
__

*Corresponding author: Email: peteronpeter@gmail.com;

J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023

Journal of Advances in Mathematics and Computer Science

Volume 38, Issue 9, Page 144-156, 2023; Article no.JAMCS.101597
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Comparative Analysis of the Compression

of Text Data Using Huffman, Arithmetic,

Run-Length, and Lempel Ziv Welch

Coding Algorithms

Peter Kwaku Baidoo
a*

a
 Department of Mathematics and ICT, Bia Lamplighter College of Education, Sefwi, Debiso, Ghana.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMCS/2023/v38i91812

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review

comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/101597

Received: 27/05/2023

Accepted: 01/08/2023

Published: 16/08/2023

__

Abstract

The purpose of the study was to compare the compression ratios of file size, file complexity, and time used in

compressing each text file in the four selected compression algorithms on a given modern computer running

Windows 7. The researcher used the Java programming language on the NetBeans development environment

to create user-friendly user interfaces that displayed both the content being compressed and the output

generated by the compression. A purposive sampling technique was used to select text files with varying

complexities from the Google data store, as well as other text documents developed and manipulated by the

researcher to meet the level of complexity required for the research experiment. The results showed that each

compression algorithm compressed differently in terms of word count. This is due to the fact that the

compression ratios of the number of words in each file changed in each compression algorithm. Furthermore,

the complexity of the text in the file had no effect on the algorithms used. This was due to the fact that no

significant changes in the various algorithms were observed with the selected files, despite the complexities

Original Research Article

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

145

of some files. Finally, time for compression was found to decrease with decreasing file size, though there

were some notable variations across all four algorithms used. Before choosing a compression algorithm for

efficient text compression, users must first determine their goals.

Keywords: Compression algorithm; coding algorithms; data compression; John Moore's law.

1 Introduction

Data compression, also known as source coding, is the process of encoding information using fewer bits (or

other information-bearing units) than an unencoded representation would require through the use of particular

encoding schemes [1]. This is done in order to reduce the size of the data as much as possible. The ZIP file

format is a common example of compression that many computer users are familiar with [2]. The primary goal

of data compression is to represent the data in question using as little space as possible [3]. This is accomplished

by identifying and exploiting data redundancies [4].

Depending on the outcome of the algorithm in question, data compression can be lossy or lossless" [5]. Lossy

means that some data was lost during the encoding (compression) or decoding (decompression) processes, while

lossless means that no data was lost during either process [6,7]. It is critical to note that lossless compression

algorithms are used when data loss will not distort the intended information carried by the data to the receiver.

However, any loss in the data, even if it is only an alphabet, can change the meaning of the word or sentence,

causing the entire information to be distorted. When considering the efficiency and accuracy of the algorithm,

the concept of encoding and decoding is critical [8]. Huffman, Arithmetic, Run-Length, and Lempel Ziv Welch

(LZW) are some of the most commonly used data compression algorithms [9,10]. The importance of text

compression in our time cannot be overstated, given the increase in data generation among all computer users

[11]. Many companies and governments generate terabytes of data every day, and offshore backups are

becoming more common for these organisations and countries, as well as with the Cloud Computing new winds

blowing strongly in industry. Not to mention user data accessibility options, which are expanding and, as a

result, require fast processing, transmission, and storage to meet the needs of modern technology users [12,13].

Despite the fact that the complexities of processing power and storage capacities are increasing in accordance

with John Moore's law, the rate of data generation far outpaces the growth of hardware and transmission

complexities. This necessitates the attention of field professionals in order to meet the growing user and industry

requirements.

The Windows operating system is widely used in homes and businesses, particularly with the Windows 7

release being the industry defector [14]. Many text compression algorithms have been tried on this operating

system, either embedded or through the use of third-party software installed on the system [15].

This article investigated, via a comparative study, the aforementioned four (4) major data compression

algorithms to determine which is the most efficient and also fast in both encoding and decoding without loss of

the input text with future demands in mind. Data compression is very important because it helps to reduce the

use of expensive resources such as disc space and transmission bandwidth [16]. Furthermore, compressed data

takes far less time to transmit than uncompressed data [17]. Despite the fact that compressed data has numerous

advantages, decompressing such data necessitates the use of special applications and equipment, which incur

additional costs [18]. Data compression normally results in a certain amount of data being discarded, the amount

of distortion introduced when using lossy compression techniques, and the high-level resources required to

compress and decompress the specific data [19]. The efficiency of a compression technique thus includes both

the compression and decompression expenses, such as the resource requirement, as well as the degree of

compression, the amount of distortion introduced when using a lossy compression technique, and the high-level

resources required to compress and uncompress the data [20-23].

The main goal of this thesis is to determine which of the many algorithms will best compress text data by

eliminating most of the trade-offs during the compression and decompression stages while maintaining a good

compression ratio. As a result, the thesis compares which of the text compression Algorithms named best

compress given text data in terms of compression ratio, compression speed, and output size within the Windows

7 operating system.

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

146

1.1 Research Question

1. How different are the compression size of text compression algorithms?

2. What is the effect of the number of words in a text or file size to the compression ratios of text

compression algorithms?

3. Does the complexity of a text file affect the compression ratio of text compression algorithms?

4. Does the compression time depend on the file size?

2 Compression algorithms

2.1 Run-length coding

It has been observed that data normally contains series of similar bytes of information. These similar

occurrences can be replaced with a set of bytes in order to reduce the size of the data. The act of replacing the

similar occurrences with a byte sequence is the idea of Run-length coding. A unique pointer N is needed in the

data that does not occur as part of the data stream itself. This N-byte can also be recognised if for example all

256 possible bytes can occur in the data stream by using byte stuffing. To demonstrate this, we can describe the

exclamation mark (!) to be the N-byte found in the data. One occurrence of an exclamation mark is deduced as

the byte during decoding. Two repeated exclamation marks are represented as one exclamation mark occurring

within the data. “The method can be described as follows: if a given byte occurs at least four (4) times in a row,

then the number of occurrences is counted as one. The compressed data contain the byte, followed by the N-byte

and the number of occurrences of the byte. Remembering that we are compressing at least four consecutive

bytes, the number of occurrences can be offset by –4. This allows the compression of between four and 258

bytes into only three bytes. For instance the character “A” appears four times in a row and can be encoded as

A!: The uncompressed data look like this; ABAAAAWANAOMI whiles the compressed data using the Run-

Length technique becomes; ABA!NAOMI. It can be seen that the algorithm has been able to reduce the original

thirteen (13) characters which is equivalent to thirteen bytes to only nine (9) characters or bytes. When such

sequences are found in a given text of data, it is convenient to compress such data by using the Run-Length

technique. An example of such data includes icon, line drawings, animations etc. One disadvantage of this

compression is that in extreme cases, the output files turn to be larger than the input file which the defiles the

aim of data compression.

2.2 Huffman coding

This method is named after D. A. Huffman, who developed the procedure in the1950s. Given the characters that

must be encoded, together with their probabilities of occurrence, the Huffman coding algorithm determines the

optimal coding using the minimum number of bits. Huffman code procedure is based on the two observations.

More frequently occurred symbols will have shorter code words than symbol that occur less frequently. The

Huffman code is designed by merging the lowest probable symbols and this process is repeated until only two

probabilities of two compound symbols are left and thus a code tree is generated and Huffman codes are

obtained from labelling of the code tree (Sashikala, 2013).

According to Blelloch (2013), the algorithm is now probably the most prevalently used component of

compression algorithms, used as the back end of GZIP, JPEG and many other utilities. The most frequently

occurring characters are assigned to the shortest code words. A Huffman code can be determined by

successively constructing a binary tree, whereby the leaves represent the characters that are to be encoded.

Every node contains the relative probability of occurrence of the characters belonging to the sub tree beneath the

node. The edges are labelled with the bits 0 and 1. A Huffman tree is a special binary tree called a tree which is

a tree in which a 0 represents a left branch and a 1 represents a right branch. The numbers on the nodes of the

binary tree represent the total frequency, F, of the tree below. The leaves of the tree represent the elements, e, to

be encoded. The elements are assigned the encoding which corresponds to their place in the binary tree.

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

147

2.3 Arithmetic coding

Arithmetic coding (AC) is a form of entropy encoding used in lossless data compression. Normally, a string of

characters is represented using a fixed number of bits per character, as in the ASCII code. When a string is

converted to arithmetic encoding, frequently used characters will be stored with fewer bits and not-so-frequently

occurring characters will be stored with more bits, resulting in fewer bits used in total.

Arithmetic coding algorithm encodes an entire file as a sequence of symbols into a single decimal number. The

input symbols are processed one at each iteration. The initial interval [0,1) (or [0,1]) is successively divided into

subintervals on each iteration according to the probability distribution. The subinterval that corresponds to the

input symbol is selected for next iteration. The interval derived at the end of this division process is used to

decide the “code word” for the entire sequence of symbols.

2.4 Lempel Ziv Welch Coding (LZW)

This compression algorithm was developed by Abraham Lempel, Jakob Ziv, and Terry Welch. LZW is a

'dictionary-based' lossless compression algorithm that scans a file for data patterns that appear more than once.

These patterns are then saved in a dictionary, and references are placed within the compressed file wherever

repetitive data occurs.

The LZW Algorithm is divided into two parts: the encoding algorithm, which converts strings to integer codes,

and the decoding algorithm, which does the opposite. Both encoder and decoder algorithms have a default table

or dataset that serves as the initial model for both encoder and decoder. As the algorithm runs, new integer codes

for various string patterns are added to this table. The number of table entries in the code table is usually set to

4096. When encoding begins, the code table only contains the first 256 entries, with the remaining entries being

blanks. LZW detects repeated sequences in the data and adds them to the code table as the encoding progresses.

Each code from the compressed file is decoded through the code table to determine which character or

characters it represents.

3 Methodology

The current study was carried out using a quantitative research methodology. Positivists are the most common

term used to describe researchers who employ quantitative tools, methods that place an emphasis on counting

and measuring. Positivists hold that there is only one truth, or one external reality, and that reality is fixed,

directly measurable, and knowable. The researcher chose this strategy because the goal of the study is to

determine which of the four (4) main data compression algorithms is most effective and quick in both encoding

and decoding without losing the input text.

3.1 Sampling

According to Wikipedia (2022), sampling is all about carefully selecting an aspect of the total population to find

out their characteristics which gives complete idea about the overall entities. Purposive sampling, also known

as judgmental, selective or subjective sampling, is a type of non-probability sampling technique whereby the

researcher uses his/her own discretions to choose the unit to be investigated.

Lund Research Ltd (2012) explains that purposive sampling only pays attention to the traits of the population

which are of immense interest to him. This eventually will help the researcher to answer the already posed

research questions.

The researcher based on the above, selected text files based on their size and complexity. These files were

selected from the goggle data store with various complexities and other text documents developed and

manipulated by the researcher to meet the kind of complexity needed for the research experiment. The selected

sample files can be found in Table 1.

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

148

Table 1. Selected Sample Files for the Research

Input File Name File size Number of Words

CONQUEST 768712 11224

psychounix 683952 14218

drugs 595096 5015

Googlebooks-free-all 406344 6268

2400adfaq 339776 7968

ATOMIC 260376 2740

goldenbaton 254360 2103

Manual 203080 4522

CBSOLVE 193104 4146

221bakerst 151984 4238

221baker 148416 4245

2400ad 104304 2397

AQUEST 69344 1199

institute 45728 1209

ampasswords 17080 817

The researcher created a user interface to surface the manipulation of the files into bits, which is often not

friendly to interact with, for simple interactivity. The researcher created the interface depicted in Fig. 1 using the

NetBeans development environment's Graphical User Interface (GUI) designer.

Fig. 1. Designed Interface

The user loads the text file to be compressed through a menu on the interface, and there is an exit button to end

the process. Saving time on the experiment, files are loaded once and are then loaded into all of the algorithms'

file text boxes. The directory path of the loaded text, the file size, and the number of words are all displayed in

the files properties area for each file that has been loaded into the text box. These are not included in the

compressed time.

Each tab is made to command a specific compression algorithm and have a compressed button. These

algorithms are timed throughout, from beginning to end. The number of bits compressed and the compression

ratio, both of which are not included in the calculated time for the compression, are recorded and displayed

along with the time difference.

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

149

Once the files have been loaded, all of the algorithms are executed, and their recordings are taken before the

next file is loaded. As a result, the experiment's time spent reading text files is cut down.

Fig. 2 displays an example of a human compression used in the study.

Fig. 2. Samples of compressed file

In order to analyse the data, the researcher used a comparative method in which the chosen sample files were

contrasted with one another in light of the study's goals. To ascertain whether one variable is related to another,

analyses were carried out. The study also looked at association and causality, with association being the degree

to which one variable is dependent on another. Then, the measure of association aids in understanding the

connection between the variables. For this study, a correlation was used, which is a single number that indicates

how closely two variables are related.

The researcher ran three simulations on each sample text used, and the mean values were then recorded and used

to make the variables in the research stable and thus reliable. Additionally, this assisted in averaging out the

variations in computer computation and processing speed. On the described computer specification, the values

used in the study could therefore be regarded as being extremely stable. Also the researcher immediately after

the simulation was run recorded the data to ensure the reliability of the findings. The information was gathered

from primary and secondary sources. The experimental results served as the primary source, and the literature

served as the secondary source.

Text files of various sizes and compositions that were downloaded from the internet as well as the outcomes of

the simulation served as the main sources of data for the study. The files were found through various internet

searches at various sources. A few of the text files that were used combined a number of different text files

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

150

found online. In order to provide the level of complexity required for the research simulation, this was done to

assist the researcher.

The simulation that was run using the listed text data from the internet search produced the primary data that

was used in the analysis. These data were trustworthy because they were produced by the computer using

simulation and were free from interference from other function formulas. Regarding the timing of the loop and

the execution of the involved algorithms, there were no human interruptions during the simulation.

A sizable amount of publicly available data on data compression and its related academic topics was used as the

secondary source of data. To give the work a little more polish, the bases and availability of the data were

confirmed. A certain amount of information and experimental findings were also accessible from university

academic resources, including academic books and, in particular, academic journals from online databases in the

field.

Using the chosen sample files, the experiments' simulations of the four compression algorithms produced their

results. Microsoft Excel was then used to tabulate and record the results. One of the Microsoft Office suite's

tools, Microsoft Excel, is utilized for mathematical computations. Excel also gives users the option to create

various graphs from the data they have stored. Tables and graphs were then used to analyse the data.

4 Results and Discussion

The research questions were tested against the four compression algorithms to find the possible answers to them.

Each was tested by running the various algorithms to find their reactions. Observations were made and

conclusions drawn at the end. The questions are as follows:

Research Question One: How different are the compression size of text compression

algorithms?

This research question was analysed by using grouped bar graph to determine how different are the compression

size of text compression algorithms. The results is shown in Fig. 3.

Fig. 3. Percentage Compression Difference of selected Files

The figure shows that the Lempel Ziv Welch coding algorithm had the greatest compression difference on all of

the selected files except "Atomic" and "goldenbaton," for which the Run Length coding algorithm had the

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

151

greatest compression difference. Run-Length Encoding algorithm had the second highest compression ratios,

however overtook LZW algorithm in two of the selected files mainly "Atomic" and "goldenbaton". In terms of

compression difference between the selected files, the Huffman algorithm came in third place. Although the

difference was not statistically significant, it did result in a significant increase in compression difference with

the last two least selected files. The bar graph shows that the smallest file in terms of size, "ampassword," had

the greatest compression difference with the Huffman algorithm. Finally, when compared to the other three

compression algorithms, the Arithmetic algorithm recorded the smallest compression difference in all fifteen

(15) selected files.

Research Question Two: What is the effect of file size on compression ratios of text compression algorithms? A

bar graph was used to determine the effect of file size on compression ratios of text compression algorithms.

The results is shown in Fig. 4.

Fig. 4. The effect of number of words on compression ratios of selected files

Fig. 4 shows a bar graph with the results of the four algorithms and their compression ratios for the selected

files. The Huffman and Arithmetic algorithms both increase compression ratios as the number of words in the

file decreases with little inconsistency. Arithmetic coding had the lowest compression ratio of 0.008 for the

largest file, while Huffman had the highest at 1.104. As the size of the individual files decreased, the ratios for

both algorithms increased. They all recorded a maximum ratio for ampassword, which has the fewest files of all

the selected files. Arithmetic had a higher ratio of 0.345, whereas Huffman had an equivalence of 3.536.

In contrast, the LZW and Run-Length algorithms recorded erratic file size ratios. LZW recorded the highest

ratio of 82.2 for goldenbaton, which falls in the middle of the file size spectrum. Ironically, Atomic had the

lowest ratio of 21.66, which is just above goldenbaton in terms of file size. The rest of the ratios recorded by the

files were erratic because no pattern was followed. In addition, Run-Length also recorded the highest

compression ratio of 48.03 for the same file “goldenbaton” as recorded by LZW algorithm. It however recorded

the least ratio of 16.10 for the least file “ampassword” which happens to be the least file in terms of file size.

The rest of the ratios recorded by the files were less than 25 and inconsistence as far as their file sizes are

concern.

From the above figures it can be seen that the number of words or the file size of a given file has not got much

effect on the compression ratio of that file.

Input File N of Words LZW Run Length Huffman Arithmetic

CONQUEST 11224 34.202 23.817 0.104 0.008

psychounix 14218 36.490 20.995 0.137 0.008

drugs 5015 29.572 24.417 0.126 0.009

googlebooks-fre-all 6268 34.494 24.472 0.203 0.013

2400adfaq 7916 42.222 24.032 0.214 0.017

ATOMIC 2740 21.657 24.343 0.143 0.022

goldenbaton 2103 82.198 48.030 0.112 0.022

manual 4522 40.212 24.428 0.349 0.026

CBSOLVE 4146 31.586 23.497 0.373 0.033

221bakerst 4238 43.403 22.761 0.403 0.041

221baker 4245 44.377 23.354 0.413 0.038

2400ad 2397 43.576 24.229 0.671 0.058

AQUEST 1199 29.524 19.337 0.836 0.075

institute 1209 41.460 22.879 1.441 0.129

ampasswords 817 33.525 16.101 3.536 0.345

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

152

Research Question Three: Does the complexity of a text file affect the compression ratios of text

compression algorithms? To determine the complexity of a text file affect the compression ratios of text

compression algorithms a bar was used as shown in Fig. 5:

Fig. 5. Compression ratio difference of selected files

Fig. 5 depicts the selected compression files, their sizes, and the compression difference when run through the

compression algorithms. The files that are considered complex are shaded. That is, they contain xml and other

symbols that are not found in ordinary text. With the exception of LWZ, the other coding schemes reduced the

compression difference from the largest to the smallest file with minimal variations. Variations in the drop were

observed from "drugs" to "institute," which, while reduced downwards, was not consistent. In contrast, the

Huffman Coding scheme increased consistently from the largest file to the smallest recording, 3.536 and 0.104,

respectively. Arithmetic Coding Scheme also followed Huffman's lead, increasing from 0.008 to 0.345 from the

largest to the smallest file.

Research Question Four: Does the compression time depend on the text complexity?

A simple bar graph was used to show whether the compression time depend on the test complexity as shown in

Fig. 6.

The time used to compress each of the selected files by the algorithms was compared with the sizes of the files.

Fig. 6 illustrates the comparisons of these calculated durations. From Fig. 6, it is observed that the compression

time generally decreases with decreasing files size but with some exceptions. Arithmetic, LWZ, and Huffman

coding pulled larger values than Run Length Encoding. Run Length was not consistent although its maximum

value twenty (20) was for the file with the largest file and three of the last three least file all recorded a

maximum time of one (1) millisecond.

It can be seen from the Fig. 6 that “CBSOLVE” dropped out of pattern as its time for all the other three

algorithms were far lesser than “221barkerst” except LZW algorithm in which “CBSOLVE” had a higher time

of 13741 milliseconds than “221barkerst” with a total time of 12921 milliseconds. In addition, in the LZW

algorithm, it can be seen that there were some inconsistencies in the time used after the first three largest files.

“2400adfaq” with file size 339776 had much time 40066 milliseconds than “googlebooks-free-all” with larger

file size of 406344 which used a total time of 36246 milliseconds.

Input File File size LZW Run Length Huffman Arithmetic
CONQUEST 768712 34.202 23.817 0.104 0.008

psychounix 683952 36.490 20.995 0.137 0.008

drugs 595096 29.572 24.417 0.126 0.009

googlebooks-fre-all 406344 34.494 24.472 0.203 0.013

2400adfaq 339776 42.222 24.032 0.214 0.017

ATOMIC 260376 21.657 24.343 0.143 0.022

goldenbaton 254360 13.765 22.678 0.112 0.022

manual 203080 40.212 24.428 0.349 0.026

CBSOLVE 193104 31.586 23.497 0.373 0.033

221bakerst 151984 43.403 22.761 0.403 0.041

221baker 148416 44.377 23.354 0.413 0.038

2400ad 104304 43.576 24.229 0.671 0.058

AQUEST 69344 29.524 19.337 0.836 0.075

institute 45728 41.460 22.879 1.441 0.129

ampasswords 17080 33.525 16.101 3.536 0.345

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

153

Furthermore, “goldenbaton” with file size 254360 used much time of 53191 milliseconds than Atomic with

larger file size of 260376 which used a maximum time of 19710 milliseconds.

Fig. 6. Compression time for the selected files

Run-Length Algorithm also experienced some time inconsistencies apart from “Conquest” which had a largest

time of 20 milliseconds with the largest file size of 768712. The rest from psychounix to CBSOLVE

experienced a toggle of time between 1 millisecond for manual and 10 milliseconds for both googlebooks-free-

all and Atomic. Among the most complex files which are conquest, drugs, googlebooks-free-all, atomic and

goldenbaton, even the time was inconsistence. For example, apart from conquest which had a maximum time of

20 milliseconds, googlebooks-free-all and Atomic with 10 milliseconds, and drugs with 8 milliseconds,

goldenbaton which is also recorded a compression time of 2 milliseconds which is far lesser than 2400adfaq and

221barkerst which recorded a maximum of 6 milliseconds although not considered as a complex file.

In conclusion, it was generally observed that compression time largely depends on the complexities of the input

file. Conquest which is one of the complex files recorded the highest time in all the four used algorithms in the

research. Conquest recorded the highest time of 110625 milliseconds in LZW, 20 milliseconds in Run-Length,

249755 milliseconds in Huffman and finally recorded 229991 milliseconds in Arithmetic algorithm.

4.1 Practical application of data compression

Data compression is very significant because it helps to curtail the use of exorbitant resources like disk space

and transmission bandwidth. Data compression helps in the reductions in storage hardware, data transmission

time, and communication bandwidth. This can result in significant cost savings. Compressed files require

significantly less storage capacity than uncompressed files, meaning a significant decrease in expenses for

storage. A compressed file also requires less time for transfer while consuming less network bandwidth. This

can also help with costs, and also increases productivity.

Input File File size LZW Run Length Huffmann Arithmetic
CONQUEST 768712 110625 20 249755 229991

psychounix 683952 84941 5 193043 160503

drugs 595096 73312 8 132596 115125

googlebooks-fre-all 406344 36246 10 62175 57930

2400adfaq 339776 40066 6 50825 50076

ATOMIC 260376 19710 10 33870 30010

goldenbaton 254360 53191 2 25986 24700

manual 203080 13531 1 19910 17973

CBSOLVE 193104 13741 2 2165 2180

221bakerst 151984 12921 6 12846 11014

221baker 148416 10853 4 11788 10401

2400ad 104304 7558 3 7473 6988

AQUEST 69344 2358 1 1712 1722

institute 45728 207 1 1018 966

ampasswords 17080 889 1 187 250

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

154

5 Conclusion and Recommendation

In general, each compression algorithm compressed differently based on the number of words. This is due to the

fact that the compression ratios of the number of words in each file changed in each compression algorithm.

Furthermore, the complexity of the text in the file had no effect on the algorithms used. This was due to the fact

that no significant changes in the various algorithms were observed with the selected files, despite the

complexities of some files. Finally, time for compression was found to decrease with decreasing file size,

though there were some notable variations across all four algorithms used. Before choosing a compression

algorithm for efficient text compression, users must first determine their goals. They must decide whether they

want to compress the file as quickly as possible without regard for the outcome of the compressed file. If this is

the case, they should think about using the Run-Length Encoding algorithm. Furthermore, the choice of a

compression algorithm must be based on the complexity of the file to be compressed. Finally, the researcher

suggests that in future research of this type, more files of varying complexity and larger file sizes be used to

make the results and findings more holistic.

6 Limitations of the Study

This article compared the compression ratio, compression time, compression size and file complexity of selected

files using Huffman, Arithmetic, Run-Length, and Lempel Ziv Welch coding algorithms within the Windows 7

Operating System. Since the simulation and the experiments were conducted in Windows 7 Operating System,

there is the possibility that the results will not be the same in other operating systems.

In addition, different sample files may also behave differently in the four compression Algorithms used, since

they may differ in terms of file size, file complexity, and data types. When audio and video files are used in this

experiment, it may yield different outcomes. It has put to the public domain the differences that exist between

the four compression algorithms in respect to compression time, compression ratio, and how file with diverse

complexities react to selected compression algorithms.

Competing interests

Author has declared that no competing interests exist.

References

[1] Savant M, Devale J, Modi U, Coelho S. Data Solution. The International Journal of Science and

Technoledge. 2015;3(4):68.

[2] Kuhn D, Kim C, Lopuz B, Kuhn D, Kim, C, Lopuz B. Chapter 6: Archiving and Compressing

Files. Linux and Solaris Recipes for Oracle DBAs. 2015;139-155.

[3] García S, Ramírez-Gallego S, Luengo J, Benítez JM, Herrera F. Big data preprocessing: methods and

prospects. Big Data Analytics. 2016;1(1):1-22.

[4] Alakuijala J, Farruggia A, Ferragina P, Kliuchnikov E, Obryk R, Szabadka Z, Vandevenne L. Brotli: A

general-purpose data compressor. ACM Transactions on Information Systems (TOIS). 2018;37(1):1-30.

[5] Sun X, Ma H, Sun Y, Liu M. A novel point cloud compression algorithm based on clustering. IEEE

Robotics and Automation Letters. 2019;4(2):2132-2139.

[6] Wiseman Y. The still image lossy compression standard-JPEG. In Encyclopedia of Information Science

and Technology, Third Edition. IGI Global. 2015;295-305.

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

155

[7] Hussain AJ, Al-Fayadh A, Radi N. Image compression techniques: A survey in lossless and lossy

algorithms. Neurocomputing. 2018;300:44-69.

[8] Ma T, Hempel M, Peng D, Sharif H. A survey of energy-efficient compression and communication

techniques for multimedia in resource constrained systems. IEEE Communications Surveys &

Tutorials. 2012;15(3):963-972.

[9] Patel D, Bhogan V, Janson A. Simulation and comparison of various lossless data compression

techniques based on compression ratio and processing delay. International Journal of Computer

Applications. 2013;81(14).

[10] Boopathiraja S, Kalavathi P, Chokkalingam S. A hybrid lossless encoding method for compressing

multispectral images using LZW and arithmetic coding. Int J Comput Sci Eng. 2018;6:313-318.

[11] Xu J, Durrett G. Neural extractive text summarization with syntactic compression. arXiv preprint

arXiv:1902.00863; 2019.

[12] Demirkan H, Delen D. Leveraging the capabilities of service-oriented decision support systems: Putting

analytics and big data in cloud. Decision Support Systems. 2013;55(1):412-421.

[13] Tikkinen-Piri C, Rohunen A, Markkula J. EU General Data Protection Regulation: Changes and

implications for personal data collecting companies. Computer Law & Security Review. 2018;34(1):134-

153.

[14] Egan EA. The Era of Microsoft? Technological Innovation, Network Externalities, and the Seattle Factor

in the US Software Industry; 1996.

[15] Ravi S, Raghunathan A, Kocher P, Hattangady S. Security in embedded systems: Design

challenges. ACM Transactions on Embedded Computing Systems (TECS). 2004;3(3):461-491.

[16] Wang J, Feng Z, Chen Z, George S, Bala M, Pillai P, Satyanarayanan M. Bandwidth-efficient live video

analytics for drones via edge computing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC).

IEEE. 2018;159-173.

[17] Shanmugasundaram S, Lourdusamy R. A comparative study of text compression

algorithms. International Journal of Wisdom Based Computing. 2011;1(3):68-76.

[18] Wu M, Tan L, Xiong N. Data prediction, compression, and recovery in clustered wireless sensor

networks for environmental monitoring applications. Information Sciences. 2016;329:800-818.

[19] Azar J, Tayeh GB, Makhoul A, Couturier R. Efficient Lossy Compression for IoT Using SZ and

Reconstruction with 1D U-Net. Mobile Networks and Applications. 2022;27(3):984-996.

[20] Zou H, Yu Y, Tang W, Chen HWM. FlexAnalytics: a flexible data analytics framework for big data

applications with I/O performance improvement. Big Data Research. 2014;1:4-13.

[21] Alsheikh MA, Lin S, Niyato D, Tan HP. Rate-distortion balanced data compression for wireless sensor

networks. IEEE Sensors Journal. 2016;16(12):5072-5083.

Baidoo; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 144-156, 2023; Article no.JAMCS.101597

156

[22] Jayasankar U, Thirumal V, Ponnurangam D. A survey on data compression techniques: From the

perspective of data quality, coding schemes, data type and applications. Journal of King Saud University-

Computer and Information Sciences. 2021;33(2):119-140.

[23] Sayood K. Introduction to Data Compression, (Fifth Edition) A volume in The Morgan Kaufmann Series

in Multimedia Information and Systems Book. Elsevier Inc; 2018.

__
© 2023 Baidoo; This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

 Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your

browser address bar)

https://www.sdiarticle5.com/review-history/101597

http://creativecommons.org/licenses/by/3.0

