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Abstract 
Blasting is a cost-effective technique to break hard rock volumes by using ex-
plosives in the mining and civil engineering realms. Moreover, although 
blasting is a designed process and plays an indispensable role in these indus-
tries, it can also have multiple adverse environmental impacts. One such ef-
fect is flyrock, which poses risks to nearby machinery, and residential struc-
tures, and can even lead to injuries or fatalities. To optimize blasting efficien-
cy as well as restrict side effects, prediction of the blast aftereffects is vital. 
Therefore, the present work focuses on using two machine learning methods 
to predict the velocity of flyrock in the open pit mine. To address this issue, a 
comprehensive dataset was gathered from the open pit mine. Then, Decision 
Tree and Random Forest algorithms were employed to predict flyrock veloci-
ty. The Random Forest model demonstrated superior performance compared 
to the Decision Tree model. Nonetheless, the performance of the Decision 
Tree model was deemed satisfactory, as evidenced by its coefficient of deter-
mination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute 
percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable 
to conclude that tree-based algorithms can be effective in predicting flyrock 
velocity. 
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1. Introduction 

Bench blasting is a widely assigned method in surface mining engineering for 
breaking or moving hard rock. In this operation, 20% - 30% of the explosive 
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energy is used for rock breakage and movement, while most of the explosive 
energy is wasted and not being used effectively [1] [2]. The wasted energy is the 
main cause of the blasting-induced environmental impacts, including flyrock, air 
blast, and ground vibration, which are undesirable phenomenons in drilling and 
blasting [3]. 

Flyrock, the unwanted ejection of rock fragments from a blast site during bench 
blasting primarily caused by explosive energy, has three main mechanisms as ex-
plained in the studies (refer to Figure 1) (see [4] [5]). 
• Cratering: This occurs when explosive force creates a crater at the blast site, 

projecting rock fragments in various directions. 
• Face Burst: This happens when the blast energy is directed towards the ver-

tical bench face, causing rocks to be ejected from the face. 
• Rifling: Involves rocks being propelled in a specific direction, like a bullet, 

often due to improper stemming of blast holes or the explosive force follow-
ing a path of least resistance. 

Based on the range of projectile theory which can be used for estimating fly-
rock distance or range. The speed of flyrock directly influences its distances; the 
higher the flyrock velocity the greater the flyrock distance [6] [7]. On the other 
hand, accurately calculating flyrock distance requires looking at each characte-
ristic of flying rock such as flyrock velocity, diameter, and launch angle that af-
fects its range. 

According to multiple pieces of conducted research in this field, various pa-
rameters influence flyrock occurrence. The geological characteristics of the host 
rock, including its mass rating, unconfined compressive strength, density, and 
fracture density categorized into uncontrollable factors. The second group is 
controllable factors, which include blast design-related parameters such as bur-
den, spacing, bench height, powder factor, stemming, charge per delay, and hole 
diameter [5] [8]. 

To predict blasting-induced flyrock in open pit mines, empirical and artificial 
intelligence (AI) have been the most popular techniques applied during the past  

 

 

Figure 1. Three mechanisms of flyrock at bench blasting: face bursting, rifling, and cra-
tering. 
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three decades [3]. Between these, AI techniques are highly recommended in pre-
dictive tasks, such as flyrock prediction in blasting, due to their advantages. 
These include high accuracy, as AI models can find complex patterns in data 
that are not at once clear, leading to more precise predictions. Plus, AI models 
offer significant time-saving capabilities, as once trained, they can process and 
analyze large volumes of data much faster than conventional methods. Addi-
tionally, AI’s ability to manage complicated problems can be beneficial in fields 
like mining engineering, where variables like rock characteristics, blasting para-
meters, and environmental status are interdependent and intangible. However, it 
is important to note challenges, such as the need for quality data. 

A variety of artificial intelligence techniques employed to predict the distance 
of flyrock in bench blasting. For example, a study employed a fuzzy system to es-
timate the flyrock phenomenon in an iron mine in Iran, yielding promising re-
sults. This research involved analyzing a blasting dataset with parameters such as 
burden, spacing, hole depth, stemming, specific drilling, charge per delay, rock 
density, and powder factor. It is important to note, that other parameters like crack 
density and delay time, which might influence flyrock occurrence, not included in 
this study. The study named the powder factor and stemming length as the most 
influential factors, with rock density being the least impactful variable [9]. 

AI predictive models were developed to estimate flyrock distances in the 
Soungun open pit copper mine, utilizing a dataset of 245 samples including key 
blast parameters such as hole diameter, length, spacing, burden, stemming, 
powder factor, and specific drilling, although bench face conditions, rock densi-
ty, and unconfined compressive strength were not included. The comparison 
between the efficacy of Support Vector Machines (SVMs) and Artificial Neural 
Networks (ANNs) revealed that SVMs were more effective than ANNs in pre-
dicting flyrock distances, which ranged from 25 to 95 meters in the dataset [10]. 

A study introduced Artificial Neural Networks (ANN) for predicting flyrock 
in boulder blasting, emphasizing that powder factor, stemming, and charge 
length are the most dominant parameters influencing flyrock distance, while 
hole diameter, hole depth, burden, hole angle, and explosive per hole are less 
significant contributors. The authors conducted a comparative analysis between 
ANN and traditional empirical methods, finding that ANN showed superior ac-
curacy in predicting the distance of flyrock [11]. 

A novel approach for flyrock estimation, the ICA–ANN model, which inte-
grates the Imperialist Competitive Algorithm (ICA) with Artificial Neural Net-
works (ANNs), was proposed, utilizing 113 samples in the blasting dataset to 
determine that the powder factor and charge per delay are the most effective 
factors among all inputs. However, critical rock properties like uniaxial com-
pressive strength, tensile strength, and bench face conditions were not consi-
dered in this analysis [12]. 

In a study using seventy-six data points, multiple predictive models were built, 
including a Random Forest model for air blast prediction, where the focus was 
more on blast design issues than rock mass characteristics. The study considered 
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inputs such as hole depth, stemming, burden, spacing, the maximum charge per 
delay, powder factor, and flyrock distance, while the output measured was air 
overpressure [13]. 

In another study, a novel kernel-based extreme learning machine was em-
ployed for flyrock prediction, where data from three quarries in Malaysia were 
analyzed. The study focused on inputs such as spacing, burden, stemming 
length, and powder factor, with flyrock distance as the target. However, critical 
rock properties like unconfined compressive strength and Brazilian tensile 
strength were not considered. The analysis revealed that stemming length was 
the most significant factor, while spacing had the least impact [5]. 

Twenty-four algorithms for flyrock prediction were investigated, where the 
algorithms were tested using three statistical indexes (AARE, R2, and RMSE) to 
check the performance of the models and compare the results. The study focused 
on spacing, burden, powder factor, stemming, and density as inputs, with fly-
rock distance as the output. While a considerable array of algorithms was em-
ployed, the range of their inputs remains limited, with the study concluding that 
spacing is the most critical point in flyrock modeling [14]. 

Based on the literature, numerous researchers have attempted to predict fly-
rock distance, ground vibration, and air blast using distinct types of machine 
learning algorithms with favorable outcomes. Nevertheless, to the best of my 
knowledge, few studies have specifically focused on the characteristics of flyrock, 
such as elevation angle and velocity. Another interesting point is that they hig-
hlighted different parameters as the most influential factors in flyrock occur-
rence. Given these approaches, it can be concluded that flyrock prediction is 
site-specific, and it may require studying and constructing predictive models tai-
lored to the blasting site in terms of environmental impact, particularly flyrock. 

In this research, we investigate the prediction of flyrock velocity by applying 
two machine learning algorithms, namely Decision Tree and Random Forest. By 
building two tree-based predictive models for flyrock velocity, this study aims to 
contribute to defining a safety zone for bench blasting at the open pit mine. 
Furthermore, the second goal is to assess and compare the capabilities of both 
models in predicting flyrock velocity. 

This paper comprises four main divisions, including the data, which covers 
data pre-processing and collection; the methodology, explaining the employed 
approach, focusing on machine learning along with evaluation matrixes like 
MSE, R2, and MAPE; the results and discussion, which elaborate on the main 
finding of the study, including model comparison and sensitive analysis; conse-
quently, the final section sums up the research outcomes and discuss the limita-
tions and future work. 

2. Data 
2.1. Data Collection 

The simplified geological map (Figure 2) depicts the location of the Mine site at 
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Kagoshima, southern of Japan’s Kyushu Island. Kagoshima has long been known 
as a gold-producing prefecture in Japan. Its gold deposits are classified into veins 
and massive deposits. The host rocks of the mine deposit include pyroxene an-
desite, volcanic conglomerate tuff, tuffaceous conglomerate, and plagioclase tuff, 
with thin layers of tuffaceous mudstone. The thickness of each layer is dozens of  

 

 
Figure 2. Simplified geological map of the study area. 

 

 
Figure 3. Top right: installed high-speed camera, three other pictures show the bench 
before, during, and after blasting. 
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meters. The mining operation runs through open pit bench mining. After drill-
ing with crawler drills, the ore is blasted and transported, making a production 
rate of approximately 8000 tons/month. 

To understand the flying behavior of the blasted rock, a number of blasts were 
conducted under various blasting standards and bedrock conditions. First, the 
face surface before blasting was photographed to figure out the bench face con-
ditions, and the cracks on the face surface were discovered. Then, the installed 
camera parallel to the bench face was operated to capture the flying behavior of 
the blasted rock including flyrock velocity immediately after blasting (Figure 3). 
A high-speed camera with a shooting speed (s): 1/1000, Number of shots: 8841 
(upper limit), and shooting times: 8.841 (at 1/1000s) was used (Figure 4). 

The rest of the data gathered through various processes including laboratory 
tests, and site observation. Laboratory tests supplied data on rock density, un-
confined compression strength, Brazilian tensile strength, point load, and rock 
quality designation. On-site parameters, such as burden, spacing, bench height, 
powder factor, charge volume, and drilling length, were recorded at the mine 
site. The entire data collection process has been repeated multiple times until a 
suitable number of samples have been obtained. 

2.2. Data Preprocessing 

Once the data have been collected, abnormal and missing values in the dataset 
have been identified and managed. For this purpose, we adopted the mean im-
putation strategy, and no abnormal values were found within the dataset [15]. 
However, for the missing values in the target column and their corresponding 
cells in other columns, a different strategy is adopted: these are removed rather  

 

 
Figure 4. High-Speed Photography Equipment Setup: (a) Camera, (b) Computer,(c) Shut-
ter, (d) Cables,(e) Camera Stand and (f) Storage containers for transporting and protecting 
equipment. 
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than being filled using the mean method. Feature selection is executed to figure 
out the most effective elements. Due to the process of feature selection, variables 
such as drilling length, rock quality designation, and point load strength have 
been omitted from the later analysis. The dataset before and after preprocessing 
is depicted in (Figure 5). 

The strength of the linear relationship between inputs and output has been 
plotted to distinguish which factors strongly influence the flyrock velocity. Ref-
erence to (Figure 6), variables such as crack density, charge volume, and powder 
factor manifest a positive correlation with the output. In contrast, variables like 
the burden and Brazilian tensile strength demonstrate a negative relationship. The 
rest of the variables show a weak linear relationship with the target parameter. 

In total, eighty-three blasts at the open pit mine were originally recorded, en-
compassing thirteen blast-related parameters. However, following the data pre-
processing and feature selection, the analysis was refined to include only seven-
ty-two samples, focusing on nine specific parameters, thereby excluding some of 
the initially recorded data. Descriptive statistics for the dataset, including varia-
ble names, units, number of experiments, mean, standard deviation, minimum 
values, and maximum values, are presented in (Table 1). 

Data splitting into training and test sets is crucial before applying machine 
learning algorithms [16]. Hence, inputs and outputs were separated in the dataset.  

 

 
Figure 5. Data preprocessing: Before and after overseeing missing values, and features selection. 
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Figure 6. Linear relationship of features considering a scale between positive and negative one. 

 
Table 1. Data statistic description including number of experiments, mean, standard 
deviation, min and max values, and recorded parameters. 

Number Feature count mean std min max 

1 B 72 2.17 0.33 1.5 3 

2 S 72 1.98 0.1 1.5 2 

3 BH 72 8.31 2.11 3.5 11.5 

4 PF 72 0.14 0.02 0.1 0.24 

5 CV 72 111.9 51.2 37.2 209.5 

6 UCS 72 102.8 72.46 2.64 303.98 

7 BTS 72 9.99 6.18 0.48 26.03 

8 CD 72 0.57 0.21 0.18 1.38 

9 D 72 2174.54 240.58 1505.49 2566.52 

10 MIV 72 20.3 9.97 7.13 48.17 

 
Then, it is divided into a train set and a test set, as illustrated in (Chart 1). The 

output of this analysis is the velocity of flyrock, and there are nine inputs as 
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listed in the table above. The train set holds approximately 80% of the total da-
taset employed for training the two machine learning algorithms. On the other 
hand, the test set making up almost 20% of the total dataset, was used for the as-
sessment of the machine learning performance. 

Through these steps, data preprocessing has been completed, and the data is 
now ready to be implemented into machine learning algorithms for the devel-
opment of predictive models. Data preprocessing is essential for machine 
learning to ensure data quality, scrub the data, and prepare the data because the 
modality of the inputs directly influences machine learning performance [17] 
[18]. 

3. Research Methodology 

The methodology employed in this study is described in this section, which 
concentrates on the prediction of flyrock velocity through the utilization of two 
machine learning algorithms: Decision Tree and Random Forest. Specifically, 
the research procedure is classified into three leading steps, including data prep-
aration, model development, and model performance evaluation, as presented in 
(Chart 2). Each of these steps plays a striking role in attaining the investigation 
goals. 

The research began with collecting blasting data from the open pit mine, fol-
lowed by data preprocessing and feature selection. This process also included 
splitting the data into training and testing sets. The detailed methodologies and 
rationales for these steps are thoroughly explained in the data section of the re-
search. 

After the data collection and preparation, the study proceeded to develop re-
search models. Two algorithms; Decision Tree and Random Forest regressions 
were developed to predict the velocity of flyrock. 

 

 
Chart 1. Training data and test data with their portion percentage. 
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Chart 2. Research method sequential steps: Data preparation, train-test split, machine 
learning methods application, evaluation metrics, and resultant outcomes. 

 
Machine learning is universally divided into three major branches: Supervised 

Learning, where models are trained on labeled datasets to learn the relationship 
between input and output; Unsupervised Learning, which involves training 
models on data without predefined labels, enabling the model to identify pat-
terns and structures on its own; and Reinforcement Learning, where models 
learn decision making through actions in an environment and receive feedback 
in the form of rewards or penalties [19]. In addition, the machine learning in the 
targeted study is supervised learning, which is operated through Random Forest 
and Decision Tree. These algorithms have been used in regression tasks involv-
ing numerical data that resulted in qualified modeling and accurate predictions 
[20] [21]. Since our data is numeric with consideration of the regression method 
in the study, that is why we picked out Random Forest and Decision Tree. 

Firstly, Decision Tree regression is a predictive modeling approach where a 
tree-like structure is constructed to make decisions about the target variable; a 
simplified Decision Tree is presented in (Figure 7). Each internal node in the 
tree stands for a decision based on a specific feature, and each leaf node provides 
the predicted outcome. The tree is built by recursively partitioning the dataset, 
optimizing for the reduction of variance in the target variable within each subset. 
While the Decision Tree is known for its interpretability, it is important to note 
that it may be prone to overfitting [22] [23]. 
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Figure 7. Structure of a Decision Tree, which is composed of a root node, decision nodes, and leaf nodes. 

 
The machine chose a maximum depth of six in my Decision Tree model, as 

displayed in (Figure 8), whereas the recommended interval for choosing the 
maximum depth is set between 1 and 16, to find the most suitable depth. In-
creasing the maximum depth of a Decision Tree can lead to improved training 
accuracy due to its ability to capture complex patterns, but it also raises the risk 
of overfitting and reduces testing accuracy. 

Secondly, Random Forest is an ensemble learning technique that can address 
the limitations of individual Decision Tree. It builds multiple Decision Trees by 
introducing randomness during the training process. Each tree is trained on a 
random subset of the features and data points, and their predictions are com-
bined through averaging for regression tasks. The ensemble characteristics can 
help mitigate overfitting and enhance the model’s performance [24]. 

In general, Decision Tree and Random Forest regressions offer flexible and 
interpretable models for predicting labeled datasets. While Decision Tree pro-
vides transparency, Random Forests enhance predictive accuracy by leveraging 
the strength of multiple trees and introducing randomness during the training 
process. These models find applications in diverse domains, including finance, 
healthcare, and engineering fields [25] [26]. 

The last step of the research method section is to discuss machine learning 
performance evaluation. Three evaluation matrixes have been elected to evaluate 
the predictive capabilities of the implemented machine learning methods. 

Coefficient of determination (R2): It is a statistical measure of the proportion of 
variance in the dependent variable (target) that is explained by the independent fea-
tures. The formula for the coefficient of determination is provided in (Equation (1)). 
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Figure 8. Decision tree model for prediction of Flyrock velocity at bench blasting with a 
max depth of six. 

https://doi.org/10.4236/ojapps.2024.142019


E. Rawnaq et al. 
 

 

DOI: 10.4236/ojapps.2024.142019 279 Open Journal of Applied Sciences 
 

where iy  is the actual or observed value for the ith data point, ^
iy  is the pre-

dicted value for the ith data point, n is the total number of samples, and y−  is 
the mean of the actual values ([27]). 

R2 = 0: A regression model indicates that the model fails to capture any of the 
explanatory power of the independent variables with respect to the dependent 
variable. 

R2 = 1: A regression analysis signifies that the regression model explains 100% 
of the variance in the dependent variable. This indicates a perfect fit between the 
model predictions and the observed data. All observations fall exactly on the re-
gression line. 

0 < R2< 1: The model explains a fraction of the total variability in the depen-
dent variable. The value closer to one, the better the model for explaining de-
pendent variables based on inputs [28]. 

Mean squared error (MSE): This is a commonly used matrix to measure the 
average squared differences between actual and predicted values [29]. It gives 
higher weights to large errors. The formula for MSE is: 

( )2^
1

1MSE n
i ii y y

n =
= −∑ ,                    (2) 

where iy  is the actual or observed value for the ith data point, ^
iy  is the pre-

dicted value for the ith data point, and n is the number of samples. 
A lower MSE indicates a better fit of the model to the data. The smaller the 

MSE, the better the model is at predicting the target variable. When comparing 
models, the one with the lower MSE is preferred. 

Mean absolute percentage error (MAPE): this matrix calculates the percentage 
difference between actual and predicted values, providing an idea of the relative 
error. The formula for MAPE is: 

^

1

1MAPE 100%i in
i

i

y y
n y=

−
= ×∑ ,                 (3) 

where iy  is the actual value or observed value for the ith data point, ^
iy  

represents the predicted value for the ith data point, and n is the total number of 
samples or data points. 

The mean absolute percentage error (MAPE) can be interpreted as follows 
[30] [31]: 
• MAPE < 10%: Indicates highly accurate forecasting. 
• Ten percent ≤ MAPE < 20%: Reflects good prediction. 
• Ten percent ≤ MAPE < 50%: Suggests reasonable estimation. 
• MAPE ≥ 50%: Demonstrates inaccurate predictive capability. 

To gain a comprehensive knowledge of the model’s prediction accuracy, these 
metrics were utilized to evaluate the models’ performance on test datasets. Mod-
els with lower values of MSE, and MAPE, and higher values of R2 indicate better 
performance. 

As stated, the methodological framework of the study involves three major 
steps that are fundamental for designing predictive models using machine 
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learning. These steps are data preparation, model development, and model per-
formance evaluation, respectively. 

4. Result and Discussion 

The application of Random Forest and Decision Tree algorithms for flyrock ve-
locity prediction at bench blasting has yielded promising outcomes, as have been 
appraised by three frequently used evaluation metrics for machine learning in 
regression tasks. 

The bar chart (Figure 9) exhibits a comparison of the performance metrics 
between the Decision Tree and the Random Forest models regarding predicting 
the velocity of flyrock. The performance evaluation metrics are R2, MSE, and 
MAPE. 

Coefficient of determination (R2): Regarding the bar chart, the blue-colored 
metric indicates the proportion of the variance in the dependent variable that is 
predictable from the independent variables. As calculated scores on the bar plot, 
the Random Forest model owns a higher R2 value (0.92) than the Decision Tree 
(0.83), suggesting it can better predict flyrock velocity based on the given fea-
tures. 

The orange-highlighted mean squared error (MSE) measures the average of 
the squared difference between the estimated and actual values. Lower values of 
MSE indicate better performance. Comparative analysis reveals that the Random 
Forest model manifests a reduced MSE than the Decision Tree, indicating supe-
rior predictive accuracy. 

The mean absolute percentage error (MAPE) is presented in green on the  
 

 
Figure 9. Three evaluation metrics include r-squared, mean square error, and mean ab-
solute percentage error. 
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above bar chart. It is one of the most frequently used metrics for performance 
evaluation in machine learning. In this scenario, the outcome derived from this 
metric demonstrates that both models exhibit substantial predictive proficiency. 

At the end of the evaluation process, it can be extracted that the Random For-
est model exceeds the Decision Tree in predicting the flyrock velocity when eva-
luated by R2 and MSE. However, depending on the relative amount of MAPE, 
both models perform somehow similarly. Eventually, it could be implied that the 
Random Forest offers higher predictability. 

Feature importance in machine learning refers to techniques used to deter-
mine how much each input variable (or feature) contributes to the predictive 
power of a model. In models like Random Forest, feature importance is quanti-
fied, usually on a scale from 0 to 1, indicating the relative importance of each 
feature in making accurate predictions. 

Through (Figure 10) analysis, features such as burden, crack density, and 
powder factor are identified as extremely significant in predicting flyrock veloc-
ity. Their higher values suggest that variations in these parameters can have a 
considerable effect on the predicted outcome. Conversely, features with lower 
importance scores, such as bench height, appear to contribute less to the model’s 
predictive power. Other features demonstrate a moderate influence, contributing 
to the model’s overall predictive capabilities in a balanced manner. 

These findings, compared to other studies on the flyrock phenomenon, reveal 
both similarities and differences. To give examples, research focuses attention on 
powder factor and hole depth as critical factors, while burden and spacing are  

 

 
Figure 10. Feature importance based on their influence on the target/ output considering 
random forest regression. 
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deemed less influential in predicting flyrock distances using tree-based algo-
rithms, including Random Forest [22]. 

Another conducted study highlights the considerable influence of powder 
factor and blast ability index on flyrock behavior, pinpointing the consideration 
of site-specific geological condition as a key factor in assessing the distance of 
flyrock produced by blasting. They also clearly stated that their finding cannot 
be trustable for other mining sites [32]. 

The feature importance technique collaborates in understanding which fea-
tures are the most sensitive and can guide feature selection for improving model 
performance. In practical terms, focusing on features with higher importance 
values can often lead to more efficient use of resources and better model opti-
mization. 

A comparative analysis of Random Forest and Decision Tree models in terms 
of their ability to generalize on the training dataset depicted in (Figure 11). In 
the visualization, those data points that are located close to the ideal line express 
high accuracy. Since larger portion of the data points are clustered near to the 
perfect prediction line, this indicates that both models have effectively discerned 
the underlying pattern within the dataset. This proximity to the ideal line sug-
gests a prominent level of accuracy and predictive proficiency from both algo-
rithms, considering the training set. 

Considering the test set data, in the Random Forest model, the data points 
tightly congregate near the perfect prediction line, indicating a higher precision 
in forecasting in unseen data (Figure 12). Maybe because it employs a method 
that aggregates predictions from multiple Decision Tree, which often results in 
more accurate results. 

Conversely, the Decision Tree model displays several outliers (Figure 12), 
suggesting less reliability in unseen data predictions. It can be a reason to men-
tion that the Decision Tree has a small level of overfitting because it has shown 
capabilities on unseen data, but not as good as on training set. 

 

 
Figure 11. Random Forest regression and Decision Tree regression generalization on training data. 
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Figure 12. Comparison of Decision Tree and Random Forest prediction accuracy on test data. 
 

To sum up, in training set bot models show similar generalizations. However, 
The Random Forest model performs better compared to the Decision Tree mod-
el on the unseen data set. Further supporting this clam, evaluation metrics such 
as R2 and Mean Squared Error (MSE), calculated on the test set, also affirm the 
enhanced capabilities of the Random Forest model over the Decision Tree. Based 
on this evidence our suggested model for flyrock velocity prediction is the Ran-
dom Forest. 

Based on the findings of this study, and using the principles of projectile 
theory stating maximum range will occur at 45 degrees, it is possible to calculate 
the maximum distance of flyrock projection at bench blasting. This approach 
offers a new method for determining safety zones in mining blasting. This me-
thod not only helps in mitigating the risk of flyrock induced accidents but also 
contributes to more efficient planning and execution of mining. 

5. Conclusions 

Researchers have dedicated their efforts to employing machine learning tech-
niques for predicting flyrock occurrence during mine blasting, with several goals 
including predicting flyrock distance, ground vibration, and air blasts aiming to 
increase mining safety. However, accurately predicting flyrock remains chal-
lenging due to the influence of numerous factors, such as the geological proper-
ties of the rock and the adopted blasting standards. Meanwhile, the flyrock itself 
has distinct characteristics, including velocity, angle of projection, and size or 
diameter, adding complexity to the prediction task. 

This study specifically focused on predicting the velocity of flyrock using Ran-
dom Forest and Decision Tree. The Random Forest algorithm has demonstrated 
slightly more favorable outcomes in terms of predictive capability, evidenced by 
evaluation metrics result in unseen data. 

The Decision Tree exhibits an r-squared value of 0.83, a mean squared error 
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value of 4.2, and a mean absolute percentage error value of 5.6, which are still 
acceptable based on few conducted research. It can be said that tree-based algo-
rithm can effectively contribute to flyrock velocity prediction. 

In this study, the scope was confined to two machine learning algorithms, uti-
lizing a modest dataset comprising nine features and seventy-two samples. 
Therefore, it is recommended that future studies investigating flyrock incorpo-
rate a more extensive array of algorithms and a significantly larger dataset. Ad-
ditionally, focus on feature like burden, and powder factor will benefit any study 
on flyrock. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
R2   Coefficient of determination. 
MSE  Mean squared error. 
MAPE  Mean absolute percentage error. 
MIV   Maximum initial velocity. 
RQD  Rock quality designation. 
PF   Powder factor. 
BTS   Brazilian tensile strength. 
UCS  Unconfined compressive strength. 
CD   Crack density. 
B   Burden. 
S   Spacing. 
D   Density. 
CV   Charge volume. 
BH   Bench height. 
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