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ABSTRACT 
 

The matrix metalloproteinase-13 (MMP-13) inhibitory activities of carboxylic acid based 
compounds, in presence and absence of bovine serum albumin (BSA), have been 
analyzed quantitatively in terms of chemometric descriptors. The statistically validated 
quantitative structure-activity relationship (QSAR) models obtained through combinatorial 
protocol in multiple linear regression (CP-MLR) analysis and the participated descriptors 
in these models provided rationales to explain the inhibitory activities of these congeners. 
For MMP-13 inhibition activity, the identified descriptors (BEHm1, BELm1 and BEHm8) 
have highlighted the role of the atomic mass in terms of the highest and lowest 
eigenvalues derived from Burden matrix. The positive correlation with activity suggested 
that their higher values are desirable in improving the activity of a compound. Additionally, 
the descriptor C-027 representing R-CH-X type fragment in a molecular structure 
advocates the absence of such type of fragment for the improved activity. On the other 
hand presence of RCO-N< or >N-X=X type fragment (descriptor N-072) would be 
beneficiary to the MMP-13 inhibitory activity.  
The structural features, rationalized by the descriptors MSD (Balaban’s mean square 
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distance index), nCrHR (number of ring tertiary C (sp3), H-047 (H attached to 
C1(sp3)/C0(sp2)) and H-050 (H attached to heteroatom) have imparted positive impact on 
the MMP-13 w/BSA inhibition activity. The atomic properties such as atomic polarizability 
and atomic Sanderson’s electronegativity have shown their positive impact on the activity 
via descriptors BELp4 and GATS3e in respective eigenvalues or lag. The other 
descriptors, MATS1m and MATS3e, have revealed the negative influence of atomic mass 
and electronegativity on the of MMP-13 w/BSA inhibition activity. The results obtained 
from CP-MLR analysis have been supported further through partial least-squares (PLS) 
study. 
 

 
Keywords: Matrix metalloproteinase inhibitors; carboxylic acid based compounds; 

chemometric descriptors; combinatorial protocol in multiple linear regression 
(CP-MLR) analysis; QSAR. 

 
1. INTRODUCTION 
 
Matrix metalloproteinases (MMPs) belong to a family of zinc-endopeptidases that use the 
electrophilic zinc ion to degrade the components of the extracellular matrix [1]. A number of 
physiological processes such as ovulation, embryogenesis, angiogenesis, cellular 
differentiation, and wound healing [2,3] have been connected to these enzymes. Under 
normal physiological conditions, endogenous tissue inhibitors of MMPs (TIMPs) control their 
activity [4]. However, over expression of MMP activity, or poor control by TIMPs, have been 
related with a variety of pathological conditions such as psoriasis [5], multiple sclerosis [6,7], 
osteoarthritis [8], rheumatoid arthritis [9,10] osteoporosis [11,12] Alzheimer’s disease [13], 
tumor growth and metastasis [4,14,15], and undesirable degradation of extracellular 
proteins. 
 
The development of low molecular weight synthetic inhibitors of MMPs is one approach to 
treat these diseases [16-18]. These inhibitors generally include a zinc binding group (ZBG), 
capable to chelate the catalytic zinc ion, bound to a substrate-like fragment designed to fit 
the S1′ primary subsite and adjacent subsites [19]. Hydroxamate is considered the most 
effective ZBG because it forms five-membered chelates and two additional H-bonds with the 
enzyme [20-22]. Hydroxamates, however are affected by lack of selectivity [23], not only 
toward the other members of the same family but even to other physiologically important 
metalloenzymes. Moreover, they show poor pharmacokinetic properties [24] and may cause 
toxicity resulting from metabolic activation of hydroxylamine [25].  
 
The initial therapeutic approach was based on the use of broad-based hydroxamic acid 
inhibitors. However, the approach was failed at the clinical level because of musculoskeletal 
side effects [26-30], the exact nature of which is not completely clear. 
 
Two hypotheses have been proposed to explain the musculoskeletal side effects. The first 
hypothesis is based on the inhibition of tumor necrosis factor (TNF)-α converting enzyme 
(TACE) [31-35], and/or other sheddases [36], by hydroxamates. The other hypothesis 
ascribed the musculoskeletal side-effects to nonselective inhibition within the MMP family. 
Specifically MMP-1, which is linked to normal tissue turnover and repair, was implicated as 
an antitarget. 
Considering the high affinity of the hydroxamate moiety for zinc relative to other coordinating 
moieties [37], it was further hypothesized that selective inhibition of MMP-13 versus other 
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metalloproteinases [38] (specifically TACE and MMP-1) could be achieved with alternate 
[39,40] or no [41] zinc-binding moiety. Thus, the primary goal remains to replace the 
hydroxamic acid zinc-binding moiety so as to reduce the potential for pan-MMP and off-
target sheddase inhibition. Based on optimization of a lead compound, Monovich et al. have 
recently reported [42] potent, orally active, nonhydroxamic acid MMP-13 inhibitors lacking 
sheddase and MMP-1 activities.  
 
The present communication is aimed to perform a 2D-quantitative structure-activity 
relationship (2D-QSAR) for the reported compounds so as to provide the rationale for drug-
design and to explore the possible mechanism of action. In the congeneric series, where a 
relative study is being carried out, the 2D-descriptors may play important role in deriving the 
significant relationships with biological activities of the compounds. The novelty and 
importance of a 2D-QSAR study is due to its simplicity for the calculations of different 
descriptors and their interpretation (in physical sense) to explain the biological activities of 
compounds at molecular level.  
 
2. MATERIALS AND METHODS  
 
The carboxylic acid based compounds along with their inhibition activity, IC50 values were 
taken from the literature [42]. The generalized structure of these compounds is shown in Fig. 
1. The structural variations of these compounds are presented in Table 1. 
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Fig. 1. General structure of carboxylic acid based compounds 
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Table 1. Structures a of the carboxylic acid based analogues 
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The inhibitory activity, IC50, represents the concentration of a compound to bring out 50% 
inhibition of the MMP-13 enzyme. The activity data have been expressed on the negative 
logarithm as pIC50 (–logIC50) on the molar basis and regarded as the dependent variable for 
quantitative analysis. The empirical observations have indicated that activity in the presence 
of serum proteins was important for activity in the rat intra-articular (IA) model, the in vitro 
MMP-13 assay was, therefore, carried out both in the presence and absence of 1% bovine 
serum albumin (BSA). Thus inhibition activity data, determined under two conditions, have 
been considered in present study. A total number of 61 compounds including the lead 
compound (cpd 1; Table 2) have been considered as the data-set for present investigation.  
 
Table 2. Experimental and modeled matrix metallopro teinase-13 inhibition activity of 

carboxylic acid based analogues 
 

Cpd.   –logIC 50 (M)    –logIC 50 (M) 
 MMP-13    MMP-13 w/BSA  
 Obsd. a   Calc.     Obsd. a   Calc.  
    Eq. (12)   PLS       Eq. (14)   PLS 

1  9.52   9.05   9.19    7.92   7.28   7.36 
2  7.96   7.80   8.06    7.33   7.09   7.20 
3b  9.12   9.40   9.23    7.20   7.15   7.21 
4b  8.17   8.34   7.97    5.14   6.37   6.35 
5  5.98c   8.80   8.61    <5.00d   6.79   6.78 
6  6.24c   8.56   8.51    <5.00d   6.63   6.62 
7  7.05   6.92   6.99    5.70   6.00   5.94 
8b  7.74   7.36   7.10    5.73   6.17   6.08 
9  7.30   7.43   7.28    5.60   5.98   6.01 
10  5.88   5.86   5.89    <5.00d   5.85   5.72 
11b  6.84   8.16   8.18    <5.00d   5.90   5.91 
12  9.52   9.29   9.86    8.05   8.12   8.24 
13  9.15   9.18   9.19    7.14   7.09   7.16 
14  8.62   8.77   8.91    7.32   7.01   6.99 
15b  9.30   9.17   9.30    7.96   7.70   7.75 
16  9.30   9.21   9.45    8.01   7.95   7.95 
17  7.21   6.91   6.60    <5.00d   5.57   5.41 
18  5.05   5.83   5.82    <5.00d   5.64   5.30 
19  6.71   6.36   6.48    <5.00d   5.74   5.61 
20  8.89   9.34   9.25    7.00   6.96   7.02 
21b  7.92   8.34   8.06    <5.00d   6.24   6.17 
22  8.48   8.26   8.15    6.52   6.98   6.90 
23b  9.22   8.72   8.59    7.17   6.79   6.76 
24  8.66   8.68   8.61    5.74   5.61   5.50 
25  9.30   8.74   8.71    7.42   7.04   6.97 
26  9.10   8.75   8.82    7.24   7.17   7.09 
27  8.40   8.77   8.68    6.41   7.19   7.11 
28  9.05   8.74   8.93    7.60   7.99   7.84 
29  8.89   8.96   8.58    5.94   6.11   6.11 
30  8.41   8.86   8.61    5.35   5.48   5.36 
31  8.46   8.17   8.29    6.62   6.48   6.49 
32  8.70   8.58   8.59    6.85   6.74   6.72 
33  9.00   8.83   8.87    7.09   6.95   6.88 
34  9.10   8.98   9.08    7.05   7.12   7.04 



 
 
 
 

British Journal of Pharmaceutical Research, 3(4): 697-721, 2013 
 
 

705 
 

35  9.22   8.94   9.05    6.98   6.98   6.93 
36b  9.40   8.87   8.94    7.22   6.96   6.90 
37  9.05   8.98   9.11    6.76   6.90   6.92 
38  9.22   8.80   8.69    7.84   7.13   7.07 
39  9.30   8.96   9.12    7.22   7.29   7.26 
40  9.40   8.99   9.25    8.15   8.34   8.24 
41  8.85   9.26   8.92    6.96   7.25   7.39 
42  8.80   9.26   9.01    7.71   7.39   7.42 
43  9.10   9.28   9.13    7.87   7.68   7.68 
44b  8.55   9.11   8.74    6.67   6.66   6.78 
45b  7.80   8.30   8.18    6.61   6.11   6.16 
46b  8.10   8.39   8.28    6.60   6.28   6.34 
47  8.44   8.83   8.72    6.79   6.54   6.66 
48  9.05   9.30   9.10    7.10   6.86   6.90 
49  8.77   8.85   8.89    7.70   7.68   7.69 
50b  8.85   8.67   8.70    7.19   6.30   6.32 
51  8.92   8.67   8.56    6.24   6.42   6.40 
52  9.15   9.12   9.00    6.74   6.69   6.61 
53  9.15   8.91   9.03    7.60   7.49   7.42 
54  8.26   8.84   8.58    6.64   6.71   6.85 
55b  8.40   8.84   8.78    6.97   6.83   6.93 
56  8.33   8.54   8.42    6.55   6.44   6.56 
57  8.16   8.70   8.53    6.84   6.74   6.84 
58  7.90   7.77   7.86    6.91   6.97   7.10 
59  8.12   8.51   8.70    7.19   7.74   7.61 
60  7.55   7.67   7.89    6.73   6.83   6.97 
61b  7.31   7.82   7.90    6.49   6.74   6.95 

aIC50 represents the concentration of compound to bring out 50% inhibition of MMP-13 enzyme; taken 
from ref. [42], bcompound in test-set, c ‘outlier’ compound, dcompound ignored due to uncertain activity. 
 
For modeling purpose, the data-set was divided into training- and test-sets to insure external 
validation of models derived from the appropriate descriptors. Additionally, leave-one-out 
(LOO) and leave-five-out (L5O) procedures were employed for internal validation of derived 
models. The selection of compounds for test-set has been made through SYSTAT [43] using 
the single linkage hierarchical cluster procedure involving the Euclidean distances of the 
activity, pIC50 values. Nearly 25% of the compounds, from total population, were selected 
from the generated cluster tree in such a way to keep them at a maximum possible distance 
from each other. In SYSTAT, by default, the normalized Euclidean distances are computed 
to join the objects of cluster. The normalized distances are root mean-squared distances. 
The single linkage uses distance between two closest members in clustering. It generates 
long clusters and provides scope to choose objects at different intervals. Due to this reason, 
a single linkage clustering procedure was applied.  
 
2.1 Theoretical molecular descriptors 
 
The structures of the compounds under study have been drawn in 2D ChemDraw [44] using 
the standard procedure. All these structures have been ported to DRAGON software [45] for 
computing the descriptors corresponding to 0D-, 1D-, and 2D-classes. Table 3 provides the 
definition and scope of these descriptor-classes in addressing the structural features which 
were employed in present QSAR work. 
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Table 3.  Descriptor classes used for the analysis of inhibition activities of the 
compounds 

 
Descriptor class (acronyms)  Definition and scope  
Constitutional (CONST) Dimensionless or 0D descriptors; independent from 

molecular connectivity and conformations. 
Topological (TOPO) 2D-descriptor from molecular graphs and 

independent conformations. 
Molecular walk counts  
(MWC) 

2D-descriptors representing self-returning walk 
counts of different lengths. 

Modified Burden eigenvalues 
(BCUT) 

2D-descriptors representing positive and negative 
eigenvalues of the adjacency matrix, weights the 
diagonal elements and atoms. 

Galvez topological charge 
indices (GLVZ) 

2D-descriptors representing the first 10 eigenvalues 
of corrected adjacency matrix. 

2D-autocorrelations  
(2DAUTO) 

Molecular descriptors calculated from the molecular 
graphs by summing the products of atom weights of 
the terminal atoms of all the paths of the considered 
path length (the lag). 

Functional groups  
(FUNC) 

Molecular descriptors based on the counting of the 
chemical functional groups. 

Atom-centred fragments  
(ACF) 

Molecular descriptors based on the counting of 120 
atom-centred fragments, as defined by Ghose-
Crippen. 

Empirical (EMP) 1D-descriptors represent the counts of non-single 
bonds, hydrophilic groups and ratio of the number of 
aromatic bonds and total bonds in an H-depleted 
molecule. 

Properties (PROP) 1D-descriptors representing molecular properties of 
a molecule. 

 
The combinatorial protocol in multiple linear regression (CP-MLR) computational procedure 
[46] has been used for present work in developing QSAR models. Prior to application of the 
CP-MLR procedure, all those descriptors which are inter-correlated beyond 0.90 and 
showing a correlation of less than 0.1 with the biological endpoints (descriptor versus 
activity, r < 0.1) were excluded. The remaining descriptors, able to address the biological 
activity of these compounds, serve as the database (pool) at the end of this initial stage. The 
descriptors have been scaled [47] using the formula: 
 

X��
� = 

��� – ���,���

���,�� – ���,���
         (1) 

 
where X��

� and X�� are the scaled and non-scaled values of jth descriptor for compound i, 

respectively, and X��,��� and  X��,���, in that order, are the maximum and minimum values 
for jth descriptor. In this way, the scaled values of each descriptor would be between 0 and 1.   
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2.2 Model Development 
 
The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR 
studies [46]. Its procedural aspects and implementation are discussed in some of our recent 
publications [48-53]. The thrust of this procedure is in its embedded ‘filters’. They are briefly 
as follows: filter-1 seeds the variables by way of limiting inter-parameter correlations to 
predefined level (upper limit ≤ 0.79); filter-2 controls the variables entry to a regression 
equation through t-values of coefficients (threshold value ≥ 2.0); filter-3 provides 
comparability of equations with different number of variables in terms of square root of 
adjusted multiple correlation coefficient of regression equation, r-bar; filter-4 estimates the 
consistency of the equation in terms of cross-validated Q2 with leave-one-out (LOO) cross-
validation as default option (threshold value 0.3 ≤ Q2 ≤ 1.0). All these filters make the 
variable selection process efficient and lead to a unique solution. In order to collect the 
descriptors with higher information content and explanatory power, the threshold of filter-3 
was successively incremented with increasing number of descriptors (per equation) by 
considering the r-bar value of the preceding optimum model as the new threshold for next 
generation.  
 
In order to discover any chance correlations associated with the models obtained through 
CP-MLR, each cross-validated model has been put to a randomization test [54,55] by 
repeated randomization of the activity to ascertain the chance correlations, if any, associated 
with them. For this, every model has been subjected to 100 simulation runs with scrambled 
activity. The scrambled activity models with regression statistics better than or equal to that 
of the original activity model have been counted, to express the percent chance correlation 
of the model under scrutiny. 
 
Validation of the derived model is necessary to test the prediction and generalization of the 
method. In the present study, the data set has been divided into training-set for model 
development and test-set for external prediction. Goodness of fit of the models was 
assessed by examining the multiple correlation coefficient (r), the standard deviation (s), the 
F-ratio between the variances of calculated and observed activities (F). A number of 
additional statistical parameters such as the Akaike’s information criterion, AIC [56,57], the 
Kubinyi function, FIT [58,59], and the Friedman’s lack of fit, LOF [60], Equations (2)-(4), have 
also been derived to evaluate the best model. 
 

AIC =
��� .  (� � ��)

(� – ��)�         (2) 

 

FIT = 
�� .  (� – � – �)

(���)�.  (� – ��)  
        (3) 

 

LOF = 
���/�

 [� –  (!"#)
�

]�   
        (4) 

 
In above equations, RSS is the sum of the squared differences between the observed and 
estimated activity values, k is the number of variables in the model, p& is the number of 
adjustable parameters in the model and d is the smoothing parameter. The AIC takes into 
account the statistical goodness of fit and the number of parameters that have to be 
estimated to achieve that degree of fit. The FIT, closely related to the F-value (Fisher-ratio), 
was proved to be a useful parameter for assessing the quality of the models. The model that 
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produces the minimum value of AIC and the highest value of FIT is considered potentially 
the most useful and the best. The LOF takes into account the number of terms used in the 
equation and is not biased, as are other indicators, toward large numbers of parameters. A 
minimum LOF value infers that the derived model is statistically sound. 
 
The internal validation of derived model was ascertained through the cross-validated index, 
Q2, from leave-one-out and leave-five-out procedures. The LOO method creates a number 
of modified data sets by taking away one compound from the parent data set in such a way 
that each observation has been removed once only. Then one model is developed for each 
reduced data set and the response values of the deleted observations are predicted from 
these models. The squared differences between predicted and actual values are added to 
give the predictive residual sum of squares, PRESS. In this way, PRESS will contain one 
contribution from each observation. The cross-validated Q2

LOO value may further be 
calculated as 
 

Q2
LOO = 1 – 

'�(��

��)
        (5) 

 
where, SSY represents the variance of the observed activities of molecules around the mean 
value. In leave-five-out procedure a group of five compounds is randomly kept outside the 
analysis each time in such a way that all compounds, for once, become the part of the 
predictive groups. A value greater than 0.5 of Q2-index hints towards a reasonable robust 
model. 
 
The external validation or predictive power of derived model is based on test-set 
compounds. The squared correlation coefficient between the observed and predicted values 
of compounds from test-set, r2

Test, has been calculated as 
 

r2
Test = 1 – 

∑+),-.#(/.01) – )(/.01)2
�

∑+)(/.01) – )(/-����3)2
�        (6) 

 

where, Y'�56(7589) and   are the predicted and the observed activity values, 

respectively, of the test-set compounds and Y(7������:)  andY(7589)  are, correspondingly, 
the mean observed activity values of the training-set and test-set compounds. r2

Test is the 
squared correlation coefficient between the observed and predicted data of the test-set. A 
value greater than 0.5 of r2

Test suggests that the model obtained from training-set has a 
reliable predictive power. 
 
2.3 Partial Least-Squares Analysis 
 
Partial Least-Squares (PLS) [61-63] linear regression is a method suitable for overcoming 
the problems in MLR related to multicollinear or over-abundant descriptors. This is a 
modeling technique where information in the descriptor matrix X is projected onto a small 
number of latent variables (LV) called PLS components, which are linear combination of the 
original variables. The matrix Y is simultaneously used in estimating the “latent” variables in 
X that will be most relevant to predict the Y variables. All descriptor variables are 
preprocessed by autoscaling, using weights based on the variables’ standard deviation and 
the data are mean-centered prior to PLS processing. Scaling of descriptors is necessary 
because the values have different orders of magnitude. 
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Cross-validation was employed to select the used optimum number of LVs. With cross-
validation, some samples were kept out of the calibration and used for prediction. The 
process was repeated so that each of the samples was kept out once. The predicted values 
of left-out samples were then compared to the observed values using predicted residual sum 
of squares (PRESS). The PRESS obtained in the cross-validation was calculated each time 
that a new LV was added to the model.  
 
Tables should be explanatory enough to be understandable without any text reference. 
Double spacing should be maintained throughout the table, including table headings and 
footnotes. Table headings should be placed above the table. Footnotes should be placed 
below the table with superscript lowercase letters.   
 
3. RESULTS AND DISCUSSION 
 
A total number of 484 descriptors, belonging to 0D-2D classes of DRAGON, have been 
computed for 61 compounds of Table 1. Next, the descriptors which were inter-correlated 
above 0.90 and exhibited correlation less than 0.1 with biological activities have been 
eliminated in the initial stage. The remaining 141 and 131 descriptors able to address, 
respectively, the MMP-13 and the MMP-13 w/BSA inhibition activities of the compounds 
have been scaled and collated in the separate pools for CP-MLR analyses. A test-set has 
been selected through SYSTAT and the same was used for external validation of the 
models, derived from the training-set compounds. Fourteen compounds (S. Nos. 3, 4, 8, 11, 
15, 21, 23, 36, 44, 45, 46, 50, 55 and 61; Table 2) were identified for the test-set while 
remaining compounds constitute the training-set for MMP-13 and MMP-13 w/BSA activities. 
A number of models in two-, three-, four-, five- and six-descriptors have been derived in 
succession. In doing so, filter-3 was in turn incremented with increasing number of 
descriptors (per equation) by considering the r-bar value of the preceding optimum model as 
the new threshold for next generation.  
 
In order to quantify MMP-13 inhibition activity in terms of molecular descriptors, compounds 
5 and 6 (Table 2) appeared to behave indifferently from other compounds of the series. The 
ortho- or para-substitution of the phenyl ring, in these two congeners appeared to be poorly 
tolerated. Both these compounds have been treated at the “outliers”. The training-set was 
then employed to explore predictive models through CP-MLR. 4 Models in four-descriptors 
and 2 models in five-descriptors only remained statistically significant and the same, in 
increasing level of significance, are given through Equations (7)-(12). 
  
pIC50 (MMP-13) = 5.256 + 0.926(0.345)TIE + 2.090(0.291)S2K + 2.968(0.342)BEHp1 + 
0.591(0.267)nNR2Ph  
n = 45, r = 0.907, s = 0.417, F(4, 40) = 46.489, AIC = 0.217, LOF = 229, FIT = 3.048, 
Q2

LOO = 0.750, Q2
L5O = 0.752, r2

Test = 0.523      (7) 
 
pIC50 (MMP-13) = 6.012 + 0.878(0.337)TIE + 1.884(0.277)S2K + 2.938(0.338)BEHp1  
– 0.867(0.351) MATS7m  
n = 45, r = 0.910, s = 0.411, F(4, 40) = 48.027, AIC = 0.212, LOF = 222, FIT = 3.149, 
Q2

LOO = 0.785, Q2
L5O = 0.798, r2

Test = 0.503      (8) 
 
pIC50 (MMP-13) = 5.527 + 1.699(0.325)MW + 3.423(0.317)BEHp1 – 1.070(0.244)JGI3  
+ 0.893(0.238)N-072  
n = 45, r = 0.913, s = 0.404, F(4, 40) = 50.172, AIC = 0.204, LOF = 215, FIT = 3.290, 
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Q2
LOO = 0.760, Q2

L5O = 0.755, r2
Test = 0.502      (9) 

 
pIC50 (MMP-13) = 5.010 + 2.505(0.245)BEHm1 + 1.240(0.230)BEHm8 + 
2.225(0.254)BELm1 + 1.080(0.230)N-072  
n = 45, r = 0.921, s = 0.385, F(4, 40) = 56.175, AIC = 0.186, LOF = 195, FIT = 3.684, 
Q2

LOO = 0.808, Q2
L5O = 0.802, r2

Test = 0.638                 (10) 
 
pIC50 (MMP-13) = 5.501 + 1.994(0.303)MW + 3.175(0.293)BEHp1 – 1.226(0.223)JGI3  
+ 0.791(0.237)nNR2Ph + 0.962(0.214)N-072  
n = 45, r = 0.933, s = 0.361, F(5, 39) = 52.589, AIC = 0.170, LOF = 186, FIT = 3.756, 
Q2

LOO = 0.799, Q2
L5O = 0.788, r2

Test = 0.608                (11) 
 
pIC50 (MMP-13) = 5.098 + 2.582(0.220)BEHm1 + 1.076(0.211)BEHm8 + 
2.066(0.232)BELm1 – 0.883(0.264)C-027 + 1.076(0.207)N-072  
n = 45, r = 0.939, s = 0.344, F(5, 39) = 58.598, AIC = 0.155, LOF = 170, FIT = 4.186,  
Q2

LOO = 0.840, Q2
L5O = 0.828, r2

Test = 0.538                (12) 
 
In all above equations, the F-values remained significant at 99% level [F4,40(0.01) = 3.828, 
F5,39(0.01) = 3.528]. The descriptor, MW (from CONST class) accounts for the molecular 
weight of a compound. The descriptors, BEHkw and BELkw (from BCUT class) represent, 
respectively the highest and the lowest eigenvalues of Burden matrices, in which k is 
eigenvalue rank and w is atomic property, such as, mass (m) and polarizability (p). The 
descriptors, TIE and S2K (from TOPO class) are representative of E-state topological 
parameter and 2-path Kier alpha-modified shape index respectively. The descriptor, 
MATS7m (from 2DAUTO class) stands for the Moran autocorrelation – lag 7/ weighted by 
atomic masses. The nNR2Ph (from FUNC class) corresponds to the number of tertiary 
amines (aromatic). The C-027 and N-072 (from ACF class) signify the functionality, such as, 
R-CH-X and RCO-N< / >N-X=X respectively. The sign of the regression coefficient of a 
specified descriptor indicated the direction of its influence in above models. The positive 
regression coefficient will augment the activity profile of a compound while the negative 
coefficient will cause detrimental effect to it. 
 
Equations (7)-(10) are the four-descriptor models while Equation (11)-(12) are the five-
descriptor models. However, Equations (10) and (12) only remained highest significant 
amongst these models which have accounted for 85 and 88 percent of variances in 
observed activity values respectively. In fact Equation (10) represents the subset of Equation 
(12), therefore, the latter model is retained for further discussion. The participated 
descriptors in Equation (12) are mainly obtained from Burden matrix. The descriptors, from 
this matrix, are then calculated as an ordered sequence of the highest and lowest 
eigenvalues, which have been demonstrated to reflect relevant aspects of molecular 
structure, and are therefore useful for similarity searching. The eigenvalue ranks 1 and 8, 
each of them has been weighted by atomic masses (m), have emerged as important 
measures to influence the inhibition of MMP-13. The higher values of the descriptors, 
BEHm1, BELm1 and BEHm8 would, therefore, augment the activity of a compound. 
Additionally, the functionality RCO-N< or >N-X=X is desirable but R-CH-X is unwanted in a 
molecule for improvement of its inhibition activity.  
 
This model has been used to calculate the MMP-13 inhibition activity profiles of all the 
compounds. The same are included in Table 2 for the sake of comparison with observed 
ones. A close agreement between them has been observed. Moreover, the graphical display 
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showing the variation of observed versus calculated activities is given in Fig. 2 to depict the 
goodness of fit. 
 

  

  
 

Fig. 2. Plot of observed versus caculated –logIC 50 values relating to inhibition of MMP-
13 and MMP-13 w/BSA for training-set and test-set c ompounds 

 
Actually, the five-descriptor models, Equations (11)-(12), could explain the highest variance 
in observed inhibition activity. All statistical parameters have remained superior to those of 
four-descriptor models (Equations 7-10). These two models have shared 9 descriptors 
among them and the class, brief description, average regression coefficient and total 
incidences, for individual descriptor, are given in Table 4.  
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Table 4. Identified descriptors a along with their physical meaning, average regress ion coefficient and incidence b, in 
modeling the inhibition activities 

 
S. No. Descriptor  Descriptor 

class 
Physical meaning  Average regression  

coefficient (incidence) 
MMP-13 MMP-13 

w/BSA 
1 MW CONST Molecular weight. 1.994 (1)  
2 MSD TOPO Mean square distance index (Balaban).  1.202 (2) 
3 BEHm1 BCUT Highest eigenvalue n. 1 of Burden matrix/ weighted by atomic 

masses. 
2.582 (1)  

4 BEHm8 BCUT Highest eigenvalue n. 8 of Burden matrix/ weighted by atomic 
masses. 

1.076 (1)  

5 BEHp1 BCUT Highest eigenvalue n. 1 of Burden matrix/ weighted by atomic 
polarizabilities. 

3.175 (1)  

6 BELm1 BCUT Lowest eigenvalue n. 1 of Burden matrix/ weighted by atomic 
masses. 

2.066 (1)  

7 BELp4 BCUT Lowest eigenvalue n. 4 of Burden matrix/ weighted by atomic 
polarizabilities. 

 0.522 (1) 

8 JGI3 GLVZ Mean topological charge index of order 3. -1.226 (1)  
9 MATS1m 2DAUTO Moran autocorrelation – lag 1/ weighted by atomic masses.  -1.034 (1) 
10 MATS3e 2DAUTO Moran autocorrelation – lag 3/ weighted by atomic Sanderson 

electronegativities.  
 -1.180 (1) 

11 GATS3e 2DAUTO Geary autocorrelation – lag 3/ weighted by atomic Sanderson 
electronegativities.  

 1.427 (1) 

12 nNR2Ph FUNC Number of tertiary amines (aromatic). 0.791 (1)  
13 nCrHR FUNC Number of ring tertiary C (sp3).  0.725 (2) 
14 C-027 ACF Corresponds to R--CH--X. -0.883 (1)  
15 N-072 ACF Corresponds to RCO-N< / >N-X=X. 1.019 (2)  
16 H-047 ACF H attached to C1(sp3)/C0(sp2).  1.632 (2) 
17 H-050 ACF H attached to heteroatom.  0.752 (2) 
aThe descriptors have been identified from the models, emerged from CP-MLR protocol with a training-set of 45 and 41 compounds for MMP-13 and 
MMP-13 w/BSA inhibition activities respectively.  bThe average regression coefficient of the descriptor corresponding to all models and the total 
number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the models. 
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Carboxylic acids and other lipophilic compounds are known to bind to plasma proteins [64]. 
These compounds, therefore, lose potency in the presence of serum obtained from human, 
rat, and rabbit. Similar results have been observed when such compounds were tested in 
presence of bovine serum albumin (BSA). Further, the activity determined in the presence of 
BSA was reported to be important for in vivo activity in the rat intra-articular (IA) model. 
Thus, the in vitro MMP-13 inhibition activity, in presence of 1% BSA, i.e., pIC50 (MMP-13 
w/BSA) has been quantitatively analyzed further in terms of chemometric descriptors, able to 
encode molecular structures of the compounds in Table 1. For this, a total number of 131 
descriptors, identified at initial stage, have been subjected to CP-MLR to discover significant 
models. As the mode of action, in the presence and in the absence of BSA, was different, 
therefore, it is interesting to investigate the models which could explain it in terms of 
molecular features of the compounds. To impress upon similar structural features of the 
compounds, which are able to address MMP-13 inhibition action in presence of BSA, the 
same test-set has been chosen to identify significant models through C-MLR. Thus, models 
in two-, three-, four- and five-descriptors have been derived successively but none of them 
could divulge statistical significant results. Finally, 2 models, each derived in six-descriptors, 
have satisfactorily explained the variance in observed activity.  
 
pIC50 (MMP-13 w/BSA) = 6.134 + 1.181(0.247)MSD – 1.034(0.265)MATS1m 
– 1.180(0.229)MATS3e + 0.757(0.172)nCrHR + 1.687(0.230)H-047 + 0.682(0.157)H-050  
n = 41, r = 0.907, s = 0.315, F(6, 34) = 26.345, AIC = 0.140, LOF = 0.164, FIT = 2.053,  
Q2

LOO = 0.757, Q2
L5O = 0.767, r2

Test = 0.527                (13) 
 
pIC50 (MMP-13 w/BSA) = 4.132 + 1.224(0.232)MSD + 0.522(0.223)BELp4 
+ 1.427(0.244)GATS3e + 0.694(0.168)nCrHR + 1.577(0.223)H-047 + 0.822(0.158)H-050  
n = 41, r = 0.907, s = 0.315, F(6, 34) = 26.426, AIC = 0.140, LOF = 0.164, FIT = 2.059,  
Q2

LOO = 0.748, Q2
L5O = 0.685, r2

Test = 0.523                (14) 
 
Eight compounds (S. Nos. 5, 6, 10, 11, 17, 18, 19 and 21, Table 2), with uncertain activities 
(IC50 > 10000 or pIC50 < 5.00), have been removed in the derivation of Equation (13) and 
(14). A total number of 8 descriptors, participating in above models, have been identified 
through CP-MLR and are listed in Table 4 along with their class, brief description, average 
regression coefficient and total incidences. Four descriptors, MSD, nCrHR, H-047 and H-
050, representing, respectively, mean square distance index (Balaban), the number of ring 
tertiary C (sp3), H attached to C1(sp3)/C0(sp2) and H attached to heteroatom are the part of 
both above models. Since these descriptors make positive impact on activity, structural 
features incorporating them are desirable to enhance its inhibition action. The Moran 
autocorrelation – lag 1 and – lag 3, weighted respectively by atomic masses (MATS1m) and 
atomic Sanderson electronegativities (MATS3e) have both negative impact on activity 
(Equation 13). Therefore, lower or more negative values of these descriptors would be 
beneficial in improving the inhibition activity. Additionally, the higher values of the lowest 
eigenvalue n. 4 of Burden matrix/ weighted by atomic polarizabilities (BELp4) and the Geary 
autocorrelation – lag 3/ weighted by atomic Sanderson electronegativities (GATS3e) will 
enhance the activity of a compound (Equation 14).  
 
Further, the PLS analyses have also been performed on 9 and 8 identified descriptors 
related, respectively, to MMP-13 and MMP-13 w/BSA inhibition activities of the compounds 
and the results are summarized in Table 5.  
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Table 5. PLS and MLR-like PLS models from the descr iptors of five and six parameter CP-MLR models for MMP-13 and 
MMP-13 w/BSA inhibition activities 

 
A: PLS equation  
PLS components  PLS coefficient (s.e.) a  

 
 
 
 

MMP-13 MMP-13 w/BSA  
Component-1 0.580 (0.030) 0.440 (0.035) 
Component-2 0.192 (0.038) -0.163 (0.036) 
Component-3 --- 0.119 (0.047) 
Constant            8.499                            6.986 
B: MLR-like PLS equation  
S.  
No. 

MMP-13 S. No. MMP-13 w/BSA  
Descriptor  MLR-like coefficient (f. c.) b Order  Descriptor  MLR-like coefficient (f. c.) b Order  

1 MW 0.644 (0.066) 8 1 MSD 1.060(0.146) 3 
2 BEHm1 1.050 (0.148) 2 2 BELp4 0.355(0.054) 8 
3 BEHm8 0.756 (0.107) 5 3 MATS1m -0.674(-0.087) 6 
4 BELm1 0.888 (0.113) 4 4 MATS3e -0.498(-0.075) 7 
5 BEHp1 1.947 (0.205) 1 5 GATS3e 0.769(0.107) 5 
6 JGI3 -0.780 (-0.106) 6 6 nCrHR 0.694(0.133) 4 
7 nNR2Ph 0.534 (0.072) 7 7 H-047 1.594(0.231) 1 
8 C-027 -0.574(-0.064) 9 8 H-050 0.794(0.168) 2 
9 N-072 0.839(0.117) 3  Constant             5.159  
 Constant 5.532      
C: PLS regression statistics  
Symbol  Value  

MMP-13 MMP-13 w/BSA  
n 45 41 
r 0.952 0.913 
s 0.297 0.292 
F 201.061 62.041 
Q2

LOO 0.884 0.797 
Q2

L5O 0.816 0.794 
r2

Test 0.877 0.533 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their original values; 
f.c. is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained from the autoscaled (zero mean 
and unit standard deviation) data. 
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In the study, the descriptors were autoscaled (zero mean and unit standard deviation) to 
provide each one of them equal weightage. In the PLS cross-validation, two- and three-
components remained optimum for each of these 9 and 8 descriptors and they have 
explained, respectively, 90.6% and 83.4% of variances in the said activities.  The PLS 
equations of optimum two- and three-components and MLR-like PLS coefficients of identified 
descriptors for MMP-13 and MMP-13 w/BSA activities are given in Table 5. The calculated 
activity values of training- and test-set compounds remained in close agreement to that of 
the observed ones and are listed in Table 2. For comparison, the plot between observed and 
calculated activities (through PLS analyses) for the training- and test-set compounds is given 
in Fig. 2. Fig. 3 shows a plot of the fraction contribution of normalized regression coefficients 
of these descriptors to the activity (Table 5). 
 

 
 

 
 
Fig. 3. Plot of fraction contribution of MLR-like P LS coefficients (normalized) against 9 

and 8 identified descriptors (Table 5) associated, resepectively, with MMP-13 and 
MMP-13 w/BSA inhibition activities of the compounds  
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In decreasing level of significance, 9 descriptors, being the part of Equations (11) and (12) 
have been arranged as BEHp1, BEHm1, N-072, BELm1, BEHm8, JGI3, nNR2Ph, MW and 
C-027 for MMP-13 inhibition activity while 8 descriptors, shared Equations (13) and (4), have 
been arranged as H-047, H-050, MSD, nCrHR, GATS3e, MATS1m, MATS3e and BELp4 for 
MMP-13 w/BSA activity. Similar conclusions have been observed from the PLS models for 
these two activities. Further the descriptors, BEHp1, BEHm1, N-072, BELm1, BEHm8, 
nNR2Ph and MW have positive contribution to MMP-13 activity and the descriptors JGI3 and 
C-027 have negative contribution to it. The order of the descriptors in PLS analysis 
suggested that MMP-13 inhibition activity of titled compounds is positively related to the 
molecular bulk or polarizabilty (descriptors MW, BEHm1, BEHm8, BELm1 and BEHp1). The 
presence of aromatic tertiary amine functionality and RCO-N< / >N-X=X type fragment and 
absence of R--CH--X type fragment in molecular structure are also important for the elevated 
MMP-13 inhibition activity. 
  
Likewise, the descriptors H-047, H-050, MSD, nCrHR, GATS3e, and BELp4 have positively 
contributed to MMP-13 w/BSA activity while the descriptors MATS1m and MATS3e have 
negative contribution to it. The descriptors, in a given significant model, having positive 
contribution will augment the activity and their higher values are desirable to further improve 
it. On the other hand, the descriptors having negative contribution will diminish the activity. 
The lower or more negative values of such descriptors may, therefore, enhance the activity 
of a compound. Thus, more number of hydrogen atoms attached to primary and secondary 
carbon atoms and heteroatom (descriptors H-047 and H-050) in addition to the higher 
number of ring tertiary carbons in a molecular structure would be beneficiary to MMP-13 
w/BSA activity. The atomic properties like mass, electronegativity and polarizability have 
also shown their relevance to MMP-13 w/BSA inhibitory activity.   
 
4. CONCLUSION 
 
The MMP-13 inhibition activity (in presence and in absence of BSA), of carboxylic acid 
based compounds have been quantitatively analyzed in terms of chemometric descriptors. 
The statistically validated QSAR models provided rationales to explain the inhibition activities 
of these congeners.  
 
For MMP-13 inhibition activity, the identified descriptors have highlighted the role of the 
atomic properties such as mass and/or molecular bulk and polarizability. The MMP-13 
inhibition activity has shown positive correlation to molecular bulk or polarizability accounting 
descriptors MW, BEHm1, BEHm8, BELm1 and BEHp1 and their higher values are desirable 
in improving the activity of a compound. The presence of aromatic tertiary amine 
functionality and RCO-N< / >N-X=X type fragment and absence of R--CH--X type fragment 
in molecular structure are also important for the elevated MMP-13 inhibition activity.  
 
For MMP-13 w/BSA inhibition activity, the structural features (or properties), rationalized by 
the descriptors MSD, nCrHR, H-047 and H-050, have imparted positive impact on it. 
Similarly, the descriptors, BELp4 and GATS3e have shown their affirmative role whereas the 
descriptors, MATS1m and MATS3e have shown their negative influence on the activity.  
More number of hydrogen atoms attached to primary and secondary carbon atoms and 
heteroatom (descriptors H-047 and H-050) in addition to the higher number of ring tertiary 
carbons in a molecular structure would be beneficiary to MMP-13 w/BSA activity. The atomic 
properties like mass, electronegativity and polarizability have also shown their relevance to 
MMP-13 w/BSA inhibitory activity. 
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These guidelines may be used for further synthesis of potential analogues of the series. The 
PLS analysis has been carried out on identified descriptors related, respectively, to MMP-13 
and MMP-13 w/BSA inhibition activities of the compounds. The results obtained from the 
CP-MLR approach and the PLS analysis have corroborated each other. 
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