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ABSTRACT 
 

This review surveys the research work published in the field of nanoclay (montmorillonite, MMT)-
filled composites with particular reference to the effect of nanoclay (NC) introduction on the tensile, 
flexural, impact and compressive strength of nanocomposites. The matrix most frequently used in 
NC-filled composites is epoxy, although other thermosetting and thermoplastic polymer materials 
have also been used. To make MMT more compatible with these matrices, they have been often 
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subjected to organophilic modification with the use of organic cations, therefore indicated as 
organo-montmorillonites (OMMT). NC-filled composites are also fabricated with the most common 
reinforcements, such as carbon, glass, Kevlar and basalt, and more recently also biomatrices with 
natural fibers have also been proposed. A few studies on ceramic matrices have also been 
reported. The review concentrates on the maximum level of improvement obtained in the referred 
studies by the introduction of NC in the bare matrix or in the fiber reinforced composites, with 
respect to tensile, flexural, impact and compression strength, with the idea of disposing a database 
in comparing the best values obtained by nanoclay introduction against the benchmark composite.  
 

 
Keywords: Nanoclay; composites; organophilic modifications; tensile; flexural; impact; compression. 
 

1. INTRODUCTION  
 

Nanocomposites are defined as materials 
containing nanoparticles, also referred to as to 
“nanofillers”, which are dispersed in a polymer or 
ceramic matrix. Nanofillers may be of different 
geometry, from spherical to considerably 
elliptical, but at least one of their dimensions 
must be in the range of 1-50 nm. 
Nanocomposites have attracted considerable 
interest, also because they may exhibit 
remarkable variations in some material 
properties compared with the bare matrix or with 
conventional composites with the introduction of 
small amounts of nanofillers. For the production 
of polymer-matrix nanocomposites, a number of 
matrices have been experimented, which include 
mainly oil-derived ones, such as polyamides, 
polyolefins, polyesters and their derivatives, 
epoxies, acrylics and polyurethanes, and a large 
number of polymer blends [1].  
 

A sub-category of nanocomposites is formed by 
using nanoclays i.e., nanoparticles of layered 
silicates, in which the stacking of layers enables 
the formation of complex clay crystallites [2]. The 
most commonly type of mineral clay used for 
nanoclays is montmorillonite (MMT), a 2:1 
alumino-silicate, in which an alumina sheet is 
sandwiched between two silica sheets. MMT has 
smectic characteristics i.e., its liquid crystal 
nature allows the oriented planes of the structure 
to slide over one another. This property enables 
extensive interlayer expansion or swelling, 
because of the structure depicted in Fig. 1. The 
introduction of MMT enhances the performance 
of polymer composites, because the exfoliation 
of clay crystalline bundles (tactoids) offers an 
increased interfacial area between clay platelets 
and the polymer matrix, while resulting in more 
effective residual platelet structures due to their 
higher aspect ratio (width/thickness) [3-4].  
 

The structure exposed above indicates the 
difference of nanocomposites with conventional 

composites. The latter usually require a 
reasonably high content (>10%) of the inorganic 
fillers to impart the desired mechanical 
properties: this might though create problems of 
interfacial compatibility between matrix and filler 
and affect processability. In contrast, 
nanocomposites show enhanced 
thermomechanical properties even with a small 
amount of layered silicate (<5%) [5-6]. This is 
referred to as the “nano effect”: in practice, a 
synergic action occurs between the introduction 
of layered silicates on the deformation of polymer 
chains, due to the similar scale of the two 
components [7]. In sectors, such as packaging, 
the enhanced mechanical properties of 
nanocomposites can be effectively coupled with 
other features e.g., decreased gas permeability, 
and more marked hydrophobic behavior, 
furthermore allowing the introduction of 
biologically active ingredients e.g., to slow down 
degradation [8].  
 

Generally clays are hydrophilic in nature. 
Therefore, in order to make them compatible with 
organic polymers, the surface of the clay 
minerals needs to be modified for higher 
organophilicity prior to their use as fillers. A 
number of possible modifiers have been used for 
this purpose e.g., organic cations from salts, 
such as ammonium or phosphonium ions, the 
latter presenting a higher thermal stability than 
the former [9-10]. Another possibility is the 
modification with sodium salts of fatty acids [11]. 
 

The obtained materials for prospected use as the 
fillers of polymers are referred as to as organo-
montmorillonites (OMMT). Modification causes 
the expansion of the interlayer space and 
thereby increases by a non-negligible amount 
(normally more than 2 nm) the distance between 
planes of atoms (d spacing). This enables an 
easier diffusion of polymer or its precursor into 
the interlayer space. Fig. 2 represents the 
schematic representation of the organic 
modification of clay. 
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Fig. 1. Structure of montmorillonite 
 

Depending on the nature of the components, 
processing condition and strength of the 
interfacial interactions between polymer and 
layered silicates (modified or unmodified), from 
the filling of polymer with clay either conventional 
composites or nanocomposites (intercalated or 
exfoliated) can be formed, as shown in Fig. 3. In 
intercalated nanocomposites, the clay layers 
retain the well ordered multi structure of 
alternating polymeric and clay layers with a d 
spacing in the region of 2–3 nm [12]. On the 
other hand, in exfoliated nanocomposites, the 
individual clay layers are well separated and 
randomly distributed in the continuous polymer 
matrix with a d spacing of more than 5 nm [13]. 
The intercalation and exfoliation of the clay 
layers in the polymer matrix can be identified 
through wide angle X-ray diffraction (WAXD) and 
Transmission Electron Microscopy (TEM). 
 

2. GENERAL CONSIDERATIONS ON 
NANOCLAY-FILLED COMPOSITES  

 
The initial idea of producing nanoclay-filled 
composites is to provide enhanced mechanical 
and impact properties, hardness and resistance 
to abrasion with respect to the bare matrix. In 
general terms, the effect of NC on composite 
strength, due to the structural rearrangement that 
it produces in the material, may be much more 

significant than the amount introduced, which 
normally does not exceed a few percent of the 
total composite weight. This occurs through the 
modification of the fracture modes produced by 
exfoliation, which results in nucleating or 
enhancing the localized crack tip stress fields, a 
procedure especially effective when nanoclay 
mixing is optimized [14]. Other properties that are 
also worth considering are the thermal ones. In 
particular, the coefficient of thermal expansion is 
markedly reduced by the introduction of OMMT 
[15], while the glass transition temperature of the 
polymer matrix is also increased [16]. Other than 
the amount of nanoclay introduced, also the 
orientation and the mutual distance of the 
nanoclay layers play a role in the variation of 
thermomechanical properties, due to the 
likeliness of the exfoliating effect.  
 
Different types of nanoclays are available, in 
particular, the series of Nanomer, Cloisite, 
Nanofil, then bentonite, sepiolite, etc., which are 
in principle used for the modification of the 
polymer matrix. However, in a number of cases 
the nanoclay-filled matrix is used to include 
reinforcements as the most diffuse ones, namely 
E-glass and carbon, but also Kevlar and basalt. 
This offers a number of additional possibilities, 
for example in glass/epoxy composites, the 
addition of OMMT (Nanomer 1.30E) reduced 
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water absorption in the composite by offering a 
more complex tortuosity path [17]. In the case of 
carbon-based reinforcements, the addition of 
multiwalled carbon nanotubes (MWCNT) 
alongside MMT led to an enhanced resistance to 
flammability and oxidation of the epoxy resin 
[18]. As for basalt fibers, the insertion of MMT 
proved suitable to extend its field of application, 
since particles of different dimensions are able to 
more effectively coat basalt fibers [19]. More 
recently also natural (lignocellulosic) fibers have 
been proposed as the reinforcement of nanoclay-
filled composites.  
 
In most cases, traditional (oil-based) epoxy 
matrices are used for the production of nanoclay 
composites [20]: also polyamides have been 
experimented, especially for biomedical 
applications [21], or polyolefins, such as 
polypropylene, on which an accent on the 
modification of the rheological properties, hence 
molding characteristics, has also been placed 
[22]. In the cases in which lignocellulosic fibers 
are introduced in the composite, to provide an 

improved fiber-matrix interface, polyolefins have 
been modified by maleic anhydride (MA) grafting 
(g) of the polymer [23]. Other than 
thermomechanical properties, also other 
potential properties are offered by using natural 
fibers: e.g., for kenaf/epoxy laminates, where 
MMT is a competitor against oil palm bunch short 
fibers [24]. Also, very recently, the need for 
barrier properties to be conferred upon 
biocomposites, also for packaging applications, 
suggested the use of MMT also in poly               
(lactic acid) (PLA)-aloe vera fiber composites 
[25]. 
 

3. STUDIES ON MECHANICAL 
PROPERTIES  

 

Concentrating on mechanical properties, the 
introduction of nanoclay in composites in small 
amounts and thoroughly and uniformly mixed 
e.g., by sonication, offers to the composite a 
higher stiffness over the pure resin. This occurs 
especially due to the possibility to have an 
effective intercalation of the resin between the

 

 
 

Fig. 2. Organic modification of clay 
 

 
 

Fig. 3 Types of polymer nanoclay composites 
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nanoclay resins with occasional areas of 
exfoliation, a process that requires though a 
longer post-cure process than for the pure resins 
with no nanoclay [26]. In particular, the effect is 
very significant in the case of organophilic 
treatment of the resin, which results in an 
increase of the d spacing between the layers. 
This is the case for example by modifying 
untreated Cloisite Na

+  
using a 1 wt.% solution of 

3-aminopropyltriethoxysilane, in which d spacing 
was increased by 55% [27].  
 

Dealing with fiber-matrix composites, the 
limitation of the maximum amount of MMT and 
OMMT that can be introduced not to result in a 
decrease of mechanical properties, especially 
strength, becomes more stringent. In particular, 
in the case of glass/epoxy composites it was 
demonstrated that the organophilic treatment can 
worsen the decrease of mechanical properties 
observed for amounts of nanoclay exceeding 6 
wt.%, though a larger amount of OMMT, such as 
10 wt.%, can assist instead in not reducing the 
glass transition temperature [28]. Conversely, by 
optimizing the fabrication method of epoxy-
nanoclay composites, using hot melt processing 
assisted by autoclave, substantial advantage 
both in flexural strength and in toughness was 
obtained also by the introduction of very small 
amount of MMT like 2 wt. % in carbon/epoxy 
nanocomposites [29]. The application of carbon 
nanotubes (CNT) allowed even further reduction 
of MMT down to 1 wt. %, allowing substantial 
increase of Vickers hardness (36.4%) and impact 
strength (110%) over the pure matrix [30]. This 
was ascribed to the in-situ growth of CNT directly 
on clay, which was leading to a controlled 
exfoliation of nanoclay in the composites [31].  
 

On the other side, an important present trend, 
also in nanoclay-filled composites, is trying to 
apply bio-based matrices to replace oil-based 
ones, also in the form of blends between the two 
types of polymer. The use of bio-matrices is 
convenient for the introduction of natural fibers, a 
possibility though explored also with conventional 
thermosetting matrices, such as in 
coir/unsaturated polyester composites with 3% 
MMT [32]. The application of OMMT (Cloisite 
30B) to hemp fibre composites, with a matrix 
constituted by a blend of epoxy and epoxidized 
soybean oil compensated for the loss of stiffness 
due to the introduction of hemp: the level of 
toughness was maintained by an optimization of 
the respective contents of OMMT and bio-based 
resin [33]. As exposed above, other matrices 
than thermosetting are more adapted for the 
introduction of natural fibers and these proved 

also suitable for the successful filling with MMT. 
Some examples are bamboo fibers in maleated 
polypropylene (MAPP), using a clay masterbatch 
with high density polyethylene (HDPE) [34], 
polypropylene (PP)/pineapple leaf fiber (PALF) 
reinforced nanocomposites, using Cloisite 20A 
[35] and a typical by-product on food industry, 
namely bagasse from sugarcane, in PP [36]. 
Other attempts concerned the application of 
OMMT or sepiolite into extracted lignin/Arboform 
composites, therefore avoiding at all the use of 
conventional polymers [37]. Also polylactic acid 
(PLA)/flax fiber added with mandelic acid, 
benzylic acid, dicumyl peroxide (DCP) or zein 
and filled with an amount of 2.5 wt. % of OMMT 
(Nanomer) offered a substantial benefit, 
increasing up to several times the storage 
modulus [38]. In other studies, also the influence 
of different treatments over the properties of 
natural fiber/clay nanocomposites was 
investigated. In particular, jute/poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) 
composites were added with up to 4% wt. of K10 
MMT, showing a beneficial effect on moisture 
absorption, dynamic mechanical and flexural 
properties, though depending on the type of 
surface treatment of jute fibers [39].  
 

In the following subsections, Tables 1-4 offer 
data about tensile, flexural, impact and 
compression strength, respectively, emphasizing 
in particular the maximum improvement in 
strength obtained in each study by the addition of 
nanoclay with respect to the benchmark offered 
by the composite without nanoclay. The studies 
are reported in the Tables being ordered 
according to their matrix, starting from epoxy, as 
the most typically used, then reporting the 
studies with other oil-based non renewable 
matrices, such as polypropylene (PP) and 
polyethylene and finally including the studies 
involving the use of natural fibers and/or bio-
based matrices.  
 

3.1 Tensile 
 

The studies aimed at tensile properties 
evaluation of nano-clay filled composites, 
reported in Table 1, appear to be in a larger 
number than those dedicated to the investigation 
of the effect of the other loading modes. One of 
the main objectives is to assess up to which 
amount of nanoclay the tensile properties 
increase over the ones of the pure matrix or of 
the composite. In this respect, improvement of 
nanoclay distribution in the composite plays an 
essential role, giving the difficulty of obtaining a 
completely exfoliated nanocomposites structure, 



 
 
 
 

Kuttalam et al.; JMSRR, 7(3): 7-20, 2021; Article no.JMSRR.65831 
 
 

 
12 

 

but rather exploiting the clustering effect of the 
particles in the matrix, which result in an 
interlocking effect, able to stop or deflect crack 
propagation [40]. Another significant factor to 
investigate on mechanical properties of 
nanoclay-filled composites, and specifically on 
tensile ones, is the effect of treatment of MMT, 
such as with silane, which proved effective for 
nanoclay particles to obtain a sounder interface 
with the matrix. Silane treatment can be also 
applied in the form of grafting with the matrix 
polymer, which enabled the possible exploration 
of other matrices for nanoclay-filled composites, 
such as poly[styrene–(ethylene-co-butylene)–
styrene] (SEBS) [41]. Tensile properties 
assessment is crucial for the experimentation of 
other matrices not necessarily thermoplastic, as 
demonstrated by recent studies on the 
application of polyphenylene sulfide (PPS) [42]. 
In general terms, to provide an adaptable 
structure, mixed of intercalated and exfoliated 
sections, implies also supplying possible assets 
e.g., for enhanced barrier properties. For the 
above purpose, also hybrids with “green” 
matrices, such as carboxymethylcellulose (CMC) 
filled with oil palm empty bunch fibers have been 
proposed [43]. 
 

In addition, in composites tensile tests can also 
be considered propaedeutic to the possibility to 
explore fatigue studies: this has been done e.g., 
on basalt fiber composites, where residual tensile 
testing post-fatigue was also evaluated, as well 
as the resistance in seawater environment was 
elucidated [44]. A recent study investigated, after 
obtaining tensile data, the fatigue resistance of 
nanoclay-filled composites for the introduction of 
MMT in view of their application in other 
matrices, namely poly(ethylene-co-vinyl acetate) 
(EVA), therefore prepared by pre-swelling [45]. 
On more traditional matrices, such as epoxy, 
fatigue testing proved effective to clarify the 
influence of size, aspect ratio and shear stiffness 
in prospective service of nanocomposites [46]. 
 

Some considerations can be drawn about the 
data reported in Table 1, which suggest that in 
most cases, in the best conditions, which are 
those shown in the Table, an improvement of 
tensile strength can be obtained by the addition 
of nanoclay to the neat matrix, or in presence of 
carbon, glass or basalt fibers. In contrast, critical 
situations with decrease of tensile strength are 
indicated in some cases by the introduction of 
lignocellulosic materials, such as hemp [33] and 
Kraft lignin [58]. For comparison, data from a 

study such as [56], is also reported, where clay 
(and not nanoclay) was introduced in a 
polypropylene/pine cone fibre composite, which 
equally brought to obtaining a lower tensile 
strength. A substantial improvement of tensile 
strength by introducing 3% nanoclay was 
obtained, though on a limited number of 
samples, in jute/polyester composites, and with 
not reporting any structural considerations [52]. 
An even larger improvement in tensile strength of 
up to 31%, was obtained instead by the 
introduction of 3% nanoclay in a composite with 
30 wt. % of pineapple leaf fibers (PALF) in a 
maleated polypropylene matrix. This promising 
result was attributed to strong interaction 
between nanoclay, fiber, and matrix polymer, 
revealed by the increase of the crystallization 
temperature, measured by differential scanning 
calorimetry (DSC) [35]. As a matter of fact, the 
effective coupling of PALF with MMT in 
polypropylene matrices make these fibers 
becoming of interest to industries such as the 
automotive sector, inasmuch specific reviews for 
their use in that field exist already [61]. 
 

3.2 Flexural 
 
In Table 2, the indications reported over flexural 
strength suggest, as in the case of tensile 
loading, an interest on a large number of fibers, 
including carbon, glass and some lignocellulosic 
fibers (among which hemp, pineapple and jute) 
and mainly the use of OMMT. An improvement 
due to the introduction of NC, in the case of 
flexural strength, has almost invariably been 
obtained, wherever the optimization of the 
amount of NC has been pursued. In particular, 
flexural strength appears to increase also in the 
case of natural fiber composites, for example for 
pineapple leaf fibers (PALF) composites with 50 
wt.% fibers, tensile and flexural properties 
increased with an introduction of up to 2 wt.% 
amine-modified MMT, after which the 
performance declines [62].  

 
Dealing with more traditional and consolidated 
materials such as fiberglass, the application of 
MMT has been also suggested to improve other 
properties of the composite, such as flame 
retardancy. In these cases, also the introduction 
of low amounts of MMT resulted in a lower 
flexural strength, such as e.g., in [63], where 
commercial calcium sulfate fibers were used, and 
in [64], where a combination with magnesium 
oxide was selected.  
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Table 1. Highest tensile strength (TS) obtained (MPa) in the single studies with nanoclay (NC) 
 

Matrix Fibers/fillers (wt.%) NC (wt.%) TS with NC (MPa) TS without NC (MPa) Ref.  
Epoxy (DGEBA) - 3% Cloisite30B 41 63 [15]  
Epoxy (YD115) - 10% silane modified MMT 42 72 [27]  
Epoxy 58% glass 1% OMMT  390 373 [28]  
Epoxy (E51) 5% nanosilica 5% OMMT 56 61 [47] [47]  
Epoxy 1% treated zirconia 1% Cloisite30B 27.5 35 [48] 
Epoxy (Araldite GY250) 1% Cloisite93A 62 51 [49]  
Epoxy (100)/polyester (10) 5% purified OMMT 85.8 59.1 [50]  
Polyester  22% hemp 1.5% Cloisite30B 24 29.5 [33] 
Polyester 50% glass  2% OMMT 144 118 [51] 
Polyester 25% jute 3% Garamite 40.7 31.3 [52] 
PA6 30% basalt 1% Nanofil919 123.7 109.2 [53]  
Aramid -. 6% MMT K-10 51.85 35.61 [54]  
PP 67% carbon  2% Nanomer I.30E 2720 2485 [55]  
PP 25% pine cone fiber 5% clay 24 26.5 [56]  
HDPE 40% wheat straw flour  2% Cloisite15A 23 18 [57]  
MA-g-HDPE - 7% clay masterbatch 22.74 21.19 [34] 
MA-g-HDPE 28.5% bamboo 1.7% clay masterbatch 28.62 24.94 [34] 
MA-g-PE 15% Kraft 11% Cloisite93A  25 31 [58]  
MA-g-PP  30% pineapple 3% Cloisite20A 45.14 25.97 [35]  
MA (4%)-g-PP 30% bagasse 3% CloisiteNa+ 43.95 38.42 [36] 
PA-6+PP-g-MA - 4% Cloisite30B 60 47 [59] 
PPS - 0.5% Bz-MMT 123.8 76.5 [42] 
PLA 30% flax 2.5% Nanomer  21.2 18.4 [38]  
MFC  - 7.5% Hydrophilic bentonite 102 87 [60] 

MFC=Microfibrillated cellulose; MA-g=Maleic anhydride grafted; PA=Polyamide; PP=Polypropylene; PE=Polyethylene; PLA=Poly(lactic acid); PPS=Polyphenylene Sulfide; Bz= 
1,3-dihexadecyl-3H-benzimidazolium bromide; DGEBA=DiGlycidyl Ether of Bisphenol A
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Table 2. Highest flexural strength (FS) obtained (MPa) in the single studies with nanoclay 
 

Matrix Fibers/fillers (wt.% 1) NC (wt.%) FS with NC (MPa) FS without NC (MPa) Ref. 
Epoxy 40% vol. glass 1% OMMT 390 372 [28]  
Epoxy 60% carbon 2% Nanomer I.30E 1220 890 [29]  
Epoxy 70% carbon 2% Nanomer I.28E 498 380 [65]  
Epoxy Ca. 75% glass 2% NC 1033.4 915 [66]  
Epoxy - 3% OMMT 131 117.5 [67]  
Epoxy 35% carbon 3% Nanomer I.30P 720 660 [68]                        
Epoxy (Araldite GY 250) 1% Cloisite 93A 78.5 64 [49] 
Epoxy/polyester (100/10) 5% OMMT 153.8 102.6 [50] 
Epoxy/Soybean oil 25% calcium sulfate 10% Cloisite30B 195 No data [51]  
Polyester 75% glass + 8% MgO 0.2% MMT 220 285 [64] 
Polyester 50% glass 2% Silane treated  208 174 [43]  
MA-g-PP 30% pineapple 3% Cloisite20A 65.01 38.51 [35]  
Lignin Arboform 5% Nanomer I30E 37 35 [29] 
PHBV  30% jute 4% MMT-K10 40.87 33.88 [39]  
PA-6+PP-g-MA - 6% Cloisite30B 88 37 [63]  
MFC - 2.5% Hydrophilic bentonite 120 125 [60]  
Cement 2.5% hemp 1% Cloisite 30B 8.84 6.88 [69] 

PHBV = poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 

                                                           
1 Unless stated otherwise 
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Table 3. Highest impact strength (IS) obtained (kJ/m
2
) in the single studies with nanoclay 

 
Matrix Fibers/fillers (wt.%) NC (wt.%) IS with NC (kJ/m2) IS without NC (kJ/m2) Ref. 
Epoxy - 1% Polymerized MMT  42.6 19.9 [30]  
Epoxy 5% nanosilica 5% OMMT 5.1 No data [48]  
Epoxy (cured at 120°C) - 5% OMMT 5.77 4.72 [67] 
Epoxy/polyester (100/10)  5% OMMT 10.87 9.28 [50] 
Polyester 40% coir 3% Garamite 17.94 No data [32]  
Polyester/soybean oil  21% hemp 1.5% Cloisite30B 3 2.6 [33]  
Polyester 33% coir- 17% glass 2% Alkali treated NC  13.8 8.4 [51]  
Polyester 50% glass 2% Alkali treated NC  15.9 14.7 [51]  
PA6 Basalt 1% Nanofil919 352 303 [53]  
HDPE 40% wheat straw 2% Cloisite15A 2.35 2.63 [57]  
MA-g-HDPE 29% bamboo 1.7% NC masterbatch  3.44 3.90 [34]  
MA-g-PP 30% pineapple 2% Cloisite20A 2.27 1.49 [35]  
MA (4%)-g-PP 30% bagasse 1% CloisiteNa+ 110 117 [36] 
PA-6+PP-g-MA - 2% Cloisite30B 9.23 11.61 [59]  
Cement 2.5% hemp 1% Cloisite30B 2.45 1.99 [69]  
Phenolic Aramid/Rockwool/ Graphite 2.25%  5 No data [73]  

 
Table 4. Highest compression strength (CS) obtained (MPa) in the single studies with nanoclay 

 
Matrix Fibers/fillers (wt.%) NC (wt.%) CS with NC(MPa) CS without NC (MPa) Ref. 
Epoxy/vinylester - 5% Nanomer I.30E 108 105 [26]  
Epoxy 75% glass 2% MMT 493 414 [49] 
Epoxy (Epikote828)  5% Nanomer I.28 231.26 211.47 [75]  
Epoxy (ML-506) 50% basalt 5% silane mod. MMT 780 590 [76] 
Epoxy - 1% Na-MMT 129.22 89.02 [77]  
Polyester 33% coir 3% Nanoclay 39 No data [32]  
Low carbon fly ash  2% Cloisite 30B 45.9 37.2 [78] 
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3.3 Impact 
 

Charpy or Izod (ASTM D256) impact tests 
appear fundamental in the case of the 
introduction of MMT, since nanoclay particles are 
supposed to modify the velocity and orientation 
of crack growth, possibly deflecting it, hence 
delaying fracture. Toughness is an easy and fast 
measurement, yet it is also dependant on the 
distribution of the filler, a factor that is particularly 
critical when a very limited amount of it is usually 
inserted, such as it is the case for nanoclay. The 
measurement of toughness in composites is 
sufficiently accurate only in the case that an 
effective interface between the particles and the 
matrix is obtained. The use of other matrices and 
reinforcements than the usual ones for 
composites may complicate this issue, so that 
also cases of decrease of impact strength are 
reported e.g., with bamboo fibers [34] or with 
bagasse [36]. As an example, in [70], the use of 
nano-keratin from chicken feathers is also 
proposed as a matrix for MMT and/or cellulose 
nanocrystals (CNC): here, the increase in 
strength of MMT would be compensated by the 
higher elongation allowed by CNC. In practice, 
these tests for nanocomposites were revealed to 
be particularly of interest in situations for 
example of application of innovative polymer 
blends as the matrix, with the idea e.g., to lead to 
an improved control of the 
exfoliation/intercalation behavior of MMT, with 
blending of epoxy with hydroxyl-terminated 
polybutadiene (HTPB) [71]. As in loading cases 
illustrated in the above sections, the investigation 
of particular questions, for instance in [72] the 
success of injection molding of a thermoplastic 
blend (polypropylene/thermoplastic vulcanizate) 
filled with MMT, make impact tests particularly 
suitable for an initial investigation of the 
modifications into crack arrest characteristics 
with respect to the usual thermosetting matrices.    
 

3.4 Compression 
 
Finally, the attention over compression strength 
of MMT nanocomposites has been limited so far, 
so that a specific trend is difficult to be indicated, 
although here again the improvement appears 
substantial in the few cases presented in Table 
4. An obvious indication of this relative lack of 
interest is that until very recently the mixed use 
of polymers and concrete as the matrix, in which 
nanoclay could play a role, has been seldom 
investigated [74]. It is noteworthy though that 
compression testing of nanoclay composites has 
also concerned studies where also natural fibers, 

in the specific case coir, have been used as 
matrix reinforcement, a trend that is likely to 
increase more recently as the consequence of 
the more general re-use of agro-waste in 
composites. 

 
4. CONCLUSION 
 
The use of nanoclay (NC), normally 
montmorillonite (MMT), often modified to make it 
more adapted to organic molecules 
(organophilic) (OMMT), in composites is 
gradually expanding. This application can take 
place either with only polymer (or rarely cement) 
matrix, or in combination with other fibers, more 
traditional ones, such as carbon, glass or basalt, 
or more innovative ones, such as hemp, coir, 
flax, jute. The introduction of MMT is often linked 
to the improvement of mechanical properties and 
wear resistance of the composite, together with 
the modification of its thermal properties (e.g., 
glass transition temperature of the resin). These 
changes in behavior depend in turn mainly on the 
exfoliated/intercalated balance of the nanoclay 
filler introduced. This review indicates that for the 
four properties investigated (tensile, flexural, 
impact and compression strength) a wide range 
of solutions and of resistance is possibly offered, 
also due to the large sensitivity of these 
properties to the introduction of small amounts of 
nanoclay. In most cases, a substantial 
improvement in strength was obtained, at least 
with the addition of an optimized amount of NC: 
problems have been evidenced with some 
natural fibers and whenever other properties are 
also aimed at, such as flame resistance by the 
introduction of other ceramic filler, which may 
hinder the increase of mechanical strength. The 
number of studies is likely to grow significantly in 
the near future, for the increasing availability and 
technological maturity of a larger number of 
polymers and fibers, also natural ones coming as 
secondary raw materials.  
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