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ABSTRACT 
 

Breast cancer consider as the second cause of death around the world after heart disease, and it is 
the primary cause of death for women. Timely detection of breast cancer plays a crucial role in 
lowering mortality rates, as it enhances the patient's prospects of survival through prompt diagnosis 
and appropriate treatment. The discovery of the mitotic number is one of the necessary procedures 
that must be performed for a person suffering from breast cancer because it is an important marker 
for determining the aggressiveness of the tumor. According to the Nottingham scale, it gives 3 
degrees to determine the degree of the tumor, whether it is of the first degree, the second degree, 
or the third degree of seriousness. Deep learning algorithms have many contributions in the 
medical fields, including in the field of mitotic number discovery, as the mitotic number process is a 
difficult and tiring task that requires time and effort from pathologists (diagnostic doctors), because 
the work environment is under microscopes with high magnification degrees, for this reason deep 
learning techniques were used to reduce the burden on diagnostic doctors and save time for the 
patient to know the result of his examination, as the biopsy results in developed countries take from 
10 days to two weeks for the results to appear. In this survey, we will evaluate the deep learning 
techniqus employed for mitotic number detection. 
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1. INTRODUCTION 
 
“Breast cancer is a significant global health 
concern, as highlighted by a recent report from 
the World Health Organization (WHO)” [1]. 
According to the report, cancer, including breast 
cancer, is the second leading cause of death 
worldwide, following cardiovascular diseases.and 
the danger of cancer is that it can multiply and 
spread to affect other healthy parts of the body 
(away from the parts) diagnosed such as (lungs, 
colon, stomach, ...). Breast cancer, in particular, 
ranks as the most prevalent cancer globally. The 
WHO report estimates approximately 2.59 million 
new cases of breast cancer each year, resulting 
in approximately 626,679 deaths. Indeed, studies 
have demonstrated that breast cancer [2]  is a 
prevalent disease that affects a significant 
number of women. According to Cancer Staging 
research, approximately one in eight women in 
the United States will develop invasive breast 
cancer at some stage of their lives [2]. Early 
diagnosis of breast cancer is an important factor 
to reduce the number of deaths[3] and to limit the 
spread of cancer from the breast to other parts of 
the body, because the treatment plan depends 
mainly on the degree of cancer and diagnosis; 
Early diagnosis and timely treatment can 
increase the patient's chance of survival [3].   To 
determine the grade of breast cancer [4], the 
World Health Organization recommends using 
the Nottingham grading system for tumor grading 
[5]. “The Nottingham grading system is derived 
from the assessment of three major 
morphological features: nuclear atypia, mitotic 
count and tubule formation. A karyotype is 
described as a malformation of the nuclei in a 
population of cells and is characterized by the 
following factors: the size of the nuclei, the 
density of chromatin, the thickness of the nuclear 
membrane, the regularity of the nuclear contour, 
and the karyocytosis (size difference within the 
group of nuclei). Tubule composition is described 
as a percentage of the cancer cells that are in 
the formation of regular tubules. When cancer 
becomes more aggressive, cancer cells multiply 
via mitosis (the process of cell division), which 
makes mitosis an important prognostic factor. 
For this survey we will focus on the most 
documented and most prominent feature 
involved in accurate diagnosis of breast cancer 
which is the mitotic number, as the process of 
mitotic cell division is directly related to the 
diagnosis of tumors as it determines the 

aggressiveness of the tumor” [6]. Mitosis is 
indeed the fundamental process of cell division, 
through which a single cell divides into two 
genetically identical daughter cells [7] and is how 
fast the tumor is growing spread to other parts of   
the body. 
 

  
 

Mitotic counting needs little or no professional 
explanation [2], due to simple scales used to 
determine proliferation rates using a mitotic count 
for each high power field (HPF's: the Visible area 
under the maximum magnification power of the 
microscope): 0-9 dilutions every 10 HPF is low 
prevalence, 10-19 dilutions per 10 HPF moderate 
spread and over Of 19 per 10 HPF it is a severe 
prevalence. The accuracy of recording the other 
two factors, which are more subjective in nature, 
relies heavily on the pathologist's level of 
experience. [9]. Despite the prevalence of breast 
cancer, the current methods of diagnosing breast 
cancer are very primitive. Trained pathologists 
are needed to examine hundreds of high-energy 
fields of tissue images. Biopsies often take two to 
ten days for results to return patient [4]. Given 
the increasing number of breast cancer cases 
[4], the traditional method the diagnosis of breast 
cancer is unsustainable. The computational 
approach would be a much time-saving and cost-
effective alternative, allowing streamlined 
diagnosis of pipeline breast cancer. This would 
allow the spread of sick services to poor areas 
and improving care centers worldwide. “Digital 
pathology has indeed emerged as a prominent 
tool in the field of pathology. It involves the 
utilization of specially designed microscopes that 
are equipped with powerful cameras to capture 
high-resolution images of high-power fields 
(HPFs). These digital images can be stored, 
analyzed, and shared electronically, enabling 
pathologists to review and interpret the images 
remotely. These images can be transmitted over 
the Internet and stored securely in a digital 
format for future reference. Digital pathology has 
opened tremendous opportunities for the 
application to apply computational techniques in 
pathology.  Computers have the potential to take 
over many laborious and repetitive tasks 
currently performed by pathologists, with the 
ability to achieve or even surpass human 
accuracy” [10,11]. The introduction of whole slide 
imaging (WSI) technology [12], which can scan 
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and digitally store entire pathology slides at high 
magnification, has accelerated the transition to 
digital pathology.. Recently, artificial intelligence 
technologies have made many contributions to 
various aspects of life, including the medical 
field. Nowadays, the majority of operations are 
automated and can serve as a second opinion 
system in diagnosis or as supportive tools for 
doctors in suspicious cases. Artificial intelligence 
techniques can be employed to detect the 
number of mitotic figures. However, there are 
several challenges that need to be addressed, 
such as [3], it is Difficulty distinguishing mitotic 
cells from normal cells without pathological 
knowledge and use from high-resolution 
microscopes because mitotic cells have texture 
and morphological characteristics Similar to 
normal cells, as shown in Fig. 1. “Moreover, 
certain cell organelles, like apoptotic cells, 
possess a resemblance to mitotic cells in their 
appearance. The cleavage process comprises 
four distinct stages, each with its own distinct 
characteristics. Consequently, the development 
of robust techniques is necessary to accurately 
detect various types of mitotic cells. Maintaining 
a standardized data preparation environment 
poses another significant challenge” [13]. Careful 
execution of biopsy, slide preparation, and 
scanning procedures is essential, as any issues 
during these processes can lead to subpar 
performance and data discrepancies [14]. 
However, these challenges include not only 
computer diagnosis, but also challenges for 
manual diagnosis, so it is necessary to develop 
powerful techniques in artificial intelligence to 
detect the mitotic number. Deep neural networks 
DNN that are used in deep learning are 
considered one of the most important areas of 
their use in the task of detecting multi-scale 
patterns, and the most important of these 
networks is the convolutional neural network 
CNN, where the structure of this network can be 
adapted to extract high-level features from 
images to be used in the task of object detection 
such as detecting cells mitotic. One example of 
this model is the Faster-RCNN proposed by [15], 
which uses features from an image to produce 
spatial coordinates for bounding boxes linked to 
certain categories. 
 

2.  METHODOLOGICAL APPROACHES 
 

2.1 The Techniques for Detecting Mitotic 
Cells Based on the Extracted 
Features 

 

There are three main categories of techniques 
for detecting mitotic cells, which are based on the 

features extracted from regions of interest 
(ROIs): handcrafted-features-based, deep-
features-based, and combined features (a 
combination of handcrafted and deep features). 
In the following sections, we will provide an 
overview and explanation of each of these three 
categories. 

 
2.1.1 Mitosis detection using handcrafted 

features 

 
Handcrafted features involve the extraction of 
features from regions of interest (ROIs) using 
traditional image-processing techniques. These 
features encompass attributes like color, 
morphology, and texture. Subsequently, machine 
learning classification algorithms, such as 
artificial neural networks and support vector 
machines (SVM), are applied for classification, 
as illustrated in Fig. 2. This approach has 
demonstrated promising performance in research 
and can be utilized in smaller-scale applications. 
In their study, Huang and Lee [16] introduced a 
novel algorithm called Exclusive Independent 
Component Analysis (XICA). This algorithm is an 
extension of the conventional Independent 
Component Analysis (ICA) method but focuses 
on identifying differences between two classes of 
training patterns (referred to as the exclusive 
basis set) instead of the major independent 
components. The automated detection of mitosis 
is performed based on the residuals obtained 
from computing the relative exclusive basis set of 
the training patterns. The proposed approach 
was tested using an image set provided by the 
ICPR 2012 contest. The results showed an 
accurate rate of 100% in training patterns and 
83.513% in testing patterns. Khan et al. [17] 
presented an approach that use statistical 
methods to detect mitosis on an ICPR 2012 
dataset. This algorithm uses a Gamma-Gaussian 
mixture model to pixel intensities in mitotic and 
non-mitotic regions, and then this proposed 
algorithm reduces false positives using a context-
aware post-processing in order. This method, 
despite its simplicity, showed its effectiveness in 
the detection of mitotic cells. Irshad presented a 
technique [18] ranked second in the Mitosis 
Detection Challenge of the International 
Conference on Pattern Recognition (ICPR) 2012. 
In the beginning, this technique relies on 
segmenting all the expected objects and then 
extracting the statistical and morphological 
characteristics and classifying them using the 
decision tree classifier. Paul et al. [19] they used 
regenerative random forest tree classifier, where 
this classifier achieved excellent results when 
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applied to the features of intensity and texture, 
but this technique cannot be used practically in 

clinical application because it requires large 
computational resources. 

 
Table 1. [8] Nottingham grading system (NGS) parameters and     scoring criteria for breast 

cancer grading  
 

Parameter Score Score criteria 

 
Mitosis count 

1 0-9 mitotic cells in 10 consecutive high power fields (HPFs) 
2 10-19 mitotic cells in 10 consecutive HPFs 
3 >=20 mitotic cells in 10 consecutive HPFs 

Nuclear atypia 1 Small, uniform, and regular nuclei 
2 Moderate variations in size and shape 
3 Multiple nucleoli with prominent variation 

Tubule formation 1 >75% of the tumor forms tubule 
2 10-75% of the tumor forms tubule 
3 Multiple nucleoli with prominent variation 

 

 
         

Fig. 1. Examples of (a) mitotic and (b) non-mitotic cells [3] 
 

 
 

Fig. 2. Typical workflow of a method using handcrafted features [9] 
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2.1.2 Mitosis detection using deep features 
 
Deep features are extracted from ROIs by using 
deep-learning techniques as shown in Fig. 3.  Li 
et al. presented a technique [6] that initially 
detects mitotic cells using Faster region 
convolutional neural network (Faster R-CNN), 
where it uses a feature extraction grid using the 
visual geometry group (VGG)-16. Then the 
detection results were improved using the 
residual network (Resnet)-50. This technology 
based on Faster R-CNN can be used in clinical 
practices because it is very fast with GBU 
computing. Ciresan et al. presented a technique 
[20] that won ranked first in the competition ICPR 
2012 in the task of detecting mitosis. This 
technique extracts deep features from ICPR 
2012 images using a sliding window approach. 
This technique cannot be used in clinical practice 
because the sliding window approach is 
computationally expensive. Sohail et al. [21] 
proposed a deep Convolutional Neural Network 
(CNN)-based framework called "MP-MitDet" for 
the detection of mitotic nuclei in breast cancer 
histopathological images. The framework 
consists of four distinct phases: (1) refinement of 
weakly labeled mitosis dataset, (2) selection of 
mitotic regions at the tissue level, (3) blob 
analysis, and (4) enhancement of mitosis 
detection results at the cellular level. The 
performance evaluation of this framework on the 
challenging TUPAC16 dataset demonstrates its 
strong discriminatory ability, achieving favorable 
metrics such as F-score (0.75), recall (0.76), 
precision (0.71), and area under the precision-
recall curve (0.78).Lakshmanan and et al. [22] 
they classified mitosis on a MITOS-ATYPIA 14 
data set and images were selected from the 
Hammamatsu (H) scanner and obtained effective 
results by building a built-in DenseNet model for 
Principal Component Analysis (PCA). This model 
is a supervised deep work environment that 
consists of  a three level, the first level uses the 
DenseNet 121 architecture to extract the deep 

features of the instance level, in the second level 
PCA-based features are identified and then a 
subset of them is selected, the third level is a 
classification of mitosis. Cai et al. [23] they used 
a modified regional convolutional neural network 
(RCNN). They used Resnet-101 for the feature 
extraction of the Faster R-CNN. This method 
achieved 0.76 in precision, 0.72 recall and 0.736 
F1 score on MICCAI TUPAC 2016 datasets, F1 
score of 0.585 is also achieved on ICPR 2014 
mitosis dataset.  The inference time for a 
2000×2000 image is ~0.8 s, this method a 
promising tool for clinical deployment. In a 
separate study, Chen et al. [24] presented a 
technique consisting of two components. In the 
first stage, mitotic cells were segmented using a 
fully convolutional network (FCN), while in the 
second stage, all detected objects were further 
refined using an additional CNN. This approach 
demonstrated superior performance compared to 
other methods in terms of detection accuracy, as 
evidenced by its performance in the 2014 ICPR 
MITOS-ATYPIA challenge. When compared with 
the state-of-the-art methods on the 2012 ICPR 
MITOSIS data (a smaller and less challenging 
dataset), this method achieved comparable or 
better results with a roughly 60 times faster 
speed. Piansaddhayanon et al. [13] they 
proposed a Refine Cascade Network 
(ReCasNet), an enhanced deep learning pipeline 
It consists of first, Window Relocation, a simple 
effective method that overcomes the weakness 
of an overlapping sliding window by removing 
objects around the window border and re-
evaluating them as the center of newly extracted 
patches. Second, they introduced an Object 
Center Adjustment Stage. Third, they improved 
the training data sampling process of the 
verification model. Finally, a classification stage 
rescores the object confidence of each patch. 
ReCasNet was evaluated on two large-scale 
mitotic figure recognition datasets, canine 
cutaneous mast cell tumor (CCMCT) and canine 
mammary carcinoma (CMC).  

 

 
                 

Fig. 3. Typical workflow of a method using deep learning [9] 

https://www.sciencedirect.com/science/article/pii/S2214785322020612?via%3Dihub#!
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Table 2. Shows techniques for detecting mitotic cells based on the extracted features. Arranged from oldest to newest 
 

Category Authors year Method Datasets Results 

precision Recall F-score 

 
 
 
 
 
Hand-crafted features 
(H.C.F) 

Huang 
And Lee [16] 
 

2012 eXclusive In- dependent Component 
Analysis (XICA) 

ICPR 2012 100% in training patterns 
& 
83.513% in testing patterns. 
 

Khan et al. [17] 2012 textural features (Phase Gradient 
(PG), roughness, entropy), 
representative features (mean, 
standard deviation, skewness, kurtosis) 
with SVM classifier 

ICPR 2012 86% sensitivity 

Irshad  
[18] 

2013 Morphological and statistical features 
with 
decision tree classifier 

Aperio ICPR 2012  70% 74% 72% 

Hamamatsu ICPR 2012 56% 71% 63% 

Paul et al [19] 2015 Intensity, texture, and regenerative 
random 
forest tree classifier 

ICPR 2012 0.8350 0.8113 0.823 

 
 
 
 
Deep features 
(D.F) 

Ciresan et al. 
[20] 

2013 Sliding-window-based classification  ICPR 2012 0.88  0.70  0.782 

Chen et al. [24] 2016 FCN model for objects segmentation 
and 
CNN for classification  
 

ICPR 2012 0.804 0.772 0.788 

ICPR 2014 0.460  0.507  0.482 

Li et al.  
[6] 

2018 Faster R-CNN-based detection and 
Resnet-50 for classification  

ICPR 2012  0.854    0.812    0.832   

ICPR 2014 0.431 0.443 0.437 

Cai et al. [23] 
 

2019 Modified Faster R-CNN with Resnet-
101 
feature-extraction network  

ICPR  2014   0.585 

TUPAC-16 0.76 0.72 0.736 
 

Sohail et al. [21] 2021 Mask R-CNN TUPAC16 
  

(0.71) (0.76) (0.75) 

Lakshmanan  et al.[22] 2022 DenseNet combined Principal 
Component Analysis (PCA) 

ICPR  2014 effective results 

Piansaddhayanon et al. 
[13] 

2022 window relocation, sliding window 
overlapped, Faster-RCNN-ResNet50. 

CCMCT  83.2% 

CMC 82.3% 

 
 
 
 
 

Malon et al. [28]   2013 Combination of color, texture, and 
shape 
features, and CNN features with SVM 
classifier 

ICPR 2012 
 

 0.659 on 
color 
scanners 

0.589 on 
multispect

https://www.sciencedirect.com/science/article/pii/S2214785322020612?via%3Dihub#!
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Category Authors year Method Datasets Results 

precision Recall F-score 

 
 
 
 
 
Combination Hand-
crafted 
(H.C.F) 
 
 
& 
 
Deep features 
(DF) 
 
 
 

ral 
scanner 

Wang et al. 
[25] 

2014 Handcrafted and CNN features, 
random 
forest classifier, and CNN  

ICPR 2012 
 

0.84 0.65   0.73 

Saha et al. [26] 2018 combining a set of 
 handcrafted features 
(morphological, intensity, and textural) 
and CNN.   

ICPR 2012 
AMIDA-13 

92% 88% 90% 

Dodballapur et al.  
[27] 

2019 Mask R-CNN for object detection and 
handcrafted and CNN features  
 

ICPR 2012  0.93 0.80 0.87 

ICPR 2014 0.62 0.67 0.64 

Li et al. 
[29] 

2019 FCN trained with concentric loss on 
weakly annotated centeriode label, and 
two features on the segmented blob 
(area and mean) 

ICPR14  0.562 

AMIDA13 0.673 
 

TUPAC16 0.669 

Mahmood et al. 
[3] 

2020 Faster R-CNN and score-level fusion of 
Resnet-50 and Densenet-201 

ICPR12 
 

0.876 0.841 0.858 

ICPR14 
 

0.848 0.583 0.691 

Ali et al. 
[30] 

2021 Global bank Feature Pyramid Network 
(GLB-FPN) and focal loss (FL) 

ICPR14 
 

0.685  0.70  0.692 

Sohail et al. 
[31] 

2021 five different CNN based base-
classifiers are developed to 
appropriately capture the variation in 
the structure, texture, and 
morphological properties of the mitotic 
nuclei 

TUPAC16 
ICPR12 
ICPR14 
 

(0.83) (0.71)  (0.77) 

Sigirci et al. [32] 2021 (textural/spatial, statistical and shape) 
with cnn for features, k-means 
algorithm for segmentation and 
RUSBoost for classification. 

ICPR14 
 

96.78 79.42 86.97 

Razavi et al. [33] 2022 conditional generative adversarial 
network to segment (MiNuGAN) 

TUPAC16 
ICPR12 
ICPR14 
 

 0.854 
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2.1.3 Mitosis detection using combination 
features (handcrafted with deep 
features) 

 
Mahmood et al. [3] proposed a multi-CNN 
approach for mitosis detection. In the first stage, 
they employed Faster R-CNN for the initial 
detection of mitotic cells. This was the first time 
Resnet-50 was used as the feature extraction 
network. However, this technique generated a 
large number of false positives due to the subtle 
differences between mitotic and non-mitotic 
objects. To mitigate the false positives, the 
researchers conducted post-processing based 
on statistical, texture, shape, and color features. 
Additionally, they employed score-level fusion of 
Resnet-50 and a dense convolutional network 
(Densenet)-201 to further reduce the number of 
false positives. The results obtained using this 
method were as follows: for the ICPR 2012 
dataset, precision of 0.876, recall of 0.841, and 
F1-measure of 0.858; and for the ICPR 2014 
dataset, precision of 0.848, recall of 0.583, and 
F1-measure of 0.691. Wang et al. [25] introduced 
a cascaded technique that utilizes two 
independent classifiers. The first classifier is 
trained using handcrafted features such as 
morphology, intensity, and texture, which are 
extracted and classified using a Random Forests 
classifier. The second classifier is trained using 
CNN features. During the testing stage, if the 
outputs of the two classifiers differ, a third 
classifier is employed. The final decision is made 
by considering the consensus of predictions from 
all three classifiers. This technique offers the 
advantage of being fast and requiring fewer 
computing resources. However, it is important to 
note that the performance of ROI selection using 
conventional image processing is lower 
compared to the deep learning technique. This 
technique achieved 0.84 precision, recall   0.65, 
and F-score 0.73. Saha et al. [26] presented 
mitosis detection in whole slide image (WSI) by 
combining CNN and a set of 55 handcrafted 
features. Handcrafted features mainly consist of 
morphological, intensity, and textural of the 
nuclei present in WSI. The deep learning 
architecture mainly consists of five convolution 
layers, four max-pooling layers, four rectified 
linear units (ReLU), and two fully connected 
layers. This technique achieved 92% precision, 
88% recall and 90% F-score. Dodballapur et al. 
[27] proposed a technique for mitotic detection 
using mask R-CNN, the feature network was 
extracted by Resnet-50. After that, when the 
results appeared, many false positives appeared, 
to reduce them, the Xception network was used. 

This technique showed high results when 
implemented on the two data sets ICPR  2012 
and ICPR  2014, but this technology is not 
suitable for practical clinical application because 
it uses very expensive graphic processing units 
GPUs. Malon et al. [28] proposed a method that 
combines manually designed nuclear features 
with features learned by convolutional neural 
networks (CNN) for mitosis detection. The 
nuclear features capture color, texture, and 
shape information from segmented regions 
surrounding a nucleus. By incorporating a CNN, 
the method is able to handle the diverse 
appearances of mitotic figures, reducing the 
sensitivity to variations in feature extraction and 
thresholds. The trained system achieved F1 
scores up to 0.659 on color scanners and 0.589 
on multispectral scanners. 
 
Li et al. [29] introduced “a method called 
SegMitos, which addresses the mitosis detection 
task through semantic segmentation. Their 
approach involves predicting the category of 
each pixel in the image and inferring the 
locations of mitotic cells directly from the 
segmentation map. They trained a segmentation 
network based on a fully convolutional network 
(FCN) using mitosis data. The SegMitos model 
generates a segmentation map where each pixel 
represents its confidence of belonging to the 
mitosis class. To reduce image noise, a 
Gaussian filter is applied to the response map. 
The method calculates the areas and mean 
confidence scores of the detected blobs in the 
segmentation map”.  Following the segmentation 
map generation, a filtering mechanism was 
employed by Li et al. [29] that utilized the two 
aforementioned features to obtain the final 
detection results. One notable advantage of this 
model is its speed and efficiency, as it operates 
in an end-to-end manner (image-to-image) 
without relying on a sliding window approach. 
The model achieved an F-score of 0.562 on the 
ICPR 2014 MITOSIS dataset, 0.673 on the 
AMIDA13 dataset, and 0.669 on the TUPAC16 
dataset, showcasing its performance across 
different datasets. Ali et al. [30] proposed a 
method for detecting mitosis using deep learning 
called Representation Differential Learning 
Method (RDLM) and this method was 
implemented on the ICPR 2014 dataset. This 
method was divided into two parts, in the first 
part GLB features are combined with FPN and 
the second part contains focal loss (FL). In the 
first part, (GLB-FPN) this combined method 
calibrates the decoder and makes it extract the 
regions of interest (ROIs). GLB works in three 



 
 
 
 

Sharafaldeen and Ghurab; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 476-489, 2023; Article no.AJRCOS.104270 
 
 

 
484 

 

phases: 1) by feature embedding the encoder 
correlates the layer with multiple scales, 2) 
feature map of the regions of interest (ROIs) of 
mitotic cells is obtained through noise removal 
and reconnection, 3) convolutions are used to 
transfer the feature map to the module 
decryption. This method achieved 0.685 
precision, 0.70 recall and 0.692 F-score. Sohail 
et al. [31] proposed a novel Deep Convolutional 
Neural Network (CNN) based technique called 
"DHE-Mit-Classifier" for analyzing mitotic nuclei 
in breast histopathology images. This technique 
involves multiple levels: (1) identifying candidate 
mitotic patches within the histopathological 
biopsy regions, (2) classifying these patches into 
mitotic and non-mitotic nuclei using the proposed 
DHE-Mit-Classifier, and (3) constructing a 
heterogeneous ensemble by designing and 
utilizing five different deep CNNs as base 
classifiers. 
 
Sigirci et al. [32] introduced a method that 
combines statistical-based conventional 
handcrafted methods with deep learning 
techniques. Their approach involves 
preprocessing the images with median filtering to 
reduce noise, applying the k-means algorithm for 
segmentation, and utilizing shape, texture, and 
statistical-based feature extraction algorithms 
along with CNN-based deep feature extraction. 
The classification step employs the RUSBoost 
method. The method was tested on the ICPR 
2014 histological images dataset, which included 
approximately 180,000 non-mitotic and 748 
mitotic cells extracted from 1200 images cropped 
from 10 histopathological whole slides. The 
achieved results were 96.78% precision, 79.42% 
recall, and 86.97% F-measure values. 
 

Razavi et al. [33] proposed an automatic mitosis 
and nuclear segmentation method named 
MiNuGAN, which utilizes a conditional generative 
adversarial network. The architecture consists of 
an encoder-decoder with ResNet blocks, 
comprising five convolutional layers and nine 
residual blocks in the encoding arm, four 
convolutional upsampling layers in the decoder, 
followed by three residual blocks after 
deconvolution, and two additional convolution 
layers. The output is a generated segmentation 
mask for both mitosis and nuclear classes. The 
proposed method was evaluated using images 
from multiple centers and scanners, including the 
TUPAC16, ICPR14, and ICPR12 datasets. 
Results on the TUPAC16 dataset, which 
consisted of 618 carefully annotated images, 
showed a mean Dice Similarity Coefficient (DSC) 
of 0.784 for nuclear segmentation and 0.721 for 
mitosis segmentation on 200 held-out testing 
images. On the ICPR12 dataset, the mean DSC 
for mitosis segmentation was 0.782, indicating 
good generalization to unseen datasets. For 
datasets with mitosis centroid annotations, a 
mean F1-score of 0.854 demonstrated high 
mitosis detection accuracy. 
 

2.2 The Techniques on Deep Features 
Based on the Formulation of the 
Problem 

 

Techniques that use deep features in the task of 
detecting breast cancer mitotic cells can be 
divided into three main sections based on 
problem identification and then formulation. The 
first part of the researchers considered the 
mitotic cell detection task as a classification task, 
because the final result of the task was two 
categories, either mitotic or non-mitotic.

Table 3. Presents researchers' division of mitotic cell detection problem based on deep 
features into three categories based on problem formulation 

  

Authors 
 

classification task semantic 
segmentation task 

object-detection task 

Mahmood et al. [3]   ✓  
Li et al.  [6]   ✓  
Ciresan et al.  [20] ✓    
Ali et al.   [30]   ✓  
Li et al.   [29]  ✓   
Chen et al.   [24] ✓    
Wang et al.   [25] ✓    
Alom et al.   [34]  ✓   
Beevi et al.   [8]  ✓   
Zhang et al.   [35] ✓    
Ren et al.   [36]   ✓  
He et al.  [37]  ✓   
Long et al.   [38]  ✓   
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The second section of the researchers 
considered the task of detecting mitotic cells as a 
semantic segmentation task because of the 
annotations based on pixels that define the 
shape of the cells, while the third section of the 
researchers considered the detection of mitotic 
cells as a task of object-detection  because the 
main goal is to calculate the mitotic number and 
not to determine the shape or size mitotic cells. 

                               
2.3 Datasets 
 
There are many histopathological images that 
are used to detect mitotic cells open source, as 
shown in Fig. 4. 
 
2.3.1 ICPR 2012 MITOSIS dataset 
 
The ICPR 2012 MITOSIS dataset was introduced 
in the ICPR 2012 contest [39]. Prof. Fr´ed´erique 
Capron and Dr. Catherine Genestie, two 
pathologists of Piti´e-Salpˆetri`ere Hospital in 
Paris, France presented 5 biopsy slides of breast 
cancer. These slides were stained with hematein 
and eosin. For each slide, pathologists selected 
10 high-power fields at 40X magnification Each 
HPF has a file size of 512 × 512 µm 2. These 50 
HPFs contain more than 300 mitosis, two-thirds 
of the images were used for training and the 

other third for testing. Three different scanners 
were used to scan these slides, namely • an 
Aperio XT scanner (scanner A)with resolution of 
0.2456 µm per pixel; • a Hamamatsu 
NanoZoomer scanner with resolution of 0.2273 
µm (horizontal) and 0.22753 µm (vertical) per 
pixel; • and a 10 bands multi-spectral microscope 
M with the best resolution of 0.185 µm per pixel. 
 
2.3.2  ICPR 2014 dataset 
 
Professor Fr´ed´erique Capron team presented 
the ICPR 2014 dataset for the MITOS-ATYPIA-
14 grand challenge [40]. This dataset contains a 
set of breast cancer biopsy slides stained with 
hematein and eosin for this competition. To scan 
these slides two types of scanners an Aperio and 
a Hamamatsu were used. The training data 
contains about 1200 images, and for each image 
there is an excel file showing the coordinates of 
the mitosis centers, while the testing data 
contains about 496 images. The aim of this 
competition consisted of two parts: - detect 
mitosis on biopsies by writing the coordinates of 
the mitosis center on an Excel file for each of the 
testing images, - The second objective was to 
evaluate the score of nuclear atypia. The 
contestants had the right to choose which goal 
they wanted to work on. 

 

 
 

Fig. 4. Representative HPF images from public datasets(a) MITOS(Aperio scanner), 
(b)MITOS(Hamamatsu scanner), (c)MITOS-ATYPIA, (d)TUPAC [9] 
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2.3.3  Dataset TUPAC16 
 

The database was provided in TUmor 
Proliferation Assessment   2016 (TUPAC16) 
challenge in whole-slide images (WSIs), where 
the aim of this challenge was to predict the 
degree of tumor spread in breast cancer through 
the detection of mitosis. The data set for this 
challenge contains 500 training and 321 testing 
breast cancer histopathology WSIs. The training 
data was provided only to the contestants, while 
the training data was maintained by the 
challenge organizers. The first task of the 
challenge was to predict the degrees of mitosis, 
while the second task of the challenge was to 
predict the gene expression based PAM50 
proliferation scores from the WSI [14]. 
  
2.3.4 CCMCT & CMC datasets 
 

In this section, we will discuss two types of 
databases: ODAEL variant of the CCMCT 
dataset [42] and the CODAEL variant of the CMC 
[43] dataset. The prominent characteristic of the 
two datasets was the availability of a complete 
mitotic figure annotation on the WSI level using 
algorithm-aided annotation and the consensus of 
experts. In addition, hard negative objects 
(mitosis figures lookalikes) were also annotated, 
which improve training information. The CCMCT 
dataset contains an annotation of 44,800 mitotic 
figures on 32 WSIs, of which 11 of them were 
held out for testing. The CCMCT dataset consists 
of four classes: Mitosis, Mitosis like, Granulocyte, 
and Tumor cell. The first class is a positive class 
while the rest are considered negative. In the 
same manner, the CMC dataset contained an 
annotation of 13,907 mitotic figures on 21 WSIs, 
of which 7 of them were held out for testing. The 
CMC dataset consists of two classes: Mitosis, 
and Non mitosis. 
 

3. DISCUSSION 
 

Recently, including the medical sector, artificial 
intelligence (AI) technologies have made 
significant advancements. One area that has 
greatly benefited from these advancements is 
digital pathology. The introduction of full-slide 
imaging technology, which enables the scanning 
and storage of entire pathology slides at high 
magnification, has accelerated the adoption of 
digital pathology. This shift towards digital 
pathology has created numerous opportunities 
for the application of computational techniques in 
pathology, allowing for faster and more efficient 
analysis and diagnosis of medical 
specimens.One of the most important of these 

applications is the detection of the mitotic 
number in breast cancer, where high-resolution 
microscopes are used to photograph pathological 
slides, as these images can be stored and sent 
via the Internet with very high accuracy, which 
prompted doctors in hospitals to classify these 
images using pathologists and then send them to 
workers in the field of intelligence Artificial 
intelligence to train and test their different 
models. As happened with Prof. Fr´ed´erique 
Capron , a pathologist at  Hospital in Paris, 
where he provided several pathological anatomy 
pictures and organized many competitions to 
detect patterns and reveal the mitotic number, as 
artificial intelligence techniques showed their 
effectiveness greatly, especially deep techniques 
 

4. CONCLUSIONS 
 

We have noticed recently that researchers have 
focused on the problem of mitotic detection, as it 
has become a growing field,  also provided 
Mitosis Detection Challenge competitions that 
are held at conferences provide a resource and 
communication platform for all ,such 
competitions have encouraged  researchers to 
solve the problem of detecting mitotic cells and 
provided them with databases. In this survey we 
divided the mitosis detection methods into two 
sections: The first section is based on the 
methods of mitosis detection based on the 
features used in each work, some of them used 
hand-crafted features, some of them used 
features based on deep learning, and some of 
them used a combination of features Hand-
crafted with deep features. We note from Table 2 
that algorithms based on deep learning give 
more successful results in segmentation and 
classification problems, where traditional 
methods are insufficient in medical image 
analysis. As for the second section, based on the 
formulation of the problem (in terms of the task) 
as we noted in Table 3, some of them considered 
the problem of mitosis detection a classification 
task, and some considered it the task of 
semantic segmention, and some of them 
considered it the task of object detection. 
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