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Abstract: The generalized dynamic model of the rotor system, presented in this paper, is the
first model that takes into account the interconnected oscillations of the “rotor–weakly conductive
fluid–foundation” system under the action of parameters such as fluid and rotor motion, linear eccen-
tricity, friction forces, foundation vibration and nonlinear characteristics of rolling bearings, as well
as the action of a magnetic field on the fluid. Consistent equations of motion for the “rotor–weakly
conductive fluid–foundation” system were derived and solved analytically. Forced and natural oscil-
lations of the system were analyzed, and the distinctive features of the rotor system dynamics were
revealed. The values of frequencies and amplitudes, which are one of the main factors determining
the dynamic behavior of the system, were obtained and studied.

Keywords: rotor; moving foundation; nonlinear oscillations; critical frequency; natural oscillations;
weakly conductive liquid; magnetic and electrohydrodynamics

1. Introduction

In many theoretical and practical studies on the dynamics of rotor systems containing
liquid, only oscillations of the rotor with liquid are considered, without taking into account
the electromagnetic properties of the liquid and the mobility of the foundation [1]. This
assumption leads to certain errors in assessing the dynamic and kinematic characteristics
of the rotor system [2]. Studies of dynamic systems such as rotary systems show the
importance of taking into account the electromagnetic properties of the fluid, the nonlinear
properties of the shaft supports, foundation vibration and the need to develop measures
to reduce them [3,4]. The intensive development of magnetic and electrohydrodynamics
(hereinafter referred to as MEHD) started in the 1960s by the Melcher group in the USA.
In Europe, these studies were started by French and Spanish scientific centers [5] and
others [6], where the issues of the possibility of using electrohydrodynamic effects in
production and the importance of developing a general theory of MEHD were considered.
In 1966, Taylor was the first to show how the application of a uniform electric field can
deform the shape of a weakly conductive liquid depending on its electrohydrodynamic
properties [7]. In the USSR, this direction was developed by authors such as V.V. Gogosov
and I.E. Tarapov [8]. As a result, already in the 1970–1980s, the main provisions and
systems of MEHD equations were developed, and the conditions under which various
MEHD models are valid were considered. Intensive MEHD studies using applied physics
methods were carried out in [9], where gas-dynamic flows with similarly charged particles
were studied and new directions in MEHD were analyzed: MEHD turbulence, unsteady
effects, and new methods for diagnosing MEHD flows. Some MEHD problems on the
stability of an inhomogeneously heated low-conductivity liquid were studied in [10]. A
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large amount of work on the study of electrophysical processes in dielectric liquids initiated
by high-intensity fields was carried out by the authors of [11]. The results of recent MEHD
studies are presented in [12].

Oscillations of the free surface of a viscous fluid in a rotating cylindrical vessel and
stability of rotational motions were first considered by Stewartson [13] and Kostandyan;
further, their studies were continued in the works of Bauer [14], Kimura [15], and Eidel.
In these papers, linearized equations of a system acting on a vessel from the liquid side
are studied, where it is assumed that the free surface of the liquid differs little from
the unperturbed cylindrical shape. A similar formulation of the problem and a similar
mathematical model was used in [14–17], where the oscillations of a rotating cylinder
partially filled with an ideal and viscous fluid were studied.

This problem originates in the works of Kelvin (1877, 1880), Lamb (1945), Zhukovsky
(1948, 1949) and Chetaev (1957), and was first solved in a general form by B.I. Rabinovich in
1951 [18]. In 1952, N.N. Moiseev, independent of [18], obtained similar equations of motion,
which can be found in more detail in [19]. Among the works of modern authors devoted
to various aspects of this direction, we should mention the following papers: in [20], the
analytical and numerical results obtained in the study of the motion of a system consisting
of a rigid body with a cavity filled with a viscous fluid are presented; in [21–23], chaotic
motions of a rigid body and with a cavity filled with a liquid are studied; in [24], the
experimental work was carried out to study the oscillations and displacements of the free
surface of a liquid for the case when the cavity is filled with two different liquids; in [25], a
quasi-analytical model of oscillations of magnetic fluids under low gravity under the action
of external inhomogeneous magnetic fields is presented [26], and the problem of free and
forced oscillations is solved for models with axisymmetric geometries and loads in a linear
formulation by the Ritz and finite element methods.

The analysis of the studies of rotor systems with a cavity partially filled with liquid
shows that the electromagnetic properties of the liquid were taken into account only in a
few works [27]. Therefore, the study of the problem where the effect of a magnetic field
on the oscillation of an oscillatory system is evaluated becomes especially important. The
solution to this problem is complicated by the fact that the motion of a rotating rotor and
the motion of a weakly conductive viscous fluid in its cavity are interconnected under
the action of the electromagnetic field. The system being solved includes the equations of
movement of a solid body, the equations of a continuous medium and boundary conditions
for the liquid [28,29].

2. Materials and Methods

The rotor system rotates on rolling bearings (see Figure 1). In this case, elastic defor-
mations in the rolling bearing occur in the radial and axial directions and are nonlinear [1].
The radial compliance of the bearings is caused by the deformation of the rolling elements
and roller ways at the points of contact [2]. Consider a symmetrical vertical rotor of mass
m, having a cylindrical cavity of radius R, and a static imbalance e. A cylinder of height h is
partially filled with a weakly conductive viscous liquid. The angular velocity of the rotor
(shaft) Ω0 = constπ is considered sufficiently large as it is beyond its critical velocity.

The equations of the bearing static equilibrium are compiled in accordance with the
Hertz theory [26–28]. The rolling bearing has a nonlinear stiffness characteristic of the type:

FC = c0δr + c1δ3
r

where FC is a component of the restoring force in the radial direction, δr is the deformation
in the radial direction, c0 and c1 are stiffness coefficients for the linear and cubic terms.
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Figure 1. Scheme of a rotor partially filled with a weakly conductive liquid mounted on an
elastic foundation.

The outer ring is rigidly connected to the foundation of mass M, which is mounted on
an elastic support, with a linear stiffness coefficient c2. To compile the equation of motion
of the system, a fixed coordinate system OXY is introduced. In an equilibrium state, the
geometric center of the shaft (rotor) and the center of gravity of the foundation coincide
with the origin of the fixed coordinate system [3]. The coordinates in the displaced position
of the center of the shaft (rotor) O1 are denoted by x1 and y1, and the center of gravity of
the rotor is denoted by x and y. The coordinates of the center of gravity of the foundation
O2 are denoted by x2 and y2, c0 and c1 are the coefficients of rigidity of the rotor support
(rigidity of the rolling bearing), χ and χ0 are the coefficients of external friction [4–6]. It is
assumed that the rotor performs a plane-parallel motion, and there is no rotation of the
foundation around the coordinate axes. In this case, the equations of motion of the system
are written as:

m
..
x + 2c0(x− x2) + 2c1(x− x2)

3 + χ
.
x = meΩ2

0 cos Ω0t + Fx

m
..
y + 2c0(y− y2) + 2c1(y− y2)

3 + χ
.
y = meΩ2

0 sin Ω0t + Fy

m
..
x2 + 2c2x2 − 2c0(x− x2)− 2c1(x− x2)

3 + χ0
.
x2 = 0

m
..
y2 + 2c2y2 − 2c0(x− y2)− 2c1(y− y2)

3 + χ0
.
y2 = 0

 (1)

where Fx and Fy are components of the fluid reaction force:

Fx = Rh
∫ 2π

0
σn

∣∣∣∣r=R cos(Ω0t + φ)dφ (2)

Fy = Rh
∫ 2π

0
σn

∣∣∣∣r=R sin(Ω0t + φ)dφ (3)

where h is the height of the rotor cavity and σn|r=R is the normal pressure of the viscous
fluid on the rotor wall.
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The interaction of the azimuthal magnetic field induced in the liquid with radial and
axial currents creates magnetic forces that deform the free surface of the liquid along the
axis [7]. For a liquid with low conductivity, the magnetic Reynolds number is Rem << 1
at σ << 1 and is unchanged in other scales. In this case, the induced magnetic field can
be neglected in comparison with the applied external magnetic field, and the magnetic
induction equation is not considered [9]. In the first approximation, the induced currents
can be considered radial, and the influence of axial currents can be neglected.

Then, the Lorentz force vector is written as:

→
F L = σFµ2

F H2V (4)

where σF, µF, and H are electrical conductivity, magnetic permeability and intensity

of a constant magnetic field;
⇀
V is the velocity vector of a fluid particle in a moving

coordinate system.
Taking into account (4), the differential equations of motion of a weakly conductive

viscous fluid in a polar coordinate system rotating together with the rotor are written as:

∂u
∂t − 2Ω0υ + u ∂u

∂r + υ
r

∂u
∂φ −

υ2

r − ν
∂ f
r∂φ + bmu = − 1

ρ
∂P
∂r −

..
x cos(Ω0t + φ)− ..

y sin(Ω0t + φ)
∂υ
∂t + 2Ω0u + u ∂υ

∂r +
υ
r

∂υ
∂φ + uυ

r + ν
∂ f
∂r + bmυ = − 1

ρr
∂P
∂φ +

..
x sin(Ω0t + φ)− ..

y cos(Ω0t + φ)
(5)

where P, u, and υ are the pressure, radial and tangential velocity components of a liquid

particle in a polar coordinate system, bm =
σFµ f

2 H2

ρ is a parameter that determines the effect
of a magnetic field on a liquid particle; ρ and ν are the density and the coefficient of the
kinematic viscosity of the liquid; f is the Laplacian of the stream function [10–12], i.e.,

f =
1
r

∂u
∂φ
− ∂υ

∂r
− υ

r
(6)

The continuity equation for ρ = const:

∂(ur)
∂r

+
∂υ

∂φ
= 0 (7)

The boundary conditions of the hydrodynamic problem have the following form on
the wall of the rotor:

u|r=R = 0

u|r=R = 0 (8)

On the free surface of the liquid:

υρ

(
1
r

∂u
∂φ

+
∂υ

∂r
− υ

r

)∣∣∣∣
r=r0

= 0 (9)

[
−P +

1
2

ρΩ2
0

(
r2 − r2

0

)
+ 2νρ

∂u
∂r

]∣∣∣∣
r=r0+ξ(φ,t)

= 0 (10)

where ξ(ϕ, t) is the displacement of the free surface of a liquid from an equilibrium position:

∂ξ(φ, t)
∂t

= u|r=r0
= 0 (11)
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Excluding the unknown pressure P from system Equation (5), taking into account
Equations (6) and (7), we obtain:

∂ f
∂t

+ b f − ν∆ f = −
(

u
∂ f
∂r

+
υ

r
∂ f
∂φ

)
(12)

where ∆ is the Laplace operator in the polar coordinate system.
Equation (12) is solved by the method of successive approximations [30]. In the

equilibrium position of the rotor and the foundation, i.e., in the absence of oscillations of
the system [31], the viscous fluid rotates with the rotor as a single solid body. Then:

u0 = 0, υ0 = 0, f0 = 0 (13)

Taking into account Equation (12), Equation (13) in the first approximation takes
the form:

∂ f1

∂t
+ b f1 − ν∆ f1 = 0 (14)

Further, for convenience of notation, we omit the index 1 in Equation (14), as well as
in the functions u1, υ1, and P1 in the first approximation [32,33].

The continuity equation and the boundary conditions of the hydrodynamic problem in
the first approximation are determined by Equations (7)–(11). Differential Equations (1) and
(14) with boundary conditions Equations (7)–(11) are consistent equations of motion of the
rotor, foundation and weakly conductive viscous fluid [34]. To calculate the hydrodynamic
force, the movement of the rotor and the foundation, it is convenient to represent them on
the complex plane in the following form:

z = AeiΩ0t + Beiωt (15)

z2 = CeiΩ0t + Deiωt (16)

Taking Equations (14) and (15) into account, the equations of motion of a viscous fluid
Equation (5) take the form:

∂u
∂t − 2Ω0υ + bmu− ν

r
∂ f
∂φ = − 1

ρ
∂P′
∂r + ω2Bei(σt−φ)

∂υ
∂t + 2Ω0u + bmυ + ν

∂ f
∂r = − 1

ρr
∂P′
∂φ − iω2Bei(σt−φ)

(17)

P′ = P− AΩ2
0rρe−iφ (18)

where σ = ω −Ω0 is the frequency of oscillations of the free surface of the liquid (the
velocity of wave propagation on the free surface of the liquid in the forward direction) and
ω is the frequency of free oscillations (self-oscillations) of the system [35].

It is advisable to use special functions to solve Equation (17) taking into account
Equation (7) and boundary conditions Equations (8)–(11).

Taking Equations (15)–(17) into account, we represent the velocity components of the
liquid particle u and υ, as well as the pressure P′ and the function f in the form:

G(r, φ, t) = g(r)ei(σt−φ) (19)

where we consider forced oscillations of the fluid, as free fluctuations of the liquid quickly
decay due to external friction and the viscosity of the liquid [36].

Taking Equation (19) into account, we can represent the function f as:

f (r, φ, t) = R(r)ei(σt−φ) (20)
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After substituting Equation (20) into Equation (14), we will have the first-order Bessel
equation with respect to R(r), the solution to which is written as:

R(r) = z1(αr) = C1 I1(αr) + C2N1(αr) (21)

where

α =

√
− bm + iσ

ν
(22)

where I1(αr) and N1(αr) are Bessel and Neumann functions of the first order; C1 and C2
are constants of integration, which are determined from the boundary conditions.

Using the continuity Equation (7) from relation Equation (6), taking into account
Equations (20) and (21), we obtain the inhomogeneous Euler equation, solving which we
obtain an expression for the component u of the fluid particle velocity in the form:

u =

[
C3 +

C4

r2 +
i

α2r
z1(αr)

]
ei(σt−φ) (23)

Taking Equation (23) into account, from the continuity equation, we find an expression
for the component υ of the fluid particle velocity:

u =

[
C3 −

C4

r2 −
i

α2r
z1(αr) +

iz0(αr)
α

]
ei(σt−φ) (24)

Now using Equations (19), (23) and (24) from the second equation of system Equation (17),
we obtain an expression for P′:

P′ = −iρr
[
(2Ω0 + σ− ibm)C3 +

2Ω0 − σ + ibm

r2 C4 −
(2Ω0 − σ + ibm)ν

(σ− ibm)r
z1(αr)− ν

r
z1(αr) + iBω2

]
ei(σt−φ) (25)

The integration constants C1, C2, C3 and C4 are determined using the boundary condi-
tions Equations (8)–(11). Taking into account Equations (18), (24) and (25) from
Equations (2) and (3), we find the complex expression for the reaction force of a weakly
conductive viscous fluid in the complex plane:

Fr = mLΩ2
0 AeiΩ0t + mLω2BΦeiωt (26)

where Fr = Fx + iFy, mL = πρR2h is the mass of fluid required to completely fill the
rotor cavity:

Φ =
σν

∆0

{
f12

[
αI0(αR)− I1(αR)

R

]
− f11

[
αN0(αR)− N1(αR)

R

]
+ 1
}

(27)

where

∆0 = f11 f14 − f12 f13

f11 = 2R2α
r2

0
I0(αR)− 4R

r2
0

I1(αR) +
(

4
r0
+ i(σ−ibm)

ν r0

)
I1(αr0)− 2αI0(αr0)

f13 = να
2(σ−ibm)

[
ω2 − iσbm − q2

(
Ω2

0 − σ2 + 2Ω0(σ− ibm) +
4νiσ

r2
0

)]
I0(αR)+

+ νR
(σ−ibm)r2

0

(
Ω2

0 + 2Ω0σ− σ2 + iσbm + 4νσi
r2

0

)
I1(αR)−

− ν
(σ−ibm)r0

(
Ω2

0 + 2Ω0σ + 4νiσ
r2

0

)
I1(αr0)− 2νiσ

αr2
0

I0(αr0)

(28)

Replacing the Bessel functions in the expressions for f11 and f13 by the Neumann
functions of the same order, we obtain expressions for the functions f 12 and f 14. The
quantity q = R

r0
characterizes the degree of filling of the rotor cavity with liquid.
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Now, when the fluid reaction force Fr is known, we can determine the amplitude of
forced oscillations and self-oscillations of the system [8,37–40].

Taking into account the identity of the first equation to the second, and the third to the
fourth in system Equation (1), we will further consider a system of the form:

m
..
x + 2c0(x− x2) + 2c1(x− x2)

3 + χ
.
x = meΩ2

0 cos Ω0t + Fx M
..
x2 + 2c2x2 − 2c0(x− x2)− 2c1(x− x2)

3 + χ0
.
x2 = 0 (29)

Substituting the real parts from Equations (15), (16) and (26) into Equation (29), us-
ing the method of the imaging function, and making dimensionless each term of system
Equation (29), we obtain a system of nonlinear algebraic equations for unknown dimen-
sionless amplitudes a, b, c and d. We obtain:

l11a + l13c = µs2

l12b + l14d = 0
l13c− (a− c)− η(a− c)

[
(a− c)2 + 2(b− d)2

]
= 0

l14d− (b− d)− η(b− d)
[
(b− d)2 + 2(a− c)2

]
= 0

(30)

where

l11 = −µ1s2 + ips; l12 = −(µ + µLΦ)τ2 + ipτ; l13 =
(

g0 − s2 + ip0s
)
; l14 =

(
g0 − τ2 + ip0τ

)
.

n2
0 = 2c0

M ; n1 = 2c1
M ; n2

2 = 2c2
M ; µ = m

M ; µL = mL
M ; mL = πρR2H; µ1 = µ + µL; p = χ

Mn0
;

p0 = χ0
Mn0

; g0 = c2
c0

; η = 3µn1e2

4n2
0

; a = A
e ; b = B

e ;

c = C
e ; d = D

e

(31)

where τ = ω
n0

and s = Ω0
n0

are the dimensionless frequency of natural vibrations of the
system and the angular velocity of the rotor, respectively.

From the formulas that determine the unknowns a, b, c and d, it is obvious that the
amplitudes of the forced and natural oscillations of the system depend on the natural
frequency of the system and they are interdependent [41]. This is one of the specific
features of a nonlinear system. From formulas Equations (15) and (16), it follows that one
more frequency is superimposed on the forced oscillations of the system, i.e., the system
makes oscillations consisting of the sum of two harmonic oscillations [42]. In this case, the
system performs a processional motion that differs from a circular precession [43].

From the first and second equations of system Equation (30), we have:

c = β13 + β11a

a− c = a(1− β11)− β13 (32)

d = − l12

l14
b (33)

b− d = b
(

1 +
l12

l14

)
(34)

b2 = λ2a2 + λ1a + λ0 (35)

where
β11 = − l11

l13
; β13 = µs2

l13
; β10 = − (l12l14+l12+l14)

η(l12+l14)
; λ0 = − 2l2

14(1−β11)
2

(l12+l14)
2 ;

λ1 = − 4l2
14(1−β11)β13

(l12+l14)
2 ; λ2 = (β10 − 2β13)

l2
14

(l12+l14)
2



Appl. Sci. 2023, 13, 12089 8 of 23

Now, from the third equation of system Equation (30), taking into account
Equations (32), (33), and (35), we obtain an equation of the third power with respect to a:

a3 + δ2a2 + δ1a + δ0 = 0 (36)

δ2 = − 3µs2

β12
; δ1 = − l11l3

13+β15µs2

β12β14
+ β16

β14
; δ0 =

µs2(l3
13−β16)

β12β14
;

β12 = l11 + l13;
β14 = 3ηβ2

12; β15 = −6ηβ12µs2; β16 = 3ηµ2s4 − 2ηβ10l2
13 − l2

13

(37)

The cubic Equation (36) is solved analytically by the Cardano method and numerically
by the Newton–Raphson method. The coefficients of Equation (36) are, in the general case,
complex (when friction forces are taken into account). If friction forces are neglected, i.e.,
at p = p0 = 0, the coefficients of Equation (36) become real [44]. In general, Equation (36)
has three real roots. Taking into account Equation (37), from the solution of Equation (36),
the unknown dimensionless amplitude of forced oscillations of the rotor a is found, then
from Equations (32), (33) and (35), the dimensionless amplitude of forced oscillations of
the foundation c is determined, as well as the dimensionless amplitudes of self-oscillations
of the rotor b and the foundation d. As can be seen from Equations (31)–(36), each value
of the amplitude of the forced oscillations of the rotor a corresponds to three values of the
amplitude of the forced oscillations of the foundation c and self-oscillations of the rotor
and foundation b and d.

Extreme values of the amplitude of forced oscillations depending on the angular
velocity can be found from the following formulas:

∂a
∂Ω0

= 0;
∂b

∂Ω0
= 0;

∂c
∂Ω0

= 0;
∂d

∂Ω0
= 0.

From the solution of this equation, we can find the values of the angular velocity of
the rotor Ω0, at which the amplitudes of the forced and self-oscillations of the rotor and
foundation will have maximum values [45].

From the obtained results, it is obvious that, in contrast to a linear system, in a
nonlinear system, the amplitudes of natural oscillations (self-oscillations) of the rotor and
foundation depend on the natural oscillation frequency of the system ω.

Using smooth variations in ω at different values of Ω0 in the interval of changes in the
rotor, foundation, liquid and magnetic field parameters (rotor dimensions, rotor mass m
and foundation mass M, coefficients of rigidity of rolling bearings and supports c0, c1, c2
and external resistance coefficients χ, χ0, the extent of filling of the rotor q, liquid viscosity
ν, magnetic field, etc.), it is possible to plot the dependences of the amplitude of forced
oscillations and self-oscillations of the system, i.e., Amplitude–frequency characteristics of
the rotor and the foundation [46].

By varying the frequencies of natural oscillations of the system ω in a wide range at
the most required operating modes of the rotor speeds Ω0 (the angular speeds of rotor
rotation required for the technological process) and other fixed parameters of the system
using a PC, one can find the extreme values of the amplitudes of forced and self-oscillations
of the rotor and the foundation (peaks of skeletal curves).

Based on the analysis of the results obtained, it is possible to find the optimal values of
the system parameters, at which the amplitudes of forced oscillations and self-oscillations
of the rotor and foundation will be minimal [47], i.e., so that they are significantly reduced
over the entire range of the rotor system operation. In this case, the elastic foundation plays
the role of a dynamic damper of rotor oscillations [48].
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3. Special Cases

(1) In the case of an ideal fluid, i.e., for v = 0 and b 6= 0 from Equations (26) and (27),
we obtain the hydrodynamic force and the function Φ in the form:

Fr = Fx + iFy = AmLΩ2
0 exp(iΩ0t) + BmLω2Φ exp(iωt) (38)

Φ =

(
σ2 − 2Ω0σ−Ω2

0 + iγbmσ
)(

γσ2 − 2Ω0σ−Ω2
0 + ibmσ

) (39)

or in the dimensionless form:

Fr

eMn2
0
= aµLs2 exp(iΩ0t) + bµLτ2Φ exp(iωt)Φ =

[
τ2 − 4τs + s2 + iγbn(τ − s)

]
[γτ2 − 2(γ + 1)τs + (γ + 1)s2 + ibn(τ − s)]

.

where γ = q2+1
q2−1 , bn = bm

n0
.

The case considered here, when the rotor cavity is partially filled with an ideal weakly
conductive liquid, was chosen only for reasons of obtaining more or less simple formulas for
an engineering assessment of the physical meaning of the process occurring in a nonlinear
system [49].

(2) For synchronous precession of the rotor when ω = Ω0, σ = 0, we have ϕ = 1,
Fr = (A + B)mLΩ2

0 exp(iΩ0t), i.e., the foundation and the centrifuge perform circular
synchronous precession. The main feature of synchronous precession is that the fluid is
motionless with respect to the rotor cavity [13]. There is no wave motion of the fluid. In
this case, the rotor and its foundation make forced movements caused by the unbalance
of the rotor, and its cavity behaves as if it is completely filled with liquid. In this case, the
magnetic field does not affect the motion of the system [50].

(3) For v = 0, bm = 0 and τ → s
(

1 + 1
γ

(
1±
√

γ + 1
))

, the fluid reaction force tends
to infinity, which will entail an unlimited increase in the amplitude of forced and natural
oscillations of the rotor and its foundation [16].

(4) For v = 0, bm → ∞ and the reaction force of the liquid will take the form
Fr = AmLΩ0

2exp(iΩ0t) + BmLω2γexp(iωt) . In the case γ = 1 ((when the rotor cav-
ity is completely filled with liquid), we obtain exactly the same picture as described in
subparagraph 1. When q→ ∞ or γ→ ∞ (the amount of liquid in the cavity rapidly
decreases), the amplitude of natural oscillations tends to infinity.

4. Free Oscillations of System

Let us consider a rotor system under the assumption that the rotor is balanced, with no
imbalance, and solve the problem of oscillations of the rotor and the foundation [15], when
the cavity of the first is partially filled with a weakly conductive viscous liquid. Using the
equations of motion of system Equation (29) without imbalance, we obtain their solution in
the form:

x = b1 cos ωt (40)

x2 = d1 cos ωt (41)

Substituting Equations (40) and (41) into system Equation (29) and using the mapping
function method, we obtain:

l12b1 + l14d1 = 0l14d1 − (b1 − d1)− η0(b1 − d1)
3 = 0 (42)

where the coefficients of system Equation (42) have the same form, but the amplitudes of
natural oscillations b1 and d1 have a linear dimension and the parameter η = η0 = 3µn1

4n2
0

.
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From the first system of Equation (42), we find:

d1 = − l12

l14
b1 (43)

Substituting Equation (43) into the second equation of system Equation (42), we obtain
expressions for the amplitude of natural oscillations of the rotor and foundation:

b1 =

[
−

l2
14(l14l12 + l12 + l14)

η0(l12 + l14)
3

]−2

(44)

B =
[
(Reb1)

2 + (Imb1)
2
]−2

(45)

D =
[
(Red1)

2 + (Imd1)
2
]−2

(46)

From the earlier and the last formulas [14], it is obvious that the amplitudes of natural
oscillations of the rotor B and foundation D depend on the natural frequency ω of the
nonlinear system [17–19]. For various fixed values of the angular speed of the rotor Ω0, by
smoothly changing the value of the natural frequency ω, it is possible to construct backbone
curves, i.e., the dependence of the amplitudes b1 and d1 on ω and Ω0.

5. Results and Discussion

To evaluate the dependence of the damping and shift in frequencies of natural oscil-
lations on the magnetic field, the operation of the rotor system with different values of
parameters bm and γ at the maximum amplitudes of the rotor system, which are observed
at the main resonance, i.e., at s = 1, was considered (see Figures 2–11).

In the general case, three critical frequencies are observed in the system (see
Figures 2 and 3). This means that due to the presence of liquid even in a small amount in
the rotor cavity, two additional critical frequencies are superimposed with amplitudes, the
values of which increase until the cavity is filled by one third [20]. A further increase in
the amount of liquid in the cavity leads to the complete suppression of the second critical
frequency, thus, at γ = 1 (complete filling of the cavity with liquid), two critical frequencies
will be observed in the system.

An increase in the value of the parameter that characterizes the effect of a magnetic
field on a liquid particle, in general, positively affects the dynamics of the system. When
varying the bm parameter, a significant influence is observed for the amplitudes at the
third critical frequency [21]. With an increase in bm, the amplitudes of the second critical
frequency are damped more weakly, and the amplitudes of the first critical frequency
practically do not change, as they are also present in the absence of liquid in the rotor
cavity. It should be noted that at a sufficiently high magnetic field strength, i.e., at bm = 5000,
the oscillations of the system are practically similar to the case of an empty rotor, as the
liquid in this case, as if “solidifies” and behaves like a solid body [22]. No shift in critical
frequencies is observed in all cases, except for bm = 5000. For clarity and convenience of
application of the results in engineering practice, the authors plotted the dependencies of
critical amplitudes for different values of the parameters bm and γ (see Figures 2 and 3).

With a small amount of liquid in the rotor cavity, for example, at γ = 13.8 (r0 = 0.93R),
three critical frequencies are observed at τ = 0.16, τ = 0.78, and τ = 1.36, and three zones
of self-oscillations, the maximum amplitudes of the rotor and foundation are observed
at the third critical speed in cases bm = 0.100. Due to the small amount of liquid, the
second critical frequency has smaller amplitudes compared to the first. With an increase
in the bm parameter to 500, a slight shift in the second and third critical frequencies is
observed towards an increase in the angular velocities of the rotor rotation [23,24]. In the
case of a sufficiently high magnetic field strength, the second critical frequency shifts in
the direction of increasing dimensionless frequency up to τ = 1, whereas the third critical
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frequency of the rotor and foundation is completely damped. The numerical values of the
amplitudes for this case are presented in Table 1. Dashes in the table indicate the absence
of critical frequencies or the complete damping of the natural oscillation amplitudes in this
interval [25].

Table 1. Critical Speeds.

B, γ = 13.8 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.1068045741, τ = 0.16 0.090720226, τ = 0.78 0.345717672, τ = 1.36
bm = 0.5 0.106796702, τ = 0.16 0.090718, τ = 0.78 0.345709, τ = 1.36
bm = 5 0.106725474, τ = 0.16 0.09065, τ = 0.78 0.341007, τ = 1.36
bm = 25 0.10640083, τ = 0.16 0.089259, τ = 0.78 0.256448, τ = 1.36
bm = 50 0.105976946, τ = 0.16 0.085366, τ = 0.78 0.155548, τ = 1.36
bm = 100 0.105071989, τ = 0.16 0.073742909, τ = 0.78 0.109144682, τ = 1.36
bm = 500 0.095853985, τ = 0.16 0.039189072, τ = 0.79 0.03976382, τ = 1.43
bm = 5000 0.054819732, τ = 0.15 0.032983197, τ = 1 –

D, γ = 13.8 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.066385927, τ = 0.16 0.040110122, τ = 0.78 0.453737506, τ = 1.36
bm = 0.5 0.066382727, τ = 0.16 0.040109872, τ = 0.78 0.45372321, τ = 1.36
bm = 5 0.066353881, τ = 0.16 0.040087202, τ = 0.78 0.447400839, τ = 1.36
bm = 25 0.066224805, τ = 0.16 0.045069061, τ = 0.79 0.334005995, τ = 1.36
bm = 50 0.066061617, τ = 0.16 0.048328381, τ = 0.79 0.198268343, τ = 1.36
bm = 100 0.065730061, τ = 0.16 0.041947113, τ = 0.79 0.088761642, τ = 1.36
bm = 500 0.063037959, τ = 0.16 0.01798351, τ = 0.79 0.016219871, τ = 1.37
bm = 5000 0.054819732, τ = 0.16 0.014450226, τ = 0.85 –

Figure 2. Amplitude–frequency characteristics of natural oscillations of the rotor for s = 1 and γ = 13.8.
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Figure 3. Amplitude–frequency characteristics of natural oscillations of the foundation for s = 1 and
γ = 13.8.

As the extent of filling increases, as mentioned above, the amplitudes of the second
and third critical frequencies increase (see Figures 4 and 5). For example, at γ = 4.56
(r0 = 0.8R) and bm = 0, the maximum values of the rotor amplitudes at the second and third
critical frequencies are 3.3-fold and 5.4-fold greater than the values for the same case at
γ = 13.8, and are 2.64-fold and 17.45-fold greater than the amplitudes at the first critical
frequency, i.e., at τ = 0.16. Moreover, an increase in the amount of liquid in the rotor cavity
affects the displacement of the second and third critical frequencies [26]. For example, in
this case, the second critical frequency occurs a little earlier, compared with the case of
γ = 13.8, at τ = 0.69, whereas the third critical frequency appears a little later, at τ = 1.76.
With an increase in the parameter bm, for example, at bm = 500 and bm =5000, the oscillation
amplitudes at the second and third critical speeds of the rotor and foundation, as expected,
are damped up to their complete damping [27], which also indicates a positive effect of the
high-frequency magnetic field on the system. The numerical values of the amplitudes for
this case are presented in Table 2.

Table 2. Critical Speeds.

B, γ = 4.56 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.110805396, τ = 0.16 0.292896271, τ = 0.69 1.917205238, τ = 1.76
bm = 0.5 0.110797785, τ = 0.16 0.292762234, τ = 0.69 1.915895568, τ = 1.76
bm = 5 0.110729214, τ = 0.16 0.286890823, τ = 0.69 1.710435466, τ = 1.76
bm = 25 0.110422857, τ = 0.16 0.205546804, τ = 0.69 0.558152699, τ = 1.76
bm = 50 0.110036396, τ = 0.16 0.124228936, τ = 0.69 0.231023687, τ = 1.76
bm = 100 0.10925273, τ = 0.16 0.066849372, τ = 0.69 0.104944945, τ = 1.76
bm = 500 0.102684806, τ = 0.16 – –
bm = 5000 0.08448214, τ = 0.15 – –
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Table 2. Cont.

B, γ = 4.56 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

D, γ = 4.56 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.07047227, τ = 0.16 0.226388549, τ = 0.69 1.704994351, τ = 1.76
bm = 0.5 0.070468917, τ = 0.16 0.226287308, τ = 0.69 1.70381006, τ = 1.76
bm = 5 0.07043893, τ = 0.16 0.221699183, τ = 0.69 1.520112352, τ = 1.76
bm = 25 0.070309814, τ = 0.16 0.157597686, τ = 0.69 0.488944743, τ = 1.76
bm = 50 0.070157935, τ = 0.16 0.034896767, τ = 0.7 0.194103909, τ = 1.76
bm = 100 0.069885617, τ = 0.16 0.045941501, τ = 0.69 0.072065559, τ = 1.76
bm = 500 0.069093807, τ = 0.16 0.012824952, τ = 0.7 0.010085603, τ = 1.77
bm = 5000 0.089252733, τ = 0.16 – –

Figure 4. Amplitude–frequency characteristics of natural oscillations of the rotor for γ = 4.56, s = 1.

Figure 5. Amplitude–frequency characteristics of natural oscillations of the foundation for γ = 4.56,
s = 1.
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When the rotor cavity is filled with liquid by one third, i.e., at γ = 2.6, the system still
has three critical frequencies (τ = 0.16, τ = 0.64 and τ = 2.14, see Figures 6 and 7). In this case,
the maximum values of the rotor amplitudes at the third critical frequency are 19.8-fold
greater than the amplitudes in the similar case at γ = 4.56 (bm = 0), whereas the amplitudes
of the second critical frequency are comparable with the previous case. An increase in
the parameter that determines the influence of the magnetic field on a fluid particle from
0 to 0.5 leads to damping of the rotor and foundation amplitudes corresponding to the
third critical frequency [28]. A significant decrease in the amplitudes of the second critical
frequency occurs with an increase in bm to 25. Further, as bm increases to 500, the amplitudes
of the second and third critical frequencies are almost completely suppressed. A change in
the parameter that determines the influence of the magnetic field on a liquid particle has
practically no effect on the amplitudes of the first critical frequency, except for large values
of the magnetic field strength. It should be noted that in this case the third critical frequency
shifts quite strongly to the right, in the direction of increasing natural frequencies, from
1.76 to 2.14, which also imposes certain restrictions on the choice of operating speed range
in the absence of magnetic field influence [29]. The numerical values of the amplitudes for
this case are presented in Table 3.

Table 3. Critical Speeds.

B, γ = 2.6 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.188180917, τ = 0.64 38.0983794, τ = 2.14
bm = 0.5 0.188128512, τ = 0.64 35.05368501, τ = 2.14
bm = 5 0.114550189, τ = 0.16 0.185743424, τ = 0.64 4.620198303, τ = 2.14
bm = 25 0.114543039, τ = 0.16 0.148131171, τ = 0.64 0.442357104, τ = 2.14
bm = 50 0.113852547, τ = 0.16 0.100918717, τ = 0.64 0.180448011, τ = 2.15
bm = 100 0.113189756, τ = 0.16 0.06088884, τ = 0.64 0.093096022, τ = 2.16
bm = 500 0.109089699, τ = 0.16 – –
bm = 5000 0.124710542, τ = 0.16 – –

D, γ = 2.6 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.074299992, τ = 0.16 0.130906778, τ = 0.64 37.42981166, τ = 2.14
bm = 0.5 0.074296638, τ = 0.16 0.130872119, τ = 0.64 34.43775859, τ = 2.14
bm = 5 0.074266809, τ = 0.16 0.129169584, τ = 0.64 4.531230535, τ = 2.14
bm = 25 0.074142119, τ = 0.16 0.101854993, τ = 0.64 0.417323892, τ = 2.14
bm = 50 0.074004213, τ = 0.16 0.067028512, τ = 0.64 0.148186179, τ = 2.14
bm = 100 0.073787317, τ = 0.16 0.036021818, τ = 0.64 0.053425977, τ = 2.14
bm = 500 0.074595252, τ = 0.16 0.01092513, τ = 0.66 0.007393946, τ = 2.14
bm = 5000 0.140446071, τ = 0.16 – –

When the rotor cavity is half and two-thirds full, i.e., at γ = 1.67 and γ = 1.25, the
character of changes in the amplitude and frequency of natural oscillations of the system is
similar to the case when the rotor cavity is one-third filled. In this case, the system oscillates
with smaller amplitudes by almost an order of magnitude lower than when the rotor cavity
is one-third full (see Figures 8 and 9). In the case of half filling, the second and third critical
frequencies are still greater than the first critical frequency [51]. Accordingly, a stronger
shift in critical frequencies is observed compared to those listed above, for example, the
second critical frequency appears already at τ = 0.61, while the third already at τ = 2.61.

When the cavity is filled by two-thirds, the amplitudes of the first and second critical
frequencies are commensurate with each other and with the above case. The second critical
frequency shifts in the direction of decreasing angular velocities and appears at τ = 0.59,
whereas the third critical frequency shifts to the left in the direction of its increase and
appears at τ = 3.02. With an increase in the parameter bm, the oscillation amplitudes at the
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second and third critical speeds of the rotor and foundation, as before, are damped until
their full damping. The numerical values of the amplitudes for this case are presented in
Tables 4 and 5.

Figure 6. Amplitude–frequency characteristic of natural oscillations of the rotor for s = 1 and γ = 2.6;
(a) general view; (b) enlarged view.
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Figure 7. Amplitude–frequency characteristic of natural oscillations of the foundation for s = 1 and
γ = 2.6; (a) general view; (b) enlarged view.
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Table 4. Critical Speeds.

B, γ = 1.67 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.118574461, τ = 0.16 0.27197385, τ = 0.61 2.395991343, τ = 2.61
bm = 0.5 0.11856806, τ = 0.16 0.271326026, τ = 0.61 2.386092738, τ = 2.61
bm = 5 0.118510785, τ = 0.16 0.244571454, τ = 0.61 1.657566825, τ = 2.61
bm = 25 0.118263621, τ = 0.16 0.108761599, τ = 0.61 0.307975554, τ = 2.61
bm = 50 0.117971542, τ = 0.16 0.079987206, τ = 0.61 0.141437807, τ = 2.61
bm = 100 0.117443017, τ = 0.16 0.058212949, τ = 0.6 0.078056973, τ = 2.61
bm = 500 0.115713077, τ = 0.16 – –
bm = 5000 0.200140464, τ = 0.16 – –

D, γ = 1.67 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.078416443, τ = 0.16 0.319661082, τ = 0.61 2.101480075, τ = 2.61
bm = 0.5 0.078413261, τ = 0.16 0.318899815, τ = 0.61 2.092707266, τ = 2.61
bm = 5 0.078385116, τ = 0.16 0.286969287, τ = 0.61 1.448573522, τ = 2.61
bm = 25 0.078270549, τ = 0.16 0.122332756, τ = 0.61 0.248941102, τ = 2.61
bm = 50 0.078151336, τ = 0.16 0.064906783, τ = 0.61 0.091711735, τ = 2.61
bm = 100 0.077991713, τ = 0.16 0.03343016, τ = 0.6 0.034567932, τ = 2.61
bm = 500 0.080131667, τ = 0.16 – –
bm = 5000 0.193818388, τ = 0.16 – –

Table 5. Critical Speeds.

B, γ = 1.25 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.121638282, τ = 0.16 0.122951082, τ = 0.59 2.281429046, τ = 3.02
bm = 0.5 0.121632639, τ = 0.16 0.122901957, τ = 0.59 2.25145796, τ = 3.02
bm = 5 0.121582276, τ = 0.16 0.121641647, τ = 0.59 1.035804071, τ = 3.02
bm = 25 0.121367604, τ = 0.16 0.098499341, τ = 0.58 0.166361948, τ = 3.02
bm = 50 0.121120227, τ = 0.16 0.078839058, τ = 0.58 0.103151902, τ = 3.02
bm = 100 0.120694759, τ = 0.16 0.055532351, τ = 0.58 0.06308127, τ = 3.02
bm = 500 0.120406103, τ = 0.16 – –
bm = 5000 0.210144507, τ = 0.16 – –

D, γ = 1.25 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.081552542, τ = 0.16 0.154403646, τ = 0.59 2.6271788, τ = 3.02
bm = 0.5 0.081549629, τ = 0.16 0.154341266, τ = 0.59 2.59220114, τ = 3.02
bm = 5 0.081523936, τ = 0.16 0.152395469, τ = 0.59 1.173065248, τ = 3.02
bm = 25 0.081421162, τ = 0.16 0.098951316, τ = 0.58 0.14148849, τ = 3.02
bm = 50 0.081318754, τ = 0.16 0.03067025, τ = 0.59 0.051515196, τ = 3.02
bm = 100 0.081199692, τ = 0.16 0.055532351, τ = 0.59 0.020073614, τ = 3.02
bm = 500 0.083967196, τ = 0.16 – –
bm = 5000 0.186578729, τ = 0.16 – –
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Figure 8. Amplitude–frequency characteristic of natural oscillations of the rotor and foundation for
s = 1 and γ = 1.67.

Figure 9. Amplitude–frequency characteristic of natural oscillations of the rotor and foundation for s
= 1 and γ = 1.25.

When the rotor cavity is almost completely filled with liquid, for example, at γ = 1.03
(r0 = 0.125R), the amplitudes at the second critical frequency are smaller than the amplitudes
at the first critical frequency, whereas the amplitudes at the third critical frequency are
several-fold smaller than the values observed in the case when the cavity is filled with
liquid by half and by two thirds (see Figures 10 and 11). The shift in critical frequencies due
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to an increase in the amount of liquid in the cavity in this case is even more pronounced.
For example, the second critical frequency in this case appears already at τ = 0.57 and the
third already at τ = 3.36. This means that with an increase in filling, the second critical
frequency shifts to the first critical frequency until it merges with it, whereas the third
critical frequency shifts in the direction of increasing frequency to the right and is almost
completely damped with an increase in the amount of fluid in the rotor cavity. As before,
with an increase in the parameter characterizing the influence of the magnetic field on a
liquid particle bm, the amplitudes of the second and third critical frequencies are damped
up to their complete dampening. The numerical values of the amplitudes for this case are
presented in Table 6.

Table 6. Critical Speeds.

B, γ = 1.03 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.123836133, τ = 0.16 0.154082698, τ = 0.57 0.582653298, τ = 3.37
bm = 0.5 0.123831142, τ = 0.16 0.15403417, τ = 0.57 0.580389919, τ = 3.37
bm = 5 0.123786664, τ = 0.16 0.151690752, τ = 0.57 0.425847453, τ = 3.37
bm = 25 0.123598669, τ = 0.16 0.117230408, τ = 0.57 0.114353556, τ = 3.37
bm = 50 0.123385864, τ = 0.16 0.080130589, τ = 0.57 0.069492128, τ = 3.38
bm = 100 0.123033788, τ = 0.16 0.054080999, τ = 0.56 0.046679793, τ = 3.37
bm = 500 0.123518243, τ = 0.16 – –
bm = 5000 0.196425395, τ = 0.16 – –

D, γ = 1.03 First Critical Speed
Amplitude Value

Second Critical
Speed
Amplitude Value

Third Critical Speed
Amplitude Value

bm = 0 0.083803356, τ = 0.16 0.101565041, τ = 0.57 0.124078552, τ = 3.35
bm = 0.5 0.083800714, τ = 0.16 0.101535013, τ = 0.57 0.123990942, τ = 3.35
bm = 5 0.08377746, τ = 0.16 0.099920685, τ = 0.57 0.115971317, τ = 3.35
bm = 25 0.083685484, τ = 0.16 0.075582465, τ = 0.57 0.050630183, τ = 3.35
bm = 50 0.08359651, τ = 0.16 0.048524802, τ = 0.57 0.022746045, τ = 3.35
bm = 100 0.083504258, τ = 0.16 0.028624914, τ = 0.58 0.010481636, τ = 3.33
bm = 500 0.08647026, τ = 0.16 0.009075681, τ = 0.62 –
bm = 5000 0.165670988, τ = 0.16 – –

Figure 10. Amplitude–frequency characteristic of natural oscillations of the rotor for s = 1 and
γ = 1.03.
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Figure 11. Amplitude–frequency characteristic of natural oscillations of the foundation for s = 1 and
γ = 1.03.

The electrical conductivity of the liquid is directly proportional to the length of the
liquid volume in the rotor cavity and inversely proportional to the cross-sectional area of
this volume and its electrical resistance. The intensity of a uniform axial magnetic field is
proportional to the current strength, length and number of turns of the solenoid. Thus, due
to sufficient damping of the amplitudes of the second and third critical frequencies, as well
as due to its simpler implementation from the technical point of view, for further studying
of the effect of a high-frequency magnetic field on nonlinear oscillations it was decided to
use the value of the parameter bm = 100. The shift in critical frequencies depends not only
on the amount of liquid being filled but also on the frequency of the disturbing force, in our
case, on the angular velocity of the rotor. To assess the shift in critical frequencies, diagrams
were constructed where the abscissa axes correspond to the dimensionless angular velocity
of rotation of the rotor s and the ordinate axes to the dimensionless natural frequency τ.

6. Conclusions

The analysis of sources in this field of research shows that this work is the first where an
analytically generalized dynamic model of the “rotor–weakly conductive fluid–foundation”
system, which takes into account the electromagnetic properties of a viscous fluid and
its vibrations, the nonlinear stiffness properties of bearing supports and vibrations of the
foundation, was developed and solved. Due to the presence of liquid in the rotor cavity,
several additional critical frequencies are imposed on the system, whose amplitudes in
some cases exceed the amplitudes of the empty rotor by several orders of magnitude, which
also imposes certain restrictions on the choice of operating speeds. An increase in the
value of the parameter that characterizes the influence of the magnetic field on a fluid
particle leads to damping of the amplitudes of the natural oscillations of the rotor and the
foundation, which generally has a positive effect on the dynamics of the system. In this
case, a change in the value of the magnetic field strength has practically no effect on the
shifts in critical frequencies. In case of synchronous precession, the fluid is motionless with
respect to the rotor cavity. There is no wave motion of the liquid. The motion caused by the
rotor unbalance is similar to the case when the cavity is completely filled with liquid.
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