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Abstract

Most existing exoplanets are discovered using validation techniques rather than being confirmed by
complementary observations. These techniques generate a score that is typically the probability of the transit
signal being an exoplanet (y(x) = exoplanet) given some information related to that signal (represented by x).
Except for the validation technique in Rowe et al. (2014), which uses multiplicity information to generate these
probability scores, the existing validation techniques ignore the multiplicity boost information. In this work, we
introduce a framework with the following premise: given an existing transit-signal vetter (classifier), improve its
performance using multiplicity information. We apply this framework to several existing classifiers, which include
vespa, Robovetter, AstroNet, ExoNet, GPC and RFC, and ExoMiner, to support our claim that this
framework is able to improve the performance of a given classifier. We then use the proposed multiplicity boost
framework for ExoMiner V1.2, which addresses some of the shortcomings of the original ExoMiner classifier,
and validate 69 new exoplanets for systems with multiple Kepler Objects of Interests from the Kepler catalog.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet catalogs (488); Exoplanets (498);
Exoplanet detection methods (489); Exoplanet systems (484); Convolutional neural networks (1938); Neural
networks (1933)

Supporting material: machine-readable tables

1. Introduction

Since the traditional approach for the confirmation of new
exoplanets, which requires complementary observations, is not
possible or practical for all candidates due to the increase in the
number of candidates and their specifics (e.g., small planets around
faint stars), the focus of the discovery of new exoplanets has been
shifting from manual follow-up studies to mass validation using
automated processes. These automated processes include statistical
techniques (Rowe et al. 2014; Morton et al. 2016) and machine
learning approaches (Shallue & Vanderburg 2018; Armstrong et al.
2021; Valizadegan et al.2022).

The statistical approaches include vespa (Morton et al.
2016), a generative (Bayesian) approach (Vapnik 1998) to
calculate the posterior probability of a transit signal for classes
of interest (planet candidate or different false positive
scenarios), and multiplicity boost (Rowe et al. 2014), a
frequentist approach that calculates the probability of a specific
planet and False Positive (FP) configuration (i.e., a specific
number of planets and FPs) in a multi-planet system. The
generative approach to classification models the prior and
likelihood in order to obtain the posterior probability. This is in
contrast to the discriminative approach, which was introduced
by Vapnik (1998) and models the posterior probability
directly without the need to model priors and likelihood.
The compelling justification of Vapnik (1998) to propose
the discriminative approach was that, “one should solve the

(classification) problem directly and never solve a more general
problem as an intermediate step (such as modeling p(X|y)).”
The machine learning approaches that have been applied to

transiting planet data mainly consist of discriminative
approaches (Vapnik 1998) to calculate the posterior probabil-
ity, which include the following methods: (1) Autovetter
(Jenkins et al. 2014; McCauliff et al. 2015), which uses a
random forest to classify transit signals summarized in the form
of diagnostic metrics represented by scalar values; (2) the first
Deep Neural Network (DNN) model to classify transit signals,
AstroNet (Shallue & Vanderburg 2018), which has been
used to validate two new exoplanets; (3) the machine classifiers
that were developed in Armstrong et al. (2021) and used to
validate 50 new exoplanets; and (4) a recently developed DNN
model called ExoMiner (Valizadegan et al. 2022) that
validated 301 new exoplanets. These statistical and machine
learning models validate new exoplanets when the model’s
confidence about the Planet Candidate (PC) disposition of a
transit signal is sufficiently high (typically >0.99).
Most existing validation models rely on the posterior

probability of a transit signal alone for validation, i.e., they
do not take the configuration of a target star and whether there
are existing known planets or FPs in that system into account.
However, knowledge of existing planets and FPs for a given
system should affect our confidence about the validation of a
new unknown signal. More importantly, it is strongly believed
that the candidates in multi-planet systems are highly likely
planets (Latham et al. 2011; Lissauer et al. 2012; Christian-
sen 2022). Blindly applying a single threshold 0.99 on the
posterior for two different unknown signals, one around a
target star with multiple existing exoplanets and another around
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a target star with known FPs, is not an optimal solution. One
might want to adjust this threshold or equivalently update the
score of the classifier based on the multiplicity information.
The latter is the focus of this work.

We propose to incorporate multi-planet configuration
information to update the posterior probability of a given
model in order to more accurately validate new exoplanets in
the Kepler data (Borucki et al. 2010). Our framework is
agnostic to the type of the base classifier and can be applied to
any model, whether statistical or machine learning. We show
that incorporating such configuration information to an existing
classifier improves its performance. By applying this method to
a new version of the ExoMiner model, we validate 69 new
exoplanets in the Kepler Objects of Interest (KOI) list from the
Q1-Q17 DR25 KOI catalog (Thompson et al. 2018). These new
exoplanets are related to transit signals around target stars
whose specific configuration increases the likelihood of these
signals being associated with transiting exoplanets.

The new version of ExoMiner, which we call ExoMiner
V1.2, addresses some of the shortcomings of the original
model (Valizadegan et al. 2022). ExoMiner V1.2 receives
multiple new inputs that are useful for the correct classification
of FPs due to eclipsing binaries and background sources.

2. Background

2.1. Setup

In this paper, we assume there is a classifier that is able to
provide a score for any given transit signal. We also assume that
such a classifier does not have access to the system configuration
of the target star, i.e., it does not use the dispositions of other transit
signals detected for the target star. Existing transit-signal classifiers
in this category include vespa (Morton et al. 2016),
Autovetter (Jenkins et al. 2014; McCauliff et al. 2015),
Robovetter (Coughlin 2017), AstroNet (Shallue & Vander-
burg 2018), ExoNet (Ansdell et al. 2018), GPC, RFC, and other
classifiers introduced in Armstrong et al. (2016), and
ExoMiner (Valizadegan et al.2022).

The objective of this work is to utilize the knowledge of the
configuration of a target star in order to improve the
performance of a given transit-signal classifier. In our
discussion, we distinguish between two sources of information:
(1) the multiplicity information of the system defined by the
number of Confirmed Planets (CPs), FPs, and unknown (i.e.,
unclassified) transit signals for that system; and (2) the transit
information of a signal. We denote the multiplicity and transit
information of signal x by multi(x) and transit(x), respectively.

Let us denote by sf(x) the score of a classifier f operating only
on transit information transit(x).4 The multiplicity information
multi(x) is represented by a triple NFPs(x), NCPs(x), and
NUNKs(x), which are the total number of FPs (Bryson et al.
2017), the total number of CPs, and the total number of
unknown objects of interest (Thompson et al. 2018), respec-
tively, for the star hosting signal x, i.e., multi(x)= [NFPs(x),
NCPs(x), NUNKs(x)]. We aim to build a model g that combines
the multiplicity and transit information in order to build a more
accurate classifier.

In our discussion, we denote an exoplanet in the output from
a model by y= 1 and an FP by y= 0.

2.2. Preliminary Work

Before developing the multiplicity boost framework of this
work, which we will discuss in Section 3.1, we report the results of
applying the multiplicity boost framework of Lissauer et al.
(2012, 2014) and Rowe et al. (2014) in order to boost the
performance of an existing classifier. This approach proved to be
unsatisfactory, which motivated the development of our data-
driven approach (introduced in Section 3.1).
Lissauer et al. (2012, 2014) and Rowe et al. (2014) introduced a

framework to compute the probability of a transit signal being
associated with a planet using multiplicity boost. Their framework
assumes that “false positives are randomly distributed among the
targets” and that “there is no correlation between the probability of
a target to host one or more detectable planets and to display false
positives.” Their working data set was the Q1-Q8 KOI catalog, for
which few gold standard labels were known at that point.
Therefore, to test their model, Lissauer et al. (2014) and Rowe
et al. (2014) used planet candidates and identified FPs to build two
data sets: one that included low-depth Eclipsing Binaries (EB;
depth <2%) and another that did not. After counting the total
number of targets in the sample with i planet candidates for
different values of i (i= 1, 2, 3,K), they estimated two parameters
in a data-driven approach: (1) the fidelity of the sample of single-
planet candidates, P1; and (2) the number of existing FP planet
candidates present among the multi-planet systems, nfm. To this
end, they estimated P1 as the number of single-planet candidates
that are actual planets by excluding identified FPs from the
population of singles, and nfm using the number of known
observations for different scenarios (e.g., number of targets with
two and three FPs, one planet + one FP, one planet + two FPs).
They showed that this approach provided predictions of these
different scenarios that are in close agreement to the observed
values.
By denoting pmulti(y= 1|x) as the probability of exoplanet

using the multiplicity information alone, one can utilize the
multiplication strategy introduced in Armstrong et al. (2021)
and adapted by Valizadegan et al. (2022) in order to combine
the probability score of the classifier f, i.e., pf(y= 1|x)= sf(x),
with pmulti(y= 1|x) as follows:

( ∣ )
( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )p y x

p y x p y x

p y x p y x
1

1 1
. 1f

f

y f
,multi

multi

multi

= =
= =

å

For this to work, we need a machine classifier f that is able to
generate meaningful probability scores, i.e., sf(x)= pf(y= 1|x).
To calculate pmulti(y= 1|x), we applied the statistical frame-

work of Lissauer et al. (2012, 2014) and Rowe et al. (2014) to
the more recent Kepler Q1-Q17 DR25 KOI catalog (Thompson
et al. 2018) by performing similar stellar and KOI cuts to our
initial target star population. The stellar catalog contains a total
of 104,159 targets (nt= 104,159) that pass the following
constraints: 3 hr transit duration combined differential photo-
metric precision (CDPP, Christiansen et al. 2012; Jenkins 2020)
smaller than 160 ppm; not evolved as defined by Huber et al.
(2014); not binary per the analysis of Berger et al. (2018); with
a renormalized unit weight error (RUWE, See Section 5) less
than 1.2; and with an observation duty cycle greater than 25%.
For those Kepler Q1-Q17 DR25 KOIs that are already
confirmed as planets or certified as FPs (Bryson et al. 2017),
we use their corresponding label. For those not listed as
confirmed or certified as FP, we used the Exoplanet Archive
disposition in the Cumulative KOI table (i.e., candidate or FP).4 f does not have access to multi(x).
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Table 1 shows the input candidate abundances used to run
the statistical framework (similar to Table 2 in Lissauer et al.
2014). Using ordinary least squares, we minimized the squared
error between the input value for nfm and the predicted value
based on the estimates of expected number of FPs for the
different scenarios. We used the values that were estimated in
Lissauer et al. (2014) as initial values for nfm in our
optimization process. Table 2 reports the results of this
experiment for two data sets: one that includes low-depth
EBs and one that does not (similar to Table 4 in Lissauer et al.
2014). Assuming that the number of observations provides a
good measure of mean and the observations follow a Poisson
distribution, the method in Lissauer et al. (2014) generates
reasonable results (i.e., difference between Predicted and
Observed <3σ) for the Q1-Q17 DR25 data.

However, the probability of observing 72 or fewer FPs for
the “with EBs” case when the expected number is 96.3 is
0.59%. Similarly, the probability of observing 47 or fewer FPs
for the “without EBs” case when the expected number is 63.25
is 2.0%. These results indicate that the model is not a
particularly accurate representation of the DR25 data set.

Therefore, instead of using the multiplicity boost model from
Lissauer et al. (2014) and Rowe et al. (2014), we develop a
fully machine learning model to boost the probability scores of
a KOI using the information available for the other KOIs of the
host star. A machine learning model is more flexible in that: (1)
it does not require the base classifier f to generate probability
scores, i.e., the generated scores can have any range; and (2) we
do not have to use the multiplicity rule introduced in
Equation (1). Instead, we can directly learn the mapping from
inputs that consist of multiplicity information and classifier

scores to the output label (exoplanet or FP). This will be the
focus of the following section.

3. Multiplicity Boost

Equation (1) provides a way to compute the posterior
probability using two initial probabilities, pmulti and pf, that are
computed using two sources of information, multi(x) and transit
(x), respectively. However, as we discussed in Section 2.2, the
results obtained from the multiplicity boost model of Rowe
et al. (2014) are not a particularly accurate representation of the
DR25 data set. Therefore, we propose to directly learn the
posterior probability of a transit signal being a planet using the
combination of multiplicity information multi(x) and transit
information transit(x) in a fully data-driven way. This will be
the focus of this section.

3.1. Proposed Methodology

To directly learn the posterior probability of a transit signal
being a planet using the combination of multiplicity informa-
tion multi(x) and transit information transit(x), we propose to
train a classifier that receives the multiplicity and transit
information as inputs and generates a posterior probability, as
depicted in Figure 1(a).
In this work, rather than training a single classifier to use

both the transit and multiplicity information directly, we train a
classifier that receives the score provided by an existing transit
classifier f, i.e., sf(x), and multiplicity information multi(x) to
return the probability of exoplanet, as depicted in Figure 1(b).
This approach has multiple advantages, including:

1. Transit-signal classifiers often work on Threshold Cross-
ing Events (TCEs) but multiplicity information is only
meaningful for FP and planetary candidate KOIs. By
separating the model that uses transit information from
the one that uses multiplicity information, we make the
best use of each source of information.

2. This provides a clear design that can be applied on the
results of any existing classifier without defining a new
classifier. As an example, incorporating multiplicity
information into Robovetter (Coughlin et al. 2016)
could be very difficult because it is an expert system
classifier that leverages manually incorporated domain
knowledge in the form of if-then conditions to check
different types of diagnostic values and transit fit values

Table 1
Input Target Counts for Our Experiments for the DR25 Data Set

nt n1 n2 n3 n4 n5 n6 n7

Without EBs 104159 3215 383 127 47 17 4 1
With EBs 104159 3714 406 128 47 17 3 2

Note. nt is the number of targets from which the sample is drawn and
{ }n i, 1, ,7i Î ¼ are the number of targets with exactly i KOIs. With and

without EBs refer to the cut for low-depth EBs as per Rowe et al. (2014).

Table 2
Comparison Between the Number of Predicted and Identified FPs in Multis
using the Statistical Framework of Rowe et al. (2014) for the DR25 Data Set

Scenarios With EBs Without EBs

Predicted Observed Predicted Observed

2 FPs 41.20 34 22.74 17
3 FPs 0.27 0 0.11 0
1 planet + 1 FP 40.45 30 30.13 23
1 planet + 2 FPs 0.72 1 0.39 1
�2 planets + 1 FP 13.29 7 9.68 6
�2 planets + 2 FPs 0.24 0 0.12 0

nfm 96.3 72 63.25 47

Note. nfm is the expected total number of identified FP candidates in multis and
is the sum of the rows. We followed Rowe et al. (2014) by running two tests:
one with low-depth EBs and one without.

Figure 1. Two machine learning models to use multiplicity boost information.
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to classify a TCE. Adapting it to accept multiplicity boost
information is not straightforward.

3. The multiplicity information does not interact with the
transit information (e.g., diagnostic metrics, and plots)
directly. Thus, there is no clear advantage in combining
them as the input of a single classifier.

To combine the score of an existing classifier with the
multiplicity information of the system, we build a multiplicity
classifier g that receives sf(x), NFPs(x), NCPs(x), and NUNKs(x) as
inputs and generates a score sg(x). To train g, we built a training
set that consists of input/output pairs in which the input is a
quadruple, [sf(x), NFPs(x), NCPs(x), NUNKs](x)], and the output is
whether x is a planet (y= 1) or an FP (y= 0). For the remainder
of this paper, we remove (x) and use [sf, NFPs, NCPs, NUNKs]] to
simplify the notation.

We can train any machine classifier for g. In this work, we
train a logistic regression model (Cox 1958; Bishop 2006) for
two reasons: (1) it generates meaningful probability scores that
do not need calibration and can be immediately used for
validation; and (2) it is especially useful when input variables
include discrete ordinal variables (e.g., counts). A diagram of
this system is given in Figure 2. We provide a brief review of
logistic regression below.

Under rather general assumptions (Bishop 2006), the poster-
ior probability of class y= 1 can be written as a logistic
sigmoid function operating over the linear function of input x,
i.e.,

( ∣ ) ( )
( )

( )p y x w x
w x

1
1

1 exp
2g s= = ¢ =

+ - ¢

where ′ indicates the transpose operator. In statistics, this model is
called logistic regression. Unlike its name, this model is designed
for classification problems (Cox 1958) and not regression.
Optimizing this model with regard to the linear parameter, w, is
achieved by maximum likelihood over the observed data. Our
observed data includes pairs of { }x y i n, , 1, ,i iá ñ Î ¼ , where xi is
a quadruple [ ]s N N N, , ,f iFPs CPs UNKs (the inputs to the model in
Figure 2), and yi is its label, i.e., exoplanet or FP (right-hand side
of Figure 2). By denoting pg(y|xi) by gi and having g= (g1,..,gn),
the likelihood function can be written as:

( ∣ ) ( ) ( )gp w g g1 , 3g
i

N

i
y

i
y

1

1i i= -
=

-

which can be maximized over the observed data to learn w.
For the multiplicity boost framework of this work, which has

four input data elements, w x¢ in Equation (2) can be expanded

as follows:

( )
w x w s w N

w N w N . 4
s f N

N N
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The weights in logistic regression have a nice interpretation.
Note that:
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Given that [ ]w w w w w, , ,s N N Nf FPs CPs UNKs= and x= [sf, NFPs,
NCPs, NUNKs], this exponential relationship provides an
interpretation for the weights. When the value of an input
changes, the odds will change exponentially proportional with
the change. As an example, the odds are multiplied by

( )wexp NFPs when we increase NFPs, the total number of FPs, by
1. After training the logistic regression and knowing the values
of w, we know how each input affects the output.

3.2. Constructing the Training Set

To train the multiplicity boost framework described in the
previous section, we need to have (1) a base classifier that
generates a score for a given transit signal and (2) access to
multiplicity information of the target stars in the data set. We
assume that a transit-signal classifier is already trained and
provided. Here, we discuss how to construct the multiplicity
information. Assume that we have access to a catalog of stars and
their number of known planets, FPs, and other detected transits that
are not annotated yet. Without loss of generality and to simplify the
discussion, we focus on Kepler data to describe the details of how
we construct our training set. However, the same approach can be
applied to data of any other survey.
In the Kepler catalog, each star is associated with multiple

labeled (exoplanets and FPs) and unlabeled (unknowns) KOIs.
Given that our objective is to to train the logistic regression
model depicted in Figure 2, we need to build input/output pairs
[ ] ( )s N N N y x, , , ,f FPs CPs UNKsá ñ where x is a transit signal and y
is the corresponding label (exoplanet or FP).
A given annotated KOI provides one single input/output

pair that can be used to generate more pairs in order to create a
uniform data set. To this end, we construct additional input/
output pairs from a single KOI by combinatorially assuming
that each subset of annotated KOIs (CPs or FPs) for the target
star could be unknown. To explain this, suppose there is
exoplanet B on a target star with one FP, two other CPs (hence,
three planets in total), and one unknown KOI. The original pair
for this KOI is [ ( ) ]s B y, 1, 2, 1 , 1fá = ñ. We then build the
following pairs out of this single KOI by turning each
exoplanet or FP to unknown:

1. Original: [ ( ) ]s B y, 1, 2, 1 , 1fá = ñ
2. Changing one CP to unknown: [ ( ) ]s B y, 1, 1, 2 , 1fá = ñ
3. Changing two CPs to unknown: [ ( ) ]s B y, 1, 0, 3 , 1fá = ñ
4. Changing one FP to unknown: [ ( ) ]s B y, 0, 2, 2 , 1fá = ñ
5. Changing one FP and one CP to unknown:

[ ( ) ]s B y, 0, 1, 3 , 1fá = ñ
6. Changing one FP and two CPs to unknown:

[ ( ) ]s B y, 0, 0, 4 , 1 .fá = ñ

For a KOI on a target star that has NFPs FPs and NCPs CPs
(excluding that KOI), we build a total of (NFPs+ 1)×
(NCPs+ 1) new instances. The idea here is that the logistic

Figure 2. The machine learning model to boost the performance of a given
classifier using multiplicity information.
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regression model in Figure 2 needs to learn the mapping, even
when a labeled KOI is assumed unknown. We aim to provide
all combinations of inputs to the model so that it can generalize
better to unseen situations that can have any subset of the KOIs
labeled or not.

This procedure, however, repeats the same KOIs multiple
times, which leads to more emphasis on KOIs for systems with
more known companion KOIs. To address this issue, we
reweight each generated sample by the number of examples
that we generated from the original KOI, i.e.,
[( ) ( )]N N1 1FPs CPs

1+ ´ + - . For instance, in the above
example, we reweight each generated sample by 1/6. Utilizing
weights for samples in machine learning models, including
logistic regression, is a standard practice in imbalanced cases.
Even if a classifier does not accept such weights, one can
simply repeat the samples to incorporate their appropriate
weights (e.g., with probabilistic sampling with replacement).

4. Proof of Concept

As a proof of concept prior to using the proposed framework
to validate new exoplanets, we show that the methodology
introduced in Section 3 can improve the performance of any
given classifier.

4.1. Base Classifiers

To show that the methodology introduced in this work can
improve the performance of any given classifier, we apply this
methodology to multiple classifiers described in Valizadegan
et al. (2022), as summarized below:

1. vespa: We use vespa FP probabilities provided in the
Kepler Q1-Q25 DR25 False Positive Probability table
described in Morton (2012) and Morton et al. (2016).

2. Robovetter: We use the Robovetter scores (Coughlin
et al. 2016) for the Kepler Q1-Q17 DR25 TCE catalog.

3. AstroNet: In Valizadegan et al. (2022), the authors used
the AstroNet code available on GitHub (Shallue &
Vanderburg 2018), preprocessed the data, and trained the
model using the same setup and DNN architecture as
provided in Shallue & Vanderburg (2018). In this work,
we use the scores reported in Valizadegan et al. (2022).

4. ExoNet: The original code of ExoNet is not available.
We use the scores of ExoNet reported in Valizadegan
et al. (2022).

5. Random Forest Classifier (RFC): This is one of the
classifiers introduced in Armstrong et al. (2021). We use
the scores provided by the authors.

6. Gaussian Process Classifier (GPC): This is one of the
classifiers that was introduced in Armstrong et al. (2021).
We use the scores provided by the authors, similar
to RFC.

7. ExoMiner:We use the scores reported for the ExoMiner
classifier in Valizadegan et al. (2022).

For each of the aforementioned classifiers, we use two sets of
classifiers’ scores as inputs to our logistic regression model: (1)
the raw output of the classifier (Table 4 in Valizadegan et al.
2022); and (2) the posterior probability of the classifier after the
application of prior probability of different scenarios, as
discussed in Morton et al. (2016), Armstrong et al. (2021),
and Valizadegan et al. (2022) (see also Table 11 in Valizadegan
et al. 2022). The only exception is vespa, for which

computing the posterior probability is part of the model. Thus,
we only use the posterior probability as an input to the logistic
regression model. As we will discuss in Section 4.3, our
extensive study shows that our framework is agnostic to the
source of the scores and generates similar performance boosts
when applied directly to the outputs of the original classifiers.

4.2. Evaluation Metrics

We compare the performance using the following metrics:

1. Accuracy: This is the fraction of correctly classified
cases. When the data set is imbalanced in terms of the
percentage of positive examples, this metric is not
particularly informative. To see this, note that a classifier
that classifies all transits as FPs has an accuracy of 90% if
90% of examples are FPs. However, accuracy provides
some insights when studied in conjunction with other
metrics.

2. Precision: Also called positive predictive value, this is
the fraction of transit signals classified as planets that are
indeed true planets, i.e.,

( )Precision
true positives

true positives false positives
6=

+

3. Recall: Also called the true positive rate, this is the
fraction of planets correctly classified as such, i.e.,

( )Recall
true positives

true positives false negatives
7=

+

4. Precision-Recall (PR) curve: The PR curve summarizes
the trade-off between precision and recall by varying the
threshold used to convert the classifier’s score into a
label. PR area under the curve (AUC) is the total area
under the PR curve. An ideal classifier would have an PR
AUC of 1.

5. Receiver Operating Characteristic (ROC) curve: The
ROC curve summarizes the trade-off between the true
positive rate (recall) and false positive rate (fall-out) when
varying the threshold used to convert the classifier score
into a label. ROC AUC is the total area under the ROC.

4.3. Performance Boost of Existing Classifiers

To test and compare the performance of different base
classifiers (with and without priors), we use the same labels and
the 10-fold cross-validation scheme that was reported in
Valizadegan et al. (2022). The performance of these classifiers
before and after the application of our multiplicity boost
methodology is reported in Table 3. As can be seen from the
results, the multiplicity information improves the performance
of all of the classifiers across all evaluation metrics, with
the exception of PR AUC for some models. The reason why the
multiplicity boost information reduces the performance in
terms of PR AUC in some cases is because logistic regression
was not designed to optimize PR AUC directly. Overall, the
proposed method is effective and independent of the type of the
employed base classifier.

4.4. Model Interpretation

To study the behavior of our machine learning multiplicity
boost model, we report the weight values of the logistic
regression trained for different classifiers in Table 4. As
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mentioned in Section 3.1, the weight directly demonstrates the
effect of the corresponding input parameter on the odds of the
event, i.e., the transiting signal is an exoplanet. The weight for
the number of FPs, i.e., NFPs is negative, while the weight for
all other input parameters, i.e., Sf, NCPs, and NUNKs, are positive
for all base classifiers. This shows that the model learned from
the data to decrease the odds for systems that already have FPs
and increase the odds for systems that have existing CPs or
unknown KOIs. The amount of change in the odds, compared
to the original odds generated by the original classifier, depends
on a number of factors, which include: (1) the accuracy of the
base classifier, (2) the precision/recall trade-off of the base
classifier, and (3) the regions where the classifier makes more
mistakes (e.g., single or multi-planet systems). In general,
however, the weight for the original classifier, sf, is higher for
more accurate classifiers, as can be seen by comparing the
numbers in Tables 3 and 4. Moreover, the weights for
multiplicity information, i.e., NFPs, NCPs, and NUNKs, are
generally smaller than the weight for sf. This happens because:
(1) the base classifier uses transit data, which is more
informative than the multiplicity data; and (2) the range of

the base classifier score is only between 0 and 1, which is
smaller than that of the other input parameters.
By studying the values of individual weights, we can also better

understand the importance of different input parameters for the
multiplicity model. For example, the weight for NCPs when vespa
is used as the base classifier is 4.629, which means that the odds of
an exoplanet will increase by a factor of ( )exp 4.629 102.41= for
any addition of a CP to the system. This number is

( )exp 2.043 7.71= for posterior from ExoMiner. The collective
behavior can be summarized in mapping plots, where the x-axis is
the score of the original classifier, the y-axis is the score generated
by the multiplicity boost framework, and the different curves show
the mapping for specific multiplicity scenarios [NFPs, NCPs,
NUNKs]. Figure 3 shows such a mapping for the posterior
probability of ExoMiner. For each multiplicity scenario
[ ( ) ( ) ( )]N x N x N x, ,FPs CPs UNKs , one solid line represents the
mapping for that scenario. We note a few observations here:

1. When the total number of existing exoplanets or
unknown KOIs increases for a star, the chances that a
new KOI is an exoplanet increases. In the extreme case
when there are four existing exoplanets and no FPs, the

Table 3
The Multiplicity Model Introduced in This Paper Can Be Applied to Any Given Classifier to Boost its Performance

Raw Scores

Original (Table 4, Valizadegan et al. 2022) Boosted Using Our Multiplicity Approach

Model/Metric Precision and Recall Accuracy PR AUC ROC AUC Precision and Recall Accuracy PR AUC ROC AUC

Robovetter 0.951 and 0.975 0.994 0.958 0.994 0.955 and 0.98 0.995 0.975 0.999
AstroNet 0.861 and 0.885 0.981 0.925 0.993 0.875 and 0.921 0.984 0.959 0.996
ExoNet 0.925 and 0.864 0.985 0.956 0.995 0.922 and 0.933 0.989 0.976 0.998
GPC 0.921 and 0.964 0.991 0.982 0.998 0.92 and 0.975 0.992 0.986 0.998
RFC 0.929 and 0.955 0.991 0.979 0.998 0.928 and 0.973 0.992 0.961 0.998
ExoMiner 0.968 and 0.974 0.996 0.995 1.0 0.971 and 0.977 0.996 0.993 1.0

Posterior Probabilities

Original (Table 11, Valizadegan et al. 2022) Boosted Using Our Multiplicity Approach
Model/Metric Precision and Recall Accuracy PR AUC ROC AUC Precision and Recall Accuracy PR AUC ROC AUC

vespa 0.666 and 0.968 0.801 0.865 0.928 0.749 and 0.973 0.865 0.895 0.943
Robovetter 0.947 and 0.979 0.994 0.964 0.997 0.954 and 0.981 0.995 0.975 0.999
AstroNet 0.920 and 0.920 0.988 0.968 0.996 0.921 and 0.955 0.990 0.980 0.998
ExoNet 0.933 and 0.902 0.988 0.97 0.997 0.933 and 0.953 0.991 0.983 0.998
GPC 0.910 and 0.977 0.991 0.987 0.998 0.911 and 0.983 0.992 0.986 0.998
RFC 0.942 and 0.964 0.993 0.983 0.999 0.942 and 0.978 0.994 0.965 0.999
ExoMiner 0.971 and 0.978 0.996 0.996 0.999 0.974 and 0.983 0.997 0.993 1.000

Note. The top part of this table is the result of our multiplicity boost framework when the raw classifiers’ scores are used as inputs to the logistic regression. The
bottom portion of the table shows the performance of our multiplicity boost when the posterior probabilities of the classifiers are used as inputs to the logistic
regression. As can be seen, our multiplicity boost framework is agnostic to how the original probability scores are obtained and can improve the scores independently
using the multiplicity information.

Table 4
Logistic Regression Weights for Different Classifiers

Original (Table 4, Valizadegan et al. 2022) Posterior Probabilities (Table 11, Valizadegan et al. 2022)

Model/Parameter wsf wNFPs wNCPs wNUNKs
wsf wNFPs wNCPs wNUNKs

vespa 6.20 ± 0.05 −1.93 ± 0.05 4.63 ± 0.07 2.60 ± 0.02
Robovetter 7.79 ± 0.03 −2.49 ± 0.07 3.27 ± 0.06 2.06 ± 0.03 7.90 ± 0.03 −2.24 ± 0.09 3.24 ± 0.06 2.07 ± 0.04
AstroNet 6.54 ± 0.02 −2.77 ± 0.06 3.54 ± 0.04 1.93 ± 0.02 8.02 ± 0.03 −2.02 ± 0.08 3.33 ± 0.04 1.96 ± 0.02
ExoNet 8.98 ± 0.03 −2.51 ± 0.09 3.25 ± 0.05 1.73 ± 0.02 9.64 ± 0.03 −2.73 ± 0.10 3.06 ± 0.05 1.78 ± 0.02
GPC 10.81 ± 0.04 −1.63 ± 0.03 1.76 ± 0.05 1.00 ± 0.03 10.46 ± 0.03 −2.16 ± 0.04 1.68 ± 0.05 1.03 ± 0.03
RFC 9.34 ± 0.03 −2.36 ± 0.16 2.39 ± 0.04 1.47 ± 0.02 9.76 ± 0.04 −3.00 ± 0.11 2.13 ± 0.04 1.36 ± 0.03
ExoMiner 9.04 ± 0.03 −1.10 ± 0.10 2.10 ± 0.05 1.46 ± 0.02 9.35 ± 0.03 −1.46 ± 0.11 2.04 ± 0.06 1.54 ± 0.03
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multiplicity boost predicts with high confidence that the
next KOI is an exoplanet independent of the score of the
original classifier. As we will discuss in Section 6, this
could go wrong for very rare situations where a
background object is detected on a multi-planet system.
We will introduce mitigating solutions in Section 5.4 to
avoid validating such cases.

2. When the total number of FPs increases, the probability
that a new KOI is an exoplanet decreases. However, the
prediction of the model for systems with more than two
existing FPs should be taken with caution because there
are no training data with more than three FPs and the
multiplicity classifier extrapolates in that region.

3. When the KOI being classified is the only KOI for a
target star (blue line for [0, 0, 0]), the multiplicity boost
framework is conservative and lowers the scores when
the original scores are less than 0.57. This reflects the
larger abundance of single FP KOIs. In the Kepler
catalog, there are only 1315 exoplanets out of 4721 single
KOI stars. Also note that our multiplicity boost frame-
work does not generate scores larger than 0.99 for any
single KOI, which implies that it does not validate single
KOIs. Basically, no existing exoplanets in single-planet
systems can be validated using this framework. This is an
acceptable property because this framework is built to
validate exoplanets for multi-planet systems.

Given that this is a multiplicity boost framework, one might
expect to see that the mapping for Scenario [0, 0, 0] lies on the
diagonal. However, this is not the case because: (1) the
model learns a mapping between input quadruple
[ ]s N N N, , ,f FPs CPs UNKs and the binary output variable (planet
or FP) to perform well for all scenarios and given that the model is
more confident for KOIs in multi-planet systems, it adjusts its
confidence of the cases for single KOIs, respectively; and (2) the
specific shape of the mapping is dictated by the logistic
regression assumption that the log odds for the signal being an
exoplanet is a linear combination of the input variables
[ ]s N N N, , ,f FPs CPs UNKs . The combination of these two properties

leads to the specific form of the mapping curves, including one for
Scenario [0, 0, 0].

5. ExoMiner V1.2

In this section, we introduce an improved version of the
ExoMiner classifier described in Valizadegan et al. (2022).
This new model, which we call ExoMinerV1.2, is depicted in
Figure 4. Compared to the original ExoMiner, the new
version includes the following changes, itemized by the branch
to which they apply:

1. Transit-View Centroid Branch: We added two new scalar
values to the transit-view centroid branch: (1) target star
magnitude, Kp, required to identify saturated stars for
which the centroid diagnostic test is invalid. Instead of
using the original value, we converted it to a binary value
to represent whether a target star is saturated or not based
on a conservative threshold thr 12Kp = ; and (2) Renor-
malized Unit Weight Error (RUWE, Lindegren et al.
2021) that gives information about the quality of the
transit source, i.e., larger values can indicate that the
source is not a single star or that we are in the presence of
significantly crowded fields. This leads to an array of
1× 7 centroid scalars in this branch. The other five
features that are already used in the original ExoMiner
model are the flux-weighted centroid motion detection
statistic, centroid offset to the target star according to the
Kepler Input Catalog (Brown et al. 2011), centroid offset
to the out-of-transit (OOT) centroid position, and finally
the respective uncertainties for these two centroid offset
estimates.

2. Transit-View Odd and Even Branch: We added one OOT
variability scalar for each view (odd and even). This is
related to a problem identified in the original ExoMiner
model that prevented it from effectively learning from the
odd and even data. OOT variability scalar describes
the variability in the odd/even view and is computed as
the median absolute deviation (as a robust estimate of
the standard deviation) for the out-of-transit cadences in
the odd/even phase folded time series normalized by the
square root of the number of cadences; a larger standard
deviation or a lower number of cadences make this
feature larger, providing information regarding the
general variability of these two views.

3. We updated the architecture of the model in Valizadegan
et al. (2022) by adding fully connected (FC) layers at the
end of the stellar parameters and data validation (DV)
diagnostic branches to make sure the contribution of each
branch is learned through training instead of being
dictated by the architecture. Similar to the other
convolutional branches, these FC layers have four
units each.

These changes are highlighted by the red-dotted rectangles in
Figure 4.
To train ExoMiner V1.2, we built a data set similar to

Valizadegan et al. (2022) using the Kepler Q1-Q17 DR25 TCE
table (Twicken et al. 2016) and the most up-to-date planet catalog,
as follows: we first removed all 1498 rogue TCEs from the list.
Rogue TCEs are three-transit TCEs that were generated by a bug
in the Kepler pipeline (Coughlin et al. 2016). For the planet
category, we used the TCEs that are listed as CPs in the
Cumulative KOI catalog. For the FP class, we used: (1) TCEs in

Figure 3. The mapping between ExoMiner scores and the boosted scores
using the logistic regression classifier. Each colored curve represents the
mapping for a different multiplicity scenario [ ( ) ( ) ( )]N x N x N x, ,FPs CPs UNKs .
Scenarios are only plotted if they have more than 10 counts in the Kepler Q1-
Q17 DR25 KOI catalog. The larger the number of existing CPs (NCPs(x)), the
more the logistic regression classifier favors classification as an exoplanet.
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the Q1-Q17 DR25 list that are Certified FPs (CFPs) or certified
false alarms (CFAs) in the Kepler Certified False Positive
table (Bryson et al. 2017) and (2) TCEs vetted as Non-Transiting
Phenomena (NTP) by Robovetter (any TCE from Q1-Q17
DR25 TCE catalog that is not in the Cumulative KOI catalog).
This resulted in a total of 30,957 TCEs that consisted of 2643 CPs
and 28,314 FPs. Note that this data set is almost identical to the
one used in Valizadegan et al. (2022); there are only more
exoplanets in this data set as the result of recent
validations (Armstrong et al. 2021; Valizadegan et al.2022).

To study the behavior of different models when the training/
test split changes, we perform a 10-fold cross-validation (CV),
i.e., we split the data into 10 folds, each time we take one fold
for test and the other nine folds for training/validation (eight
folds for training and one fold for validation). Also, similar to
Valizadegan et al. (2022), we split TCEs by their respective
target stars instead of by TCEs to remove dependency between
training and test sets.

5.1. Data Set for the Multiplicity Model

Out of 30,957 Q1-Q17 DR25 TCEs obtained to train
ExoMinerV1.2, 8054 TCEs are associated with KOIs in the
Cumulative KOI table (Thompson et al. 2018). To build the
training set for the multiplicity boost, we used TCEs associated
with CP or CFP5 KOIs, which resulted in a total of 2643
planets and 3538 FPs. For each target, we counted the total
number of KOIs, number of planets, FPs, and remaining
unclassified (UNK) KOIs. This led to a total of 6181 KOIs,
whose scenarios and counts are presented in Table 5 . We split
this table into three sections: (1) the top section represents
scenarios that have at least one FP, (2) the middle section
represents the single-planet systems, and (3) the bottom section
represents scenarios that do not have any FP. We would like to
emphasize that the numbers of FPs, planets, and unknowns for
each KOI include only the other KOIs in the given system.
Before providing some insights and to better explain these

numbers, we discuss some specific interesting scenarios below
that have only a few FP and CP counts. Note that each scenario
is represented by [ ]N N N, ,FPs CPs UNKs .

1. Scenario [0, 0, 3]: There is only one system, K01082,
with four KOIs of which three are unknown. The known
KOI of this system, K01082.03, is a CP. This generates
one count of CP for Scenario [0, 0, 3].

Figure 4. An adapted version of the classifier in Valizadegan et al. (2022). The red-dotted rectangles show the differences between ExoMiner and ExoMiner V1.2.

Table 5
Multiplicity Scenarios with Their Total Number of Exoplanets and FP Counts

Scenarios Confirmed Exoplanets Certified FPs Total

[3, 0, 0] 0 4 4
[1, 0, 0] 6 90 96
[1, 0, 1] 0 2 2
[1, 0, 2] 1 0 1
[1, 1, 0] 8 0 8
[1, 2, 2] 3 0 3
[1, 4, 0] 5 0 5

[0, 0, 0] 1315 3406 4721

[0, 0, 1] 121 23 144
[0, 0, 2] 23 0 23
[0, 0, 3] 1 0 1
[0, 1, 0] 510 6 516
[0, 1, 1] 68 0 68
[0, 1, 2] 6 1 7
[0, 1, 3] 2 0 2
[0, 2, 0] 294 4 298
[0, 2, 1] 30 0 30
[0, 2, 2] 6 0 6
[0, 3, 0] 136 0 136
[0, 3, 1] 20 0 20
[0, 3, 2] 0 1 1
[0, 4, 0] 75 0 75
[0, 5, 0] 6 1 7
[0, 6, 0] 7 0 7

Total 2643 3538 6181

Note. A scenario is represented by a tuple [ ( ) ( ) ( )]N x N x N x, ,FPs CPs UNKs

accounting for all the KOIs in the system other than the CP or CFP under
consideration.

5 Note that we did not include CFAs in our analysis because multiplicity
boost is based on the statistics of astrophysical FPs and planet multiplicity,
whereas FAs do not follow these statistics.

8

The Astronomical Journal, 166:28 (20pp), 2023 July Valizadegan et al.



2. Scenario [1,2,2] and [0,3,2]: The system that generates
these scenarios is K02433. There are a total of six KOIs
for this system in DR25, which includes three CPs, one
CFP, and two unknown KOIs. This results in three CPs
for Scenario [1,2,2] and one FP for Scenario [0,3,2].

3. Scenario [1,4,0]: K00082 has five CPs and one CFP,
which results in five CPs for this scenario and one FP for
Scenario [0, 5, 0], discussed below.

4. Scenario [0, 5, 0]: There are six exoplanets for K00157
that results in six CP for scenario [0, 5, 0]. There is also
K00082 that has five exoplanets and one FP, resulting in
a single FP for [0, 5, 0].

In general the statistics provided in Table 5 confirm that
when there is at least one FP, it is highly likely that the
unknown KOI (the KOI in question) is also an FP. When there
is no FP, it is highly likely that the unknown KOI is a planet.
We provide some insights regarding multiplicity scenarios with
at least one CP or unknown KOI but no FPs (i.e., [x, y, z],
x= 0, y> 0 or z> 0), and those that have at least 1 FP count
(third section in Table 5):

1. Scenario [0, 0, 1]: This scenario has 121 CP and 23 FP
counts (first row of the third section of Table 5), the most
among scenarios with at least one CP or one unknown
KOI. The list of the KOIs for this scenario is provided in
Table 6. Interestingly, ExoMiner V1.2 classifies all the
FP KOIs correctly and gives very low scores to most of
them. None of them get close to the validation threshold
of 0.99 after the application of the multiplicity boost.

2. Scenario [0, 1, 0]: There are six FPs for this scenario:
K00199.02, K01944.02, K02362.01, K03685.01,
K03936.01, and K03954.01. These KOIs have at least
one Robovetter FP flag on in the Cumulative KOI
table indicating that they failed one or more FP diagnostic
tests. Our ExoMiner V1.2 was able to correctly classify

these cases with high confidence with scores 2.61E-10,
0.001, 0.407, 0.009, 1.88E-11, and 1.03E-05, respec-
tively. The scores for these KOIs get boosted to 0.03,
0.030, 0.752, 0.040, 0.027, and 0.028, respectively. None
of them gets close to the validation threshold 0.99.

3. Scenario [0, 1, 2]: The only FP for this scenario is
K03741.01 with the “Stellar Eclipse Flag” on in the
Cumulative KOI table. ExoMiner V1.2 gives a very low
score of 1.10E-05 to this KOI, indicating that our classifier
correctly classified this KOI with high confidence. The
multiplicity boost framework boosts its score to 0.381.

4. Scenario [0, 2, 0]: There are four FPs for this scenario:
K01196.01, K01806.01, K00672.03, and K01792.02. All
four KOIs are flagged by at least one FP indicator in the
Cumulative KOI table. ExoMiner V1.2 was also able to
successfully capture the FP pattern in the data classifying
them with low scores of 0.072, 4.69E-04, 2.76E-06, and
2.02E-4, respectively. The multiplicity boost framework
boosts their scores to 0.201, 0.207, 0.182, and 0.136,
respectively, which are all well below the validation
threshold.

5. Scenario [0, 3, 2]: The only KOI for this scenario is
K02433.05, which is an FP. This KOI is flagged by two FP
flags in the Cumulative KOI table and scored 1.55E-05 by
ExoMiner V1.2. Given that this KOI is around a system
with three CPs and two other unknown KOIs, its score gets
boosted to 0.987 by the multiplicity boost framework, which
is very close to the validation threshold.

6. Scenario [0, 5, 0]: Note that the only FP KOI for scenario
[0, 5, 0] is the sixth KOI of K00082 with five existing
exoplanets. As mentioned in Valizadegan et al. (2022),
this is incorrectly certified as FP in the Certified False
Positive table. ExoMiner V1.2 gives a very high score
of 0.997 to this KOI, which is boosted to almost 1.0 by
the multiplicity boost framework.

Table 6
Information Related to FP Cases for Scenario [0,0,1]

KOI Flags Scores

KOI/Data Not Transit-like Stellar Eclipse Centroid Offset Ephemeris Match ExoMiner V1.2 Posterior Multiplicity

K06137.02 0 0 1 0 0.497 0.732
K00126.01 0 1 0 0 0.480 0.699
K01232.01 0 1 0 0 0.143 0.067
K05449.01 0 1 0 0 0.132 0.064
K04388.01 0 1 0 0 0.113 0.056
K03641.01 0 1 0 0 0.012 0.024
K07124.01 0 1 0 0 0.003 0.018
K07544.02 0 1 0 0 0.003 0.022
K02882.02 0 1 0 0 0.000 0.022
K00379.01 0 0 1 0 0.000 0.021
K06464.01 0 1 0 0 0.000 0.020
K01957.02 0 1 0 0 0.000 0.018
K02159.02 0 0 1 0 0.000 0.018
K06751.02 0 1 1 0 0.000 0.017
K03087.01 0 0 1 0 0.000 0.018
K02184.01 0 0 1 0 0.000 0.020
K02050.01 0 1 1 1 0.000 0.017
K02404.02 1 0 1 1 0.000 0.017
K04323.02 1 0 1 1 0.000 0.022
K01562.01 0 0 0 1 0.000 0.022
K01731.02 0 0 1 0 0.000 0.019
K03230.02 1 0 0 1 0.000 0.019
K04881.02 0 0 0 1 0.000 0.019
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Note that we did not correct this label noise in the data
because there are potentially other sources of label noise. As a
matter of the fact we are aware of five CPs that have been
demoted to FP.6 These are Kepler-486 b Díaz et al. (2014),
Kepler-492 b (Díaz et al. 2013), Kepler-699 b (Niraula et al.
2022), Kepler-840 (Niraula et al. 2022), and Kepler-854
b (Niraula et al. 2022). All these CPs are single-planet systems
which do not affect the learning process.7 However, we would
like to emphasize that machine learning models are generally
robust to a significant amount of label noise. A machine
learning model does not rely on the statistics for each scenario
individually but rather aims to find a mapping that optimizes its
objective function, in this case Equation (3).

From the 6181 initial scenario sets reported in Table 10, we
generated 8458 new scenarios and their weights using the
procedure described in Section 3.2.

5.2. Performance Study

Table 7 summarizes the performance result of applying
ExoMiner V1.2 posterior to the most recent data set discussed
in the previous subsection. It also reports the results after
application of the multiplicity boost framework proposed in
this work. As can be seen, our multiplicity boost framework
also improves the performance of this new model. We also
report in Table 8 the weights learned by the multiplicity boost
framework for each input parameter. Compared to the original
classifier (Table 4), ExoMiner V1.2 scores obtains higher
weight because it is more accurate.

To provide insights into how the multiplicity boost improves
the performance on specific scenarios, in Table 10 we provide
the total number of predicted FP for each scenario for
ExoMiner V1.2 and the multiplicity boost framework. As
can be seen, multiplicity information helps improve the
performance for individual scenarios.

We also report in Table 9 the scores of ExoMiner V1.2 and
the multiplicity logistic regression model on all 6181 CP and
CFP KOIs discussed in Section 5.1. The multiplicity boost
approach gives a score >0.99 to 1281 KOIs, including one FP:
K00082.06. This FP KOI is the sixth KOI in a system with five
existing exoplanets. As mentioned in Valizadegan et al. (2022),
this is incorrectly certified as FP in the Certified False Positive
table. Given that there is a total of 1328 planets in multi-planet
systems in Kepler Q1-Q17 DR25 data, the precision and recall
value at the validation threshold of 0.99 are 1.000 and 0.965,
respectively. The equivalent precision and recall values for the

ExoMiner V1.2 posterior without multiplicity boost are 1.0
and 0.836. Thus, the multiplicity boost framework significantly
improves the recall at the validation threshold of 0.99.
To show how the known KOIs are mapped by our

multiplicity boost framework, we plot the score mapping of
the CPs and CFPs in the training set for the logistic regression
model in Figure 5. We only show lines for tuples
[ ( ) ( ) ( )]N x N x N x, ,FPs CPs UNKs with more than 10 points in the
known KOI data. The mapping learned by the multiplicity
boost classifier follows the general pattern of data seen in
Table 10, i.e., the probability of CPs increases when the
scenario has more existing CPs and unknown KOIs. Our
multiplicity boost classifier also captures this pattern by
increasing the scores for KOIs for target stars with already
CPs and unknown KOIs. For single KOIs ([0, 0, 0] curve),
whose scenario includes the most points in this figure, even
though the boosted score can change relative to the score of the
original classifier (x-axis), it is always less than 0.99 and does
not allow validation of any still unconfirmed single KOIs.

5.3. Stability of New Planets

To ensure that the newly validated planets are stable, similar
to Dietrich & Apai (2020), we use the dynamical stability
parameter Δ (Fabrycky et al. 2014), defined as:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )*a a

a a

M

m m

2 3
, 82 1

2 1 1 2

1 3

D =
-
+ +

where a1 is the inner planet semimajor axis, a2 is the outer
semimajor axis, M* is the stellar mass, and m1 and m2 are the

Table 7
Performance of ExoMiner V1.2 and Its Performance Boost Using the Multiplicity Framework

Original Boosted Using Our Multiplicity Approach

Model/Metric Precision and Recall Accuracy PR AUC ROC AUC Precision and Recall Accuracy PR AUC ROC AUC

ExoMiner V1.2 0.978 and 0.980 0.996 0.997 0.999 0.979 and 0.984 0.997 0.995 1.000

Table 8
Logistic Regression Weights for ExoMiner V1.2

Model/Parameter wsf wNFPs wNCPs wNUNKs

ExoMiner V1.2 9.728 ± 0.03 −1.71 ± 0.10 2.044 ± 0.07 1.596 ± 0.03

Table 9
The Original Scores of ExoMiner V1.2 and the Boosted Scores After the

Application of Multiplicity Boost Framework on 6181 known KOIs

Column Description

KIC KIC ID
TCE TCE planet number
KOI name KOI name
Period (days) TCE period
Radius (Re) planet radius
tce_max_mult_ev TCE MES
ruwe RUWE value
positional prob positional probability
label 0 for CFP, 1 for CP
ExoMiner score ExoMiner V1.2 score + priors
Boosted ExoMiner Score score assigned by multiplicity

(This table is available in its entirety in machine-readable form.)

6 https://exoplanetarchive.ipac.caltech.edu/docs/removed_targets.html
7 They have a negligible effect on the relative ratio of FPs for
Scenario [0,0,0].
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planet masses. Similar to Dietrich & Apai (2020), we use
Δ> 8 for stable systems.

To use the above stability criterion, we need the planet mass,
Mp, which is generally not available. To estimate the planet

mass, we use the approach in Fabrycky et al. (2014) as:

⎜ ⎟
⎛
⎝

⎞
⎠

( )M M
R

R
9p

p=
a

Å
Å

where α= 2.06 for planet radius Rp> R⊕ and α= 3 for
Rp� R⊕.
As a conservative approach, we also assume that all

unknown KOIs are confirmed planets when we calculate
stability, i.e., the new planets should be stable when unknown
KOIs are assumed to be planets.

5.4. Vetoing Criteria

Given that the constructed training set for this study does not
include FAs, we remove KOIs that have MES <10.5 as a
conservative precaution to avoid noise-induced FAs. This
threshold is similar to the one used by existing validation work
(Rowe et al. 2014; Morton et al. 2016; Armstrong et al. 2021;
Valizadegan et al. 2022). It is actually based on the reliability
analysis performed in Thompson et al. (2018). In particular,
Thompson et al. (2018) showed that the reliability meets the
0.99 threshold for MES >10 and period <200 days. For period
>200 days, reliability meets the 0.99 threshold when MES >20
and is 0.97 when 10<MES <20.
Because the multiplicity boost only works if the signal is

known to be very close to the target, we veto KOIs from
validation if (1) RUWE >1.2 (Lindegren et al. 2021) or (2)
positional probability <0.99 (Bryson & Morton 2017) to
prevent validation of KOIs for blended sources. This is because
the multiplicity boost increases the score of the classifier
significantly for scenarios with multiple planets and
unknown KOIs.
In addition to these vetoes, we make sure that ExoMiner

V1.2 score >0.5 to prevent validating planets that ExoMiner
V1.2 labels as FP. As another level of reliability, we remove
any KOIs that have any FP flag set in the Cumulative KOI
catalog.

5.5. Newly Validated Exoplanets

We applied ExoMiner V1.2 and the multiplicity classifier
trained in Section 5.2 to the 1570 unknown KOIs in the Kepler
DR25 data set. Table 11 reports the ExoMiner V1.2 and the
multiplicity boost scores of all these 1570 unknown KOIs. This
resulted in a total of 208 KOIs with boosted scores >0.99.
Three out of these 208 KOIs were already confirmed by
previous works but were not included in our 6181 known
KOIs, which are K01831.03 (Kepler-324 d, Jontof-Hutter et al.
2021), K00089.02 (Kepler-462 c, Masuda & Tamayo 2020),
and K01783.02 (Kepler-1662c, Vissapragada et al. 2020). Out
of these three, K01831.03 has a positional probability <0.99.
Out of the remaining 205 KOIs, only K02926.05 has an

original ExoMiner score <0.5. K02926 has five previously
confirmed planets and K02926.05 is the last KOI for this
system in DR25. In addition to the original score veto,
K02926.05 has a positional probability <0.99. Regarding the
KOIs’ FP flags, there is only one KOI out of these 205 KOIs,
K00408.05, that has the “Not Transit-Like Flag” set. The
original ExoMiner score of this KOI was 0.575, which was
boosted to 0.999 given that there are four other CPs for this
system. K00408.05 also has a low MES of 7.9.
After removing KOIs with MES <10.5, RUWE >1.2, or

positional probability <0.99, we validate a total of 69 new

Figure 5. The score mapping of the existing exoplanets and FPs in the training
data. We only show lines for tuples [ ( ) ( ) ( )]N x N x N x, ,FPs CPs UNKs with more
than 10 points in the known KOI data for clarity. The lines for tuples with less
than ten points exhibit similar patterns.

Table 10
The Performance of Multiplicity Boost Framework Compared to ExoMiner

V1.2 on Individual Scenarios in Terms of FP Counts

Scenarios Observed ExoMiner V1.2 Multiplicity Boost

[3, 0, 0] 4 4 4
[1, 0, 0] 90 89 89
[1, 0, 1] 2 2 2
[1, 0, 2] 0 0 0
[1, 1, 0] 0 0 0
[1, 2, 2] 0 0 0
[1, 4, 0] 0 0 0

[0, 0, 0] 3406 3387 3395

[0, 0, 1] 23 25 23
[0, 0, 2] 0 1 1
[0, 0, 3] 0 0 0
[0, 1, 0] 6 14 9
[0, 1, 1] 0 2 2
[0, 1, 2] 1 2 1
[0, 1, 3] 0 0 0
[0, 2, 0] 4 7 5
[0, 2, 1] 0 0 0
[0, 2, 2] 0 0 0
[0, 3, 0] 0 1 0
[0, 3, 1] 0 0 0
[0, 3, 2] 1 1 0
[0, 4, 0] 0 4 0
[0, 5, 0] 1 0 0
[0, 6, 0] 0 1 0

Total 3538 3540 3531
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exoplanets, whose scenario counts presented in Table 12. All
69 of these planets satisfy the stability criteria discussed in
Section 5.3. Among these validated planets, we have two that
have periods >200 days: K06103.01, whose MES is 35.4, and
K01608.03, whose MES is 12.5. The former meets the
reliability threshold of 0.99 (Check Section 5.4). The latter
has a reliability of 0.97 based on Thompson et al. (2018).
However, given that the reliability in Thompson et al. (2018) is
calculated for single-planet systems and given that K01608 has
already two confirmed planets, the reliability of 0.97 is
reasonable.

There are 77 KOIs that did not get validated simply because
their MES <10.5. Note that out of 1570 unknown KOIs, 943
have MES <10.5. Thus, the majority of remaining unknown
KOIs are in the low-MES region. This is due to the fact that
almost all previous validation techniques avoid validating
planets in this region.

In general, the percentage of newly validated exoplanets
increases for scenarios as the number of CPs or unknown KOIs
increase. The exceptions to this rule are mainly due to our
vetoing conditions, which prevent the validation of new
exoplanets. For example, there are five unknown KOIs around
target stars that already have four existing exoplanets. Although
none of these five unknown KOIs are validated, four of these
five unknown KOIs have probability scores higher than 0.99
but fail at least one of the veto conditions.

Table 13 provides the list and properties of the 69 newly
validated exoplanets. It also reports the probability score of
ExoMiner V1.2 after applying the prior and the probability
score after using the logistic regression multiplicity boost
approach. Note that the original score of ExoMiner V1.2 for
eight of these validated exoplanets is already larger than 0.99,
so they could be validated even without multiplicity informa-
tion. Figure 6 shows the score mapping done by our
multiplicity boost model for these new exoplanets. We also
report the list of KOIs with boosted score >0.99 that only
failed the MES condition in Table 14 and those that did not
pass other vetoes in Table 15.

All of the newly validated planets are planet candidates in
the Q1-Q17 DR25 KOI catalog according to the Exoplanet
Archive disposition. We also manually examined the newly
validated exoplanets to make sure there is nothing in the data to
indicate that they should not be validated. Among the KOIs
that do not have any existing CP, we discuss the following

newly validated exoplanets, which are especially interesting. In
several cases, the KOI failed the standard difference image
centroiding test relative to the centroid of the OOT image but
passed the difference image centroiding test relative to the KIC
catalog position of the target star. In these cases, the OOT
centroid erroneously converged to a nearby star in the postage
stamp rather than to the target star itself. The OOT centroid
offset diagnostic result is incorrect when the OOT centroid
does not locate the position of the target star (Bryson et al.
2013; Twicken et al. 2018). Also note that none of these are
flagged for “Centroid Offset Flag” or for any other FP flags in
the Cumulative KOI catalog.

1. K01358.01, K01358.02, K01358.03, and K01358.04: We
validate all four KOIs of K01358 (represented by black
circles on line [0,0,3] in Figure 6). There is no FP or other
KOI for this system. The minimum score of 0.635 for the
KOIs in this system is assigned to K01358.01 by
ExoMiner V1.2. This score is boosted to 0.993 by the
multiplicity boost information. All four candidates failed
the difference image centroiding test relative to the out-
of-transit centroid because the out-of-transit image
centroid locked onto a much brighter (Kp= 13.5) star
6″ to the north of the Kp= 15.5 target star. These four
candidates also failed the centroid shift test due to the
presence of the brighter nearby star. However, all four
passed the KIC offset difference image centroiding test,
i.e., all four difference image centroids were consistent
with the catalog position of the target star.

2. K03145.01: There are a total of three TCEs in DR25 for
this system, of which two are KOIs. Neither of these two
KOIs are CPs or FPs, and both appear to have difference
image centroid positions relative to the catalog position of
the host star consistent with being on target. The
ExoMiner V1.2 score for this KOI was 0.986, which

Table 11
The Original Scores of ExoMiner V1.2 and the Boosted Scores After the
Application of Multiplicity Boost Framework on 1570 Unknown KOIs

Column Description

KIC KIC ID
TCE TCE planet number
KOI name KOI name
Period (days) TCE period
Radius (Re) planet radius
tce_max_mult_ev TCE MES
ruwe RUWE value
positional prob positional probability
ExoMiner score ExoMiner V1.2 score + priors
Boosted ExoMiner Score score assigned by multiplicity

(This table is available in its entirety in machine-readable form.)

Table 12
Multiplicity Scenarios and Their Total Number of Cases for 1570 Unknown
Kepler Q1-Q17 DR25 KOIs Are Reported in Columns 1 and 2, Respectively

Scenario Counts
Score
>0.99

Not Validated due to
MES <10.5 only

Validated
Exoplanets

[0, 0, 0] 1142 0 0 0
[0, 0, 1] 153 66 19 27
[0, 0, 2] 12 4 3 1
[0, 0, 3] 12 11 2 5
[1, 0, 0] 18 0 0 0
[2, 0, 0] 1 0 0 0
[0, 1, 0] 118 59 31 15
[0, 1, 1] 45 24 6 8
[0, 1, 2] 3 3 1 2
[1, 1, 1] 2 1 0 1
[0, 2, 0] 34 16 8 7
[0, 2, 1] 6 5 2 1
[0, 2, 2] 3 3 0 0
[0, 3, 0] 10 5 2 2
[0, 3, 1] 4 2 0 0
[1, 3, 1] 2 2 2 0
[0, 4, 0] 5 4 1 0

Total 1570 205 77 69

Note. The total number of KOIs with score >0.99, the number of KOIs that
could be validated if their multiple event statistics (MES) >10.5, and validated
exoplanets per each scenario are reported in Columns 3, 4, and 5, respectively.
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Table 13
List of 69 Newly Validated Exoplanets, Sorted by TCE KIC

Number TCE KIC KOI Name Period (days) Radius (Re) MES Pos. Prob. RUWE ExoMiner V1.2 Multiplicity Score Kepler Name

1 1717722.2 K03145.01 4.54 1.82 13.8 1.000 0.96 0.986 0.997 Kepler-1977 b
2 2832589.1 K01942.01 10.85 3.01 34.5 1.000 1.03 0.891 0.991 Kepler-1978 b
3 3229150.1 K02150.01 18.51 4.32 22.5 1.000 1.08 0.965 0.996 Kepler-1979 b
4 3338885.2 K01845.02 5.06 5.64 30.2 1.000 1.06 0.981 0.998 Kepler-975 c
5 3559860.1 K03440.01 33.03 2.85 11.1 1.000 1.05 0.937 0.994 Kepler-1980 b
6 3561464.1 K03398.02 35.80 8.96 15.3 1.000 0.99 0.895 0.999 Kepler-1487 c
7 3634051.1 K06103.01 453.54 9.41 35.4 1.000 0.98 0.881 0.991 Kepler-1981 b
8 4077526.4 K01336.04 4.46 1.69 11.4 1.000 1.00 0.861 1.000 Kepler-58 e
9 4157325.3 K01860.03 3.08 1.73 22.4 1.000 0.95 0.927 1.000 Kepler-416 d
10 4173026.2 K02172.02 116.58 4.06 15.0 1.000 0.99 0.990 0.998 Kepler-1801 c
11 4458082.2 K02303.02 8.93 1.74 12.1 0.995 1.06 0.955 0.997 Kepler-1181 c
12 4548098.1 K04157.01 3.82 0.87 13.4 1.000 0.95 0.991 0.997 Kepler-1982 b
13 4665571.1 K02393.02 0.77 1.46 21.0 1.000 1.10 0.994 0.998 Kepler-1834 c
14 4770365.3 K01475.03 4.73 1.60 10.9 1.000 1.03 0.899 0.999 Kepler-1669 d
15 4857058.1 K03061.01 7.33 1.64 11.4 1.000 0.98 0.993 0.997 Kepler-1983 b
16 5531953.2 K01681.02 1.99 0.81 12.9 1.000 −1.00 0.610 0.994 Kepler-1984 b
17 5942808.2 K02250.02 0.63 1.65 23.5 1.000 1.02 0.987 0.998 Kepler-1814 c
18 6697605.1 K02851.01 3.42 2.22 16.8 1.000 −1.00 0.986 0.997 Kepler-1985 b
19 7102227.3 K01360.03 0.76 0.89 11.5 1.000 1.02 0.961 1.000 Kepler-290 d
20 7202957.1 K02687.01 1.72 0.83 50.0 1.000 0.89 0.905 0.995 Kepler-1869 c
21 7285757.1 K03271.01 19.55 2.95 11.1 1.000 1.01 0.951 0.995 Kepler-1986 b
22 7376983.1 K01358.01 5.64 3.27 51.4 1.000 1.01 0.636 0.996 Kepler-1987 d
23 7376983.2 K01358.02 8.74 2.45 25.0 1.000 1.01 0.803 0.999 Kepler-1987 e
24 7376983.3 K01358.03 3.65 1.70 15.5 1.000 1.01 0.964 1.000 Kepler-1987 c
25 7376983.4 K01358.04 2.35 1.51 14.6 1.000 1.01 0.960 1.000 Kepler-1987 b
26 7841925.2 K01499.03 6.21 1.06 11.0 1.000 0.91 0.890 0.999 Kepler-865 c
27 7869917.2 K01525.02 11.81 3.16 12.1 0.998 0.94 0.964 0.997 Kepler-880 c
28 7939330.1 K01581.01 29.54 3.11 31.4 1.000 1.00 0.988 0.998 Kepler-896 c
29 7983117.1 K03214.01 11.49 1.55 15.8 1.000 −1.00 0.987 0.997 Kepler-1988 b
30 8162789.1 K00521.01 10.16 4.76 102.0 1.000 0.98 0.903 0.992 Kepler-1989 b
31 8456679.1 K00102.01 1.74 3.91 432.9 1.000 0.88 0.986 0.997 Kepler-1990 b
32 8456679.2 K00102.02 4.07 1.19 22.5 1.000 0.88 0.998 0.997 Kepler-1990 c
33 8780959.3 K03741.04 9.63 2.38 19.7 1.000 0.96 0.991 0.997 Kepler-1518 c
34 8804283.1 K01276.01 22.79 2.91 40.1 1.000 0.93 0.977 0.996 Kepler-1991 c
35 8804283.2 K01276.02 13.26 1.85 14.6 1.000 0.93 0.989 0.997 Kepler-1991 b
36 8827575.2 K03052.02 15.61 1.03 11.3 1.000 1.07 0.953 0.995 Kepler-1992 b
37 8890924.1 K04269.01 26.66 4.43 11.7 1.000 1.00 0.914 0.993 Kepler-1993 b
38 9071593.2 K02257.02 59.28 1.88 10.7 1.000 1.09 0.878 0.994 Kepler-1162 c
39 9100953.2 K04500.02 44.99 2.21 10.7 1.000 1.03 0.980 1.000 Kepler-1610 c
40 9117416.2 K03425.02 3.16 1.69 13.8 1.000 1.14 0.987 1.000 Kepler-1921 c
41 9205938.2 K02162.02 199.67 1.68 11.1 1.000 0.91 0.922 0.996 Kepler-1126 c
42 9285265.2 K03410.02 61.57 3.13 10.9 1.000 1.11 0.958 0.997 Kepler-1491 c
43 9602613.1 K02612.01 4.61 0.62 11.4 1.000 0.96 0.968 0.996 Kepler-1994 b
44 9634821.1 K02037.01 73.76 4.62 29.9 1.000 1.12 0.830 0.997 Kepler-1995 b
45 9636135.2 K01498.02 2.42 1.77 13.3 1.000 0.90 0.966 0.997 Kepler-864 c
46 9729691.2 K01751.02 21.00 5.16 27.8 1.000 0.97 0.873 0.993 Kepler-949 c
47 9758089.1 K01871.01 92.73 2.81 31.7 1.000 1.08 0.955 0.995 Kepler-1996c
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Table 13
(Continued)

Number TCE KIC KOI Name Period (days) Radius (Re) MES Pos. Prob. RUWE ExoMiner V1.2 Multiplicity Score Kepler Name

48 9758089.2 K01871.02 32.38 2.29 26.3 1.000 1.08 0.948 0.995 Kepler-1996 b
49 9785921.1 K03372.01 26.76 2.44 11.1 0.993 1.02 0.975 0.996 Kepler-1997 b
50 9839821.2 K02012.02 180.93 2.37 12.0 0.999 0.97 0.917 0.996 Kepler-1052 c
51 9896018.2 K02579.02 3.60 1.72 12.8 1.000 1.00 0.964 0.999 Kepler-1859 c
52 10055126.3 K01608.03 232.05 2.07 12.5 1.000 1.12 0.909 0.999 Kepler-311 d
53 10141900.1 K01082.01 6.50 1.97 15.9 1.000 0.91 0.991 1.000 Kepler-763 d
54 10141900.3 K01082.02 4.10 1.64 11.0 1.000 0.91 0.988 1.000 Kepler-763 c
55 10189546.1 K00427.01 24.61 4.55 53.9 1.000 1.15 0.969 1.000 Kepler-549 d
56 10265898.2 K00732.03 5.25 1.52 10.6 1.000 1.01 0.749 0.995 Kepler-656 c
57 10350571.1 K01175.02 17.16 1.77 13.0 1.000 1.01 0.996 1.000 Kepler-784 c
58 10387742.1 K02583.01 3.03 0.69 12.9 1.000 1.01 0.968 0.996 Kepler-1998 b
59 10460984.3 K00474.03 94.89 4.00 19.5 1.000 1.10 0.976 1.000 Kepler-164 e
60 10843431.1 K07378.01 8.74 3.55 12.1 1.000 1.00 0.884 0.991 Kepler-1999 b
61 10973664.2 K00601.02 11.68 4.38 43.0 1.000 1.03 0.943 1.000 Kepler-618 d
62 11122894.2 K01426.03 150.02 7.12 92.4 1.000 0.94 0.754 0.997 Kepler-297 d
63 11450414.3 K01992.03 85.52 2.63 11.2 1.000 1.02 0.947 1.000 Kepler-347 d
64 11618601.2 K03022.02 5.05 1.59 10.6 0.999 1.05 0.879 0.994 Kepler-1894 c
65 11752906.1 K00253.01 6.38 3.32 55.2 1.000 1.01 0.980 0.996 Kepler-2000 b
66 11752906.2 K00253.02 20.62 2.20 12.3 1.000 1.01 0.989 0.997 Kepler-2000 c
67 11810124.2 K03344.01 11.60 2.24 11.7 1.000 1.14 0.989 1.000 Kepler-1471 c
68 12061969.1 K02061.01 14.09 4.08 15.9 1.000 0.94 0.930 0.994 Kepler-2001 c
69 12061969.2 K02061.02 1.09 1.19 10.5 1.000 0.94 0.973 0.996 Kepler-2001 b

(This table is available in machine-readable form.)
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was boosted to 0.996 by the multiplicity boost informa-
tion. The third (non-KOI) TCE corresponds to a 2% deep
(diluted) single transit or eclipse on a neighboring star
∼6″ away.

3. K00102.01 and K00102.02: There are two TCEs/KOIs
in this system. We validate both of them. This is a double
star system with a separation of ∼2 8 and a delta-
magnitude of 1.5. In addition, there is a brighter star (KIC
8456687, Kp= 10) 16″ south of the target star. Both
KOIs fail the difference image centroid test relative to the
OOT images due to the presence of this bright star.
However, the difference image centroids relative to the
KIC position for K00102.01 place the signal on the target
star, ruling out the fainter companion at more than 30σ.
Although the difference images for K00102.02 are much
noisier due to the lower strength signal, the difference
images themselves indicate the transits fall on target.
Kepler photometry of KIC 8456687 shows no transit or
eclipse-like signal at the four day period of K00102.02,
ruling out the flux contamination from that target as the
source. The Kepler follow-up observing program8 carried
out extensive observations on this early KOI and found
no evidence of any additional companion brighter than a
delta-magnitude of +7 at 3″ separation or greater. This
indicates that a background source for this signal would
require a stellar eclipse. However, the ExoMiner V1.2
score for K00102.02 of 0.998 strongly favors a planetary
transit. The ExoMiner V1.2 scores for K00102.01 and
K00102.02 were 0.986 and 0.998, which were boosted to
0.996 and 0.997, respectively.

4. K01276.01 and K01276.02: There are two TCEs/KOIs
for this system. We validate both. There is a brighter star
(KIC 8804292, Kp= 13.3) ∼10″ to the southeast of the
target star that impacts the OOT centroids; however, the
difference image centroids are consistent with being on
target relative to the catalog star position. The ExoMi-
ner V1.2 scores for these KOIs were 0.977 and 0.989,
which were boosted to 0.996 and 0.997, respectively.

5. K02612.01: There are two TCEs/KOIs for this system.
We validate one. The target is a bright star, marginally
saturated at Kp= 11.8. The observed centroid offsets are
along the brightest pixel column, which is consistent with

the saturation bleed, and speckle and adaptive optics
imaging from Kepler follow-up observations find no
nearby companions. The ExoMiner V1.2 score for this
KOI was 0.968, which was boosted to 0.996.

6. K01871.01 and K01871.02: There are two TCEs/KOIs
for this system. We validate both. This is a double star
consisting of the target star (Kp= 14.9) and a companion
(KIC 9758087, Kp= 14.6) ∼5″ to the northwest. The
difference image centroids for both K01871.01 and
K01871.02 are on the KIC position of the target star
and rule out the companion at more than 10σ. The
ExoMiner V1.2 scores for K01871.01 and K01871.02
were 0.955 and 0.947, respectively, which were both
boosted to 0.995.

7. K00253.01 and K00253.02: This is a double star system
of two Kp= 15 stars with a separation of 5″. The second
star (KIC 11752908) has a FP K02651.01 that triggered
off of the signal from K00253.01. The difference image
centroids for both K00253.01 and K00253.02 are within
∼0 5 of the KIC position of the target star and rule out
the companion at more than 10σ. The ExoMiner V1.2
scores for these KOIs were 0.980 and 0.989, which were
boosted to 0.996 and 0.997, respectively.

8. K02037.01: There are three TCEs/KOIs for this system.
While there is a nearby brighter star (KIC 9634819,
Kp= 14.2) 10″ to the north, the difference image
centroids for all three KOIs are on the KIC position of
the target star and rule out the companion. The
ExoMiner V1.2 score for this KOI was 0.830, which
was boosted to 0.996 by multiplicity information given
that there are two other unknown KOIs for this system
(yellow line on Figure 6).

As discussed in Section 5.1, K01082 is the only system with
three unknown KOIs and one CP. We validate K01082.01 and
K01082.2 in this work. The only remaining KOI for K01082
not validated by this work is K01082.04, which has a score
>0.99, but we decline to validate because of its low-MES value
(MES= 7.65). K01082.04 is listed in Table 14. Another
interesting new validated planet is K03741.04. There are four
TCEs/KOIs for K03741, which include one CP, one FP, and
two unknown KOIs. This is the only planet that we validate
that has a host star with an FP (black circle on red line for
scenario [1,1,1] in Figure 6).

Figure 6. The newly validated exoplanets are shown using black circles. The mapping lines between ExoMiner scores and the boosted scores for each tuple
[ ( ) ( ) ( )]N x N x N x, ,FPs CPs UNKs setting are displayed using solid lines. Lines are only plotted for tuples that are represented in the unknown KOIs.

8 https://exofop.ipac.caltech.edu/

15

The Astronomical Journal, 166:28 (20pp), 2023 July Valizadegan et al.

https://exofop.ipac.caltech.edu/
https://exofop.ipac.caltech.edu/
https://exofop.ipac.caltech.edu/


Table 14
List of low-MES KOIs (MES <10.5) with Boosted ExoMiner V1.2 Score >0.99, RUWE <1.2, and Positional Probability >0.99

Number TCE KIC KOI Name Period (days) Radius (Re) MES Pos. Prob. RUWE ExoMiner V1.2 Multiplicity Score

1 4860678.2 K01602.02 3.03 1.83 10.4 1.000 0.94 0.960 0.997
2 6209677.2 K01750.02 2.54 1.01 10.3 1.000 1.08 0.854 0.992
3 10717241.2 K00430.02 9.34 0.98 10.2 1.000 1.05 0.831 0.990
4 5903749.1 K03029.01 18.98 2.49 10.2 1.000 −1.00 0.996 0.997
5 4164922.2 K03864.02 18.26 1.07 10.2 1.000 1.04 0.999 0.998
6 7449554.2 K02357.02 15.90 4.82 10.2 1.000 1.11 0.994 0.997
7 3230805.1 K03068.01 3.92 1.00 10.2 1.000 0.94 0.986 0.997
8 7692093.1 K03337.01 11.17 1.66 10.2 1.000 1.02 0.997 0.997
9 8874090.2 K01404.02 18.91 1.19 10.1 1.000 1.06 0.997 0.998
10 9002538.2 K03196.02 6.88 0.81 10.1 1.000 0.95 0.996 0.997
11 8760040.2 K02963.02 7.35 1.54 10.1 1.000 1.07 0.991 0.998
12 9489524.4 K02029.04 4.79 0.78 9.9 1.000 1.08 0.998 1.000
13 5511659.1 K04541.01 8.53 2.84 9.9 1.000 0.94 0.987 0.997
14 8644365.2 K03384.01 10.55 1.30 9.9 1.000 1.08 0.889 0.994
15 9836563.1 K04421.01 4.73 0.73 9.8 1.000 0.96 0.883 0.991
16 5621333.2 K03341.02 11.55 1.66 9.8 1.000 1.04 0.950 0.995
17 6436505.1 K06707.01 43.54 1.82 9.8 1.000 1.02 0.993 0.997
18 6871071.4 K02220.04 7.66 1.83 9.8 1.000 0.94 0.998 1.000
19 9093086.1 K06191.01 9.70 1.67 9.7 1.000 0.99 0.953 0.995
20 4472818.2 K03878.02 15.36 1.20 9.7 1.000 0.89 0.889 0.994
21 7289317.2 K02450.02 7.19 1.32 9.7 1.000 0.96 0.996 0.998
22 4645174.2 K03437.02 34.75 2.53 9.6 1.000 1.04 0.962 0.997
23 7825899.3 K00896.03 28.87 1.70 9.6 1.000 0.92 0.994 1.000
24 6705026.2 K03374.02 34.11 2.09 9.5 1.000 1.03 0.895 0.995
25 7289338.1 K03420.02 12.50 2.73 9.5 1.000 0.94 0.990 0.997
26 4770617.3 K02243.03 31.45 3.42 9.4 1.000 0.99 0.787 0.998
27 9967009.1 K03462.01 12.43 2.01 9.4 1.000 0.98 0.938 0.994
28 8168187.2 K02209.02 35.50 2.10 9.4 1.000 1.03 0.886 0.994
29 2854181.2 K02232.02 12.84 1.95 9.3 1.000 0.97 0.989 0.998
30 9896018.3 K02579.03 10.30 1.86 9.3 1.000 1.00 0.996 1.000
31 5003670.2 K04524.02 4.53 1.23 9.3 1.000 0.86 0.887 0.999
32 11968463.4 K02433.04 27.90 2.11 9.2 0.999 0.94 0.982 1.000
33 7106173.1 K03083.01 10.18 0.92 9.2 1.000 0.98 0.871 0.998
34 12256520.2 K02264.02 7.25 1.15 9.2 1.000 0.87 0.857 0.992
35 5769810.1 K04913.02 8.97 3.39 9.2 0.999 1.12 0.900 0.992
36 6508221.3 K00416.03 9.75 1.54 9.2 1.000 0.95 0.792 0.998
37 11918099.2 K00780.02 7.24 1.81 9.2 1.000 0.96 0.979 0.998
38 4735826.2 K03184.03 4.02 0.67 9.1 1.000 0.90 0.974 0.996
39 9655711.1 K06209.01 12.71 2.29 9.1 1.000 0.97 0.942 0.995
40 7285757.2 K03271.02 7.42 1.26 9.0 1.000 1.01 0.992 0.997
41 5177859.2 K04246.02 8.76 1.36 9.0 1.000 1.10 0.985 0.998
42 1432789.2 K00992.02 4.58 1.64 8.9 1.000 1.00 0.903 0.995
43 10290666.2 K00332.02 6.87 0.88 8.8 1.000 1.14 0.977 0.998
44 4157325.4 K01860.04 24.84 1.57 8.8 1.000 0.95 0.575 0.997
45 6543893.3 K01627.03 3.81 3.28 8.8 1.000 1.03 0.811 0.998
46 7047922.2 K01899.02 10.52 1.19 8.7 1.000 1.13 0.947 0.997
47 10000941.2 K04146.02 2.57 0.69 8.7 1.000 1.07 0.942 0.997
48 1996180.2 K02534.02 5.42 1.35 8.7 1.000 1.07 0.866 0.993
49 7107802.2 K02420.02 5.47 1.19 8.6 1.000 1.05 0.979 0.998
50 5903749.2 K03029.02 6.35 1.42 8.6 1.000 −1.00 0.916 0.993
51 9100953.3 K04500.03 14.75 2.01 8.6 1.000 1.03 0.953 0.999
52 12266636.2 K01522.02 12.65 1.14 8.5 1.000 0.98 0.914 0.996
53 7663405.2 K01519.02 57.13 1.93 8.5 1.000 1.02 0.975 0.998
54 9872283.2 K01815.02 1.75 1.56 8.4 1.000 1.10 0.844 0.991
55 7512982.2 K01480.02 7.00 1.47 8.4 1.000 0.99 0.975 0.998
56 6276791.2 K04477.01 5.30 1.28 8.4 1.000 1.04 0.872 0.993
57 8613535.4 K02263.03 15.59 1.15 8.4 1.000 0.98 0.740 0.997
58 9602613.2 K02612.02 7.57 0.61 8.3 1.000 0.96 0.895 0.992
59 7021681.2 K00255.02 13.60 0.79 8.3 1.000 1.03 0.965 0.999
60 10265898.3 K00732.02 3.30 1.44 8.2 1.000 1.01 0.966 0.999
61 3645438.3 K04385.03 17.37 1.83 8.2 1.000 1.05 0.827 0.999
62 7289338.2 K03420.01 5.77 2.10 8.2 1.000 0.94 0.950 0.995
63 6221385.3 K06145.03 7.31 2.41 8.2 1.000 1.08 0.947 1.000
64 8216763.1 K04838.01 13.30 0.95 8.1 1.000 1.00 0.808 0.996
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Figure 7 displays a scatterplot of the planetary radius versus
orbital period for the previously confirmed and validated
exoplanets from the Kepler, K2, and TESS missions along with
the 69 new Kepler exoplanets that were validated by our
multiplicity framework. The distribution of the new exoplanets
is consistent with that of the Kepler sample, with periods
ranging from ∼0.6 day to over 450 days, and with planetary
radii as small as 0.6 R⊕ to as large as 9.5 R⊕. Figure 8 shows a
scatterplot of the planetary radius versus the energy received by
each planet from the Kepler, K2, and TESS missions, and the
new validated planets. As with the previous parametric plot, the
distribution of the radius versus received energy of the new
sample generally follows that of the Kepler sample.

6. Caveats

Caveats related to the base classifier (ExoMiner V1.2 in
our case), or the multiplicity boost framework can affect the
performance of the model and lead to erroneous validations.
We have discussed the caveats related to ExoMiner in
Valizadegan et al. (2022). Here, we discuss those related to the
multiplicity boost framework.

The shape of the multiplicity mapping is affected by the form
of the underlying classifier model used for multiplicity boost,
i.e., logistic regression here, and is largely dependent on the
data set that we use for training the model. The logistic
regression makes certain assumptions that might not fully hold
for the multiplicity data:

1. Logistic regression requires that the independent vari-
ables are linearly related to the log odds. This assumption
basically dictates the shape of the mapping between the
original score and multiplicity score (Figure 3). Having a
different assumption about the log odds will change the
shape of the mapping, even though the general behavior
will stay the same.

There are also caveats directly related to the
multiplicity boost independent of the multiplicity classi-
fier that we use. This is mainly due to the fact that the
multiplicity boost assumes that the candidates are not (1)
FPs due to background objects and (2) FAs, as we discuss
below.

2. FP due to background objects: The multiplicity boost
approach will fail for FPs due to background objects

when there are multiple existing planets and unknown
KOIs. One example of this situation is K02433.05. Even
though K02433.05 is a background FP, the multiplicity
approach boosts its very low score to 0.987 because there
are three CPs and two unknown KOIs for this system.
Fortunately, this does not pass the validation threshold.
However, there could exist similar KOIs that pass the
validation threshold. Our vetoing conditions mitigate this
problem for most stars, although positional probability is
not computed for all targets. For K02433.05, not only are
there two FP flags, “Stellar Eclipse Flag” and “Centroid
Offset Flag” set, but it also has a low MES of 9.09.

Calculating the rate of misclassification for back-
ground FPs can provide great insights. However, this is
not easy because we do not have the gold standard labels
for background FPs. To provide an estimate, we use the
KOI flag for centroid shift, i.e., “Centroid Offset Flag,” as
the indicator for background FPs. There are a total of
1742 KOIs with this flag set. Out of these 1742 KOIs,
ExoMiner V1.2 correctly classifies 1731 KOIs as FPs
(only 11 mistakes), resulting in a recall of 99.4% for
background FPs. Only one KOI out of these 11
misclassified cases, K00082.06, is in a multi-planet
system. As mentioned in Valizadegan et al. (2022) and
reported in this manuscript, K00082.06 is incorrectly
certified as FP in the Certified False Positive table. After
applying the multiplicity boost model, a total of 14 KOIs,
including the 11 KOIs originally misclassified by
ExoMiner V1.2, are misclassified. Except K00082.06,
none of these 14 KOIs pass the validation threshold of
0.99 after the application of multiplicity boost. We also
would like to mention that for a background FP to be
incorrectly validated by our model, three conditions need
to be satisfied: (1) ExoMiner V1.2 gives a high enough
score to that KOI (as we explained above, this is very
rare); (2) that KOI should be around a multi-planet
system with a high enough ExoMiner score to get
boosted above 0.99; and (3) all stability and vetoing
conditions introduced in Sections 5.3 and 5.4 fail. This
can happen in practice but it is highly unlikely.

3. FAs: Given that the multiplicity boost works for planets
and FPs, it might boost the score of an FA for scenarios
that have multiple planets and unknown KOIs. We do not

Table 14
(Continued)

Number TCE KIC KOI Name Period (days) Radius (Re) MES Pos. Prob. RUWE ExoMiner V1.2 Multiplicity Score

65 7673841.3 K02585.03 7.88 0.90 8.1 1.000 0.94 0.824 0.999
66 8216763.2 K04838.03 24.07 0.97 8.1 1.000 1.00 0.961 0.999
67 6103377.2 K03004.02 7.04 2.81 8.1 1.000 1.06 0.974 0.997
68 5531953.3 K01681.04 21.91 1.05 8.0 1.000 −1.00 0.919 1.000
69 5351250.5 K00408.05 93.80 2.48 7.9 1.000 1.01 0.576 1.000
70 8226050.2 K01910.02 18.38 1.36 7.8 1.000 1.02 0.874 0.993
71 5602588.2 K02369.03 7.23 1.55 7.7 1.000 0.96 0.948 0.997
72 6716545.2 K02906.03 21.94 1.37 7.7 1.000 1.05 0.908 0.999
73 7765528.2 K01840.02 9.39 1.94 7.7 1.000 0.96 0.875 0.993
74 10141900.4 K01082.04 9.66 1.77 7.7 1.000 0.91 0.559 0.994
75 5531953.4 K01681.03 3.53 0.88 7.6 1.000 −1.00 0.977 1.000
76 10028792.4 K01574.04 8.98 1.84 7.4 1.000 0.90 0.896 1.000
77 11968463.6 K02433.07 86.43 2.98 7.2 1.000 0.94 0.901 1.000

Note. This list is sorted by MES value.

(This table is available in machine-readable form.)
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Table 15
List of KOIs with Boosted ExoMiner V1.2 Score >0.99 That Did Not Pass Positional Probability or RUWE Tests

Number TCE KIC KOI Name Period (days) Radius (Re) MES Pos. Prob. RUWE ExoMiner V1.2 Multiplicity Score

1 10662202.3 K00750.03 14.52 1.55 7.5 1.000 1.36 0.914 0.999
2 10397751.3 K02859.05 5.43 0.76 9.4 1.000 1.65 0.949 1.000
3 10397751.4 K02859.04 2.91 0.53 8.6 1.000 1.65 0.988 1.000
4 8280511.4 K01151.04 17.45 0.87 8.4 1.000 2.01 0.948 1.000
5 8280511.5 K01151.05 21.72 0.92 7.8 1.000 2.01 0.871 1.000
6 10875007.2 K04149.02 14.71 1.68 10.6 1.000 2.05 0.916 0.993
7 8261920.1 K02174.01 6.69 2.66 17.9 1.000 2.82 0.975 1.000
8 5956656.2 K01053.02 46.25 2.48 8.8 1.000 3.33 0.984 0.998
9 5856571.2 K01839.02 80.41 4.41 12.9 1.000 3.85 0.929 0.996
10 3529290.1 K03340.02 13.73 1.08 11.4 1.000 4.09 0.919 0.993
11 5629353.1 K06132.01 33.32 13.31 59.2 1.000 4.39 0.787 0.997
12 5542466.3 K01590.03 4.75 1.63 9.6 1.000 5.07 0.988 1.000
13 4832837.2 K00605.02 5.07 0.73 9.5 1.000 10.81 0.973 0.997
14 4736569.2 K01996.02 7.07 1.09 9.1 1.000 10.88 0.969 0.997
15 11566064.1 K00353.01 152.11 11.67 82.5 1.000 1.42 0.833 0.998
16 5384713.1 K03444.02 60.33 5.25 59.2 1.000 1.95 0.959 1.000
17 11125797.1 K03371.01 58.13 1.55 10.8 1.000 2.90 0.964 0.997
18 9413156.1 K04700.01 3.83 1.32 9.3 0.981 0.90 0.903 0.992
19 4385148.1 K02942.01 13.84 2.40 14.5 0.975 0.92 0.982 0.998
20 5031857.2 K01573.02 7.14 1.31 13.6 0.974 1.08 0.954 0.997
21 5080636.2 K01843.02 6.36 0.69 9.9 0.962 1.19 0.851 0.992
22 7100673.5 K04032.05 7.24 0.88 9.0 0.961 1.19 0.986 1.000
23 8581240.1 K03111.01 10.77 1.05 11.9 0.959 1.07 0.990 0.997
24 4466677.2 K01338.02 42.04 1.73 12.1 0.950 0.96 0.934 0.999
25 4478168.2 K00626.02 8.03 1.13 9.9 0.941 0.90 0.985 0.998
26 10028792.3 K01574.03 5.83 1.79 9.3 0.940 0.90 0.750 0.999
27 9002538.1 K03196.01 4.96 0.71 11.0 0.938 0.95 0.967 0.996
28 6026737.1 K02949.01 10.17 1.15 10.0 0.925 0.89 0.997 0.997
29 10122538.5 K02926.05 75.73 3.55 11.4 0.917 1.06 0.356 0.997
30 7449554.1 K02357.01 2.42 2.64 17.8 0.908 1.11 0.985 0.997
31 5003670.3 K04524.03 3.34 1.08 8.4 0.887 0.86 0.833 0.998
32 5621333.1 K03341.01 27.10 2.30 14.7 0.865 1.04 0.994 0.997
33 7256914.2 K04136.02 4.03 1.20 11.3 0.856 1.02 0.971 0.996
34 4851530.1 K01884.01 23.08 2.07 17.6 0.846 1.21 0.969 0.996
35 4548011.2 K04288.02 9.09 0.92 10.0 0.839 1.08 0.813 0.998
36 7375348.2 K00266.02 47.74 1.79 14.1 0.795 0.93 0.991 0.998
37 12785320.2 K00298.02 57.38 1.70 17.4 0.794 0.98 0.994 0.998
38 5211199.2 K02158.02 6.68 2.12 10.1 0.777 0.98 0.996 0.998
39 11253711.1 K01972.01 17.79 3.48 31.7 0.749 6.49 0.949 0.997
40 6527078.1 K04657.01 7.58 0.64 10.2 0.740 0.92 0.985 0.997
41 5972334.3 K00191.03 0.71 1.26 21.1 0.740 0.91 0.899 1.000
42 7673192.5 K02722.05 16.53 1.24 7.8 0.710 1.05 0.984 1.000
43 5384713.2 K03444.03 2.64 0.64 11.4 0.653 1.95 0.973 1.000
44 11135694.1 K04896.02 49.54 1.84 9.3 0.643 1.04 0.983 0.996
45 6467363.1 K02840.01 3.68 0.90 15.4 0.621 1.03 0.992 0.997
46 10471621.1 K02554.02 10.27 1.07 13.8 0.618 −1.00 0.992 0.997
47 5384713.3 K03444.01 12.67 0.84 10.1 0.614 1.95 0.994 1.000
48 10397751.5 K02859.03 4.29 0.61 7.4 0.589 1.65 0.557 0.999
49 8838950.1 K02421.01 2.27 0.62 13.1 0.585 3.57 0.892 0.991
50 11030475.2 K02248.03 0.76 1.26 16.8 0.579 −1.00 0.921 0.999
51 6268648.4 K01613.03 20.61 0.95 8.1 0.540 45.45 0.810 0.997
52 5531953.1 K01681.01 6.94 1.18 18.4 0.540 −1.00 0.997 1.000
53 6527078.2 K04657.02 10.43 0.74 8.9 0.520 0.92 0.969 0.996
54 4770174.1 K02971.01 6.10 1.58 14.3 0.514 1.04 0.948 0.995
55 4851530.2 K01884.02 4.78 1.89 14.3 0.461 1.21 0.987 0.997
56 11967788.2 K04021.02 4.93 1.42 14.0 0.416 20.55 0.987 0.997
57 10875007.1 K04149.01 9.55 1.72 13.9 0.350 2.05 0.988 0.997
58 8008067.3 K00316.03 7.31 2.18 33.3 0.268 1.07 0.739 0.997
59 5542466.1 K01590.01 12.89 2.36 18.7 0.099 5.07 0.980 1.000

Note. This list is sorted by positional probability.

(This table is available in machine-readable form.)
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have any examples of this in the labeled KOIs but, as we
discussed in Section 5.5, the unknown K00408.05 with
multiplicity score >0.99 has the “Not Transit-Like Flag”
on. It is also a KOI with MES <10.5. So our vetoing
conditions such as MES >10.5 and KOI FP flags also
help for cases in this category.

To provide some insights regarding the chances of
validating such observations, we would like to note that
ExoMiner V1.2 is highly accurate when it comes to the
NTP instances. Out of 24474 NTPs in the Kepler data,
there are only five with ExoMiner V1.2 score >0.5.
This results in a 99.98% recall for the NTP set. It is also
highly accurate for FA objects in the KOI tables. In the
CFP table of Bryson et al. (2017), there are a total of 302
FAs out of which ExoMiner V1.2 gives a score >0.5 to
only two of them: K03226.01 with a score 0.84 and
K02768.03 with a score 0.97, both of which are on

systems with a single KOI (note that there is only one
KOI for K02768 in Q1-Q17 DR25). Interestingly,
K02768.03 is a transiting planet that has been confirmed
in Q1-Q16 and incorrectly labeled as FA.

KOI 3226.01 was dispositioned as an FA by the Kepler
False Positive Working Group based on Q1-Q16 data
processing, and using that data this KOI violated the FA
criteria by having large oscillations at the same period and
with a similar shape as the transit signal Bryson et al. (2017).
However, these oscillations diminished in the final DR25
processing, so that they no longer violate the false alarm
criterion. Therefore, we think of this KOI as an unclear case.

Overall, to have a validated FA KOI, it needs to satisfy
the following three conditions: (1) ExoMiner V1.2 gives a
high score to that FA (this is very rare, as we explained
above); (2) the FA KOI should be around a system with
enough other planets to be boosted to the validation
threshold of 0.99 by the multiplicity boost framework; and
(3) it needs to pass the vetoing and stability conditions
explained in Sections 5.3 and 5.4. Having a FA that meets all
these conditions is possible but unlikely.

4. Application to TESS: The same approach can also be
beneficial when considering TESS exoplanet results.
While the TESS pixel scale is ∼25 times bigger in area
than that for Kepler (21″ versus 4″ on a side), the average
impact of background blends in TESS data and Kepler
data are roughly comparable. This is due to the fact that
TESS’s exoplanet targets are ∼5 mag brighter than
Kepler’s, meaning that there are ∼32 times fewer
background stars at a comparable delta-magnitude. Of
course, this average estimate breaks down in regions of
high crowding (e.g., the Galactic plane or Galactic bulge),
or in the cases of stars dimmer than Tmag∼ 11, and
results from these scenarios would require more careful
checking and attention to other tests that provide
information on background contamination, such as
centroid and difference image analysis.

7. Conclusions

We introduced a new multiplicity boost framework that can
be applied to any existing transit-signal classifier to boost its
performance. Our framework does not require an existing
classifier to retrained or redesigned, and can be applied to the
output scores of a given classifier to improve its performance
using the multiplicity information. We applied our framework
to multiple state-of-the-art transit-signal classifiers to demon-
strate that multiplicity information improves their performance.
Furthermore, we applied it to an improved version of
ExoMiner and validated 69 new exoplanets for systems with
more than one candidate.

This work is dedicated to the Women, Life, Freedom movement
in Iran. We would like to symbolically name four of the newly
validated exoplanet, i.e., K01358.01, K01358.02, K01358.03, and
K01358.04, to Zan, Zendegi, Azadi,9 and Iran, respectively.
H.V. and M.M. are supported through NASA NAMS contract

NNA16BD14C, TESS GI Cycle 4 contract 80NSSC22K0184, and
NASA ROSES XRP proposal 22-XRP22_2-0173. D.C. and J.T.
are supported through NASA Cooperative Agreement

Figure 7. Planet radius vs. orbital period for confirmed transiting planets and
validated planets in this paper. The CPs are indicated by the discovery source
with Kepler indicated by “+,” K2 by a diamond “◊,” and TESS by “

*.”
ExoMiner V1.2-boosted validated planets are indicated by a magenta square.
For reference, Earth is indicated by a black circle.

Figure 8. Planet radius vs. energy received by planet for confirmed transiting
planets and the validated planets in this paper. The symbols are the same as in
Figure 7.

9 Persian words for woman, life, and freedom, respectively.
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80NSSC21M0079. We would like to thank many people who
directly or indirectly contributed to this work. This paper includes
data collected by the Kepler mission and obtained from the MAST
data archive at the Space Telescope Science Institute (STScI).
Funding for the Kepler mission was provided by the NASA
Science Mission Directorate. Resources supporting this work were
provided by the NASA High-End Computing (HEC) Program
through the NASA Advanced Supercomputing (NAS) Division at
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products and for training our deep learning model, ExoMiner
V1.2. This research has made use of the Exoplanet Follow-up
Observation Program (ExoFOP; DOI:10.26134/ExoFOP5) web-
site, which is operated by the California Institute of Technology,
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