorer                             
detection performance in small objects and 
dense scenes. 
 

YOLOv8 supports multiple visual tasks, 
integrating algorithms for pose estimation, object 
detection, image classification, and instance 
segmentation. It combines numerous state-of-
the-art (SOTA) technologies and is highly 
scalable, supporting other YOLO versions and 
algorithms beyond YOLO. YOLOv8's backbone 
network and Neck section use the C2f structure 
with a richer gradient flow, combining high-level 
features with contextual information.                        
Different channel numbers are set for models of 
different scales, enhancing the overall model 
performance. The detection head uses a 
decoupled head structure to separate detection 
and classification, independently handling                    
visual tasks. The loss function employs binary 
cross-entropy for classification loss, DFL 
(Distribution Focal Loss), and CIoU Loss for 
regression loss, improving object detection 
performance, especially for detecting smaller 
objects. 
 

YOLOv9 [42] is a new generation advanced 
object detection system introduced by research 
teams from institutions such as the Academia 
Sinica in Taipei and the Taipei Tech University. It 
is an improvement over its predecessor versions, 
aiming to address information loss in deep 
learning and enhance the model's performance 
across various tasks. YOLOv9 introduces PGI, a 
through-assisted reversible branch that 
generates reliable gradient information to update 
network parameters, resolving information loss in 

deep networks to improve training efficiency and 
model performance. YOLOv9 designs a new 
lightweight network architecture called GELAN, 
based on gradient path planning. By optimizing 
computational blocks and network depth, it 
enhances the model's parameter utilization and 
inference speed. 
 

4.3 SSD Series Algorithm 
 
Integrating the concept of regression into object 
detection has provided a new improvement 
approach for object detection algorithms. Liu et al. 
[43] proposed the SSD (Single Shot Multibox 
Detector) algorithm, combining the idea of 
extracting multiple candidate regions as regions 
of interest (ROI) from Faster R-CNN with the 
regression concept from YOLO. This integration 
partially addresses YOLO's shortcomings in 
recognizing small objects and insensitivity to 
scale. 
 
The SSD model suffers from the issue of 
repeatedly detecting the same object, leading to 
increased computational complexity. To address 
this problem, Jeong et al. [44] proposed the 
RSSD algorithm, which replaces the VGGNet 
backbone network with ResNet to achieve weight 
sharing in the classifier network, thereby 
improving training speed. Fu et al. [45] 
introduced the DSSD algorithm, based on the 
ResNet101 backbone network, implementing 
upsampling through deconvolution to enhance 
the detection accuracy of small objects. However, 
deepening the backbone network can slow down 
the training detection speed. Li et al. [46] 
combined the idea of Feature Pyramid Network 
(FPN) to propose the FSSD algorithm, 
connecting features from different scales and 
layers in the feature fusion module to generate a 
new feature pyramid for predicting the final 
detection results. In 2019, Shen et al. [47] 
integrated the concepts of SSD and DenseNet to 
introduce the DSOD algorithm, which reduces 
the parameter count without requiring additional 
data or pre-trained models. However, the 
hierarchical dense connections achieved through 
deep supervision may lead to feature 
redundancy and increased computational 
complexity. Also in the same year, Yi et al. [48] 
presented the ASSD algorithm, establishing 
feature relationships in the feature map space to 
learn useful regions based on global              
relationship information and suppress irrelevant                
information, providing a reliable basis for object 
detection. 
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Table 2. Performance comparison of one-stage target detection algorithms 
 

Algorithm Backbone FPS MAP/% 

VOC2007 VOC2012 COCO 

OverFeat AlexNet — 24.3 — — 
YOLO VGG16 45.0 63.4 57.9 — 
YOLOv2 DarkNet19 40.0 — — 21.6 
YOLOv3 DarkNet53 78.0 — — 33.0 
YOL0v4 CSPDarkNet53 66.0 — — 43.5 
YOLOv5 Focus+CSP 140.0 — — — 
YOLOx ModifiedCSPv5 57.8 — — 51.2 
SSD300 VGG16 46.0 74.3 72.4 23.2 
SSD512 VGG16 19.0 76.8 74.9 26.8 
R-SSD300 VGG16 35.0 78.5 76.4 — 
DSOD300 DS/64-192-48-1 17.4 77.7 76.3 29.3 
F-SSD300 VGGNet 65.8 82.7 82.0 27.1 

 

4.4 Algorithm Comparison 
 

The structure of the object detection network 
determines the initial advantages of the detection 
algorithm. For example, two-stage                         
detection algorithms have the characteristics of 
accurate localization and high detection   
accuracy, while one-stage detection algorithms 
have faster detection speeds. However, 
according to a unified evaluation metric, both 
types of detection algorithms are addressing 
structural deficiencies and aiming to improve                         
towards higher accuracy and faster detection 
speeds. Table 2 summarizes the performance of 
classic detection algorithms based on                         
deep learning under a unified evaluation                
metric. 

 
5. CONCLUSION 
 
Two-stage object detection algorithms have 
undergone improvements and optimizations in 
both detection accuracy and speed. Compared to 
single-stage object detection algorithms, two-
stage algorithms are slower in detection speed 
but hold an advantage in detection accuracy. 
Deep learning-based object detection algorithms 
have achieved significant improvements in both 
speed and accuracy compared to traditional 
methods, but there is still considerable room for 
development. 
 
This article first introduces traditional object 
detection algorithms. Next, it introduces deep 
learning-based object detection algorithms based 
on regression and candidate box classifications, 
focusing on key representative algorithms, 
analyzing network structures, and comparing 
their strengths and weaknesses. Lastly, it 
discusses the directions for future improvements 

in practical applications of object detection 
algorithms, as follows: 
 

a. Research on feature networks more 
suitable for object detection tasks. The 
design of feature networks should consider 
the differences between classification and 
detection modules. One of the future 
research trends is how to design feature 
networks that meet the actual task 
requirements. 

b. Multi-modal object detection. Data fusion is 
an important trend in achieving                     
object detection applications. The 
complementary nature of multimodal                   
data can enhance the model's robustness 
and address issues like uneven                  
lighting. 

c. High-quality datasets. A good                          
dataset can better train excellent                     
models, so efforts should be made to 
acquire high-quality, diverse datasets for 
training. 

d. Model lightweighting. With the 
development of computer hardware and 
software and the increasing demand for 
functionality, model lightweighting is one of 
the major trends in the future. Developing 
more efficient lightweight network 
structures, such as Google's MobileNet 
framework [49], followed by 2nd and 3rd 
generations [49-51], ShuffleNet [52], 
ShuffleNet v2 [53], can achieve more 
efficient feature extraction with                          
limited computing power. 

e. Object detection based on GAN. Due to 
factors such as data acquisition costs, time 
constraints, and special scenarios, data 
scarcity may occur. Considering the use of 
GAN series networks, using a portion of 
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real-world data to generate virtual data can 
expand the dataset, covering a wider 
range of scenarios to improve detection 
performance. 
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