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ABSTRACT
When scale builds up in a transmission pipeline, it narrows the 
pipe’s interior and causes losses in both power and efficiency. 
A noninvasive instrument based on gamma-ray attenuation is 
one of the most reliable diagnostic procedures for determining 
volumetric percentages in a variety of circumstances. A system 
with a NaI detector and dual-energy gamma generator simulations 
(241Am and 133 Ba radioisotopes) is recommended for simulating 
a volume percentage detection system utilizing Monte Carlo 
N particle (MCNP). Three-phase flow consisting of oil, water, and 
gas moves through a scaled pipe of variable wall thicknesses in 
a stratified flow regime with changing volume percentages. After 
gamma rays are emitted from one end of the pipe, a detector take 
in the photons coming from the other end. Four temporal features, 
including kurtosis and mean value of the square root (MSR), skew-
ness, and waveform length (WL) picked up by the detector, were 
thus obtained. By training two GMDH neural networks with the 
aforementioned inputs, it is possible to forecast volumetric percen-
tages with an RMSE of less than 0.90 and independently of scale 
thickness. The low error value, simplicity of the system, and reduc-
tion of design costs ensures the effectiveness of the suggested 
method and the advantages of employing this approach in the 
petroleum and petrochemical industries.
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Introduction

Several problems have arisen in oil fields all around the globe as a consequence 
of scale building in oil pipelines. Scale formation reduces the effective cross- 
sectional area of the pipeline, which impedes the flow of petroleum products. 
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This part prevents pumps and other gear from working properly. When scale 
builds up in the pipeline and is not detected in time, it may lead to catastrophic 
breakdowns, broken oil equipment, high repair and maintenance bills, and 
decreased efficiency. Therefore, when things are on a larger scale, using 
a control system with features like volume percentage detection is really 
beneficial. Many studies (Nazemi et al. 2016; Roshani et al. 2021; Sattari 
et al. 2021) have used gamma-ray attenuation systems as the benchmark for 
determining how to quantify the various features of a two-phase flow. The 
following are some of the benefits associated with using neural networks in oil 
and gas indicators: Increasing accuracy in determining various parameters, 
less specialized statistical training is needed, complicated nonlinear correla-
tions between dependent and independent variables can be detected implicitly, 
and all conceivable interactions between predictor variables can be identified, 
and different training techniques are at your disposal. A cesium source, two 
sodium iodide detectors, and a test pipe were utilized in the experiment 
described in (Nazemi et al. 2016). Through the use of the RBF neural network 
and the counts acquired by two detectors, they were able to model two-phase 
flow in a stratified, bubbly, and annular configuration. Using these counts, 
they were able to make volume estimates and classify flow patterns. Roshani 
and his coworkers (Roshani et al. 2021) used GMDH-type artificial neural 
networks trained on the imbalanced data to determine the flow regime and 
volume percentages. They justified the massive computing overhead by point-
ing to the system’s outstanding accuracy. While Roshani et al. (Roshani, 
Nazemi, and Feghhi 2016) used a NaI detector and cobalt-60 source to develop 
a system that could detect the flow regime and volumetric percentage, the 
parameters were not precisely calculated due to the incorrect characteristics 
being extracted. Modern predictions of the volumetric fraction of a three- 
phase flow in the stratified regime were made using the Jaya optimization 
method (Roshani, Karami, and Nazemi 2019). Peyvandi et al. (Peyvandi and 
Rad 2017) presented a unique framework to calculate the volume percentage 
of each component in a three-phase flow from just one pipe side. The gamma 
rays reflected from an item were measured using a NaI detector positioned 
nearby a Cs source. Hanus et al. (Hanus et al. 2016a, 2016b) investigated time 
and frequency-domain features to determine the flow structure under 
dynamic circumstances. The studies included two 241Am sources and 
a single scintillation detector. Three different water-air fluxes were identified: 
a plug, a bubble, and a transitional plug bubble. Hanus et al. (Hanus et al.  
2018) used time-domain data in combination with a different form of the 
neural network to determine the flow regime. ANN and PCA were used to 
determine the flow regime type in a study described in (Hanus et al. 2017).To 
improve ANN’s performance, principal component analysis was utilized to 
narrow the focus to fewer relevant features. The use of artificial neural net-
works to solve the gamma gauging issue has been the subject of many studies 
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in recent years (Salgado et al. 2016, 2020). Salgado and colleagues (Salgado 
et al. 2009, 2010)used an MLP neural network to classify flow regimes and 
estimate volume fraction. Simulations of annular and homogeneous flows 
were performed at different volumes by Khayat et al. A root mean square 
error of less than 1.28 was achieved after testing many MLP ANN topologies 
for distinguishing between flow regime types and calculating volumetric 
percentages (Khayat and Afarideh 2019). Two sodium iodide detectors, 
a cesium source, and a test pipe were utilized by Sattari and colleagues to 
establish a system for accurate volume percentage computation and flow 
regime classification (Sattari et al. 2021). In subsequent studies, the researchers 
(Alamoudi et al. 2021; Sattari et al. 2020) investigated the feasibility of using 
GMDH neural networks to identify varying flow regimes and predict volume 
fractions. Although the volume percentage was determined with high accuracy 
in these investigations, the amount of scale in the pipe was ignored. The 
thickness of the scale in the oil pipe is measured in (Alamoudi et al. 2021) 
using a dual energy source consisting of Ba-133 and Cs-137. After simulating 
the two-phase flow in different regimes, data from the Ba-133 and Cs-137 
gamma peaks from the first transmission photon detector and the total 
number from the second scattered photon detector were used as inputs to 
the RBF neural network. Their analysis culminated in a prediction of scale 
thickness with an RMSE of less than 0.22. Scale layer in the oil pipe was 
measured in a recent study employing a dual energy source of Ba-133 and Am- 
241. After simulating the three-phase flow in annular regimes, they suggested 
using the photopeaks of Ba-133 and Am-241 from two transmission detectors 
as inputs to the RBF neural network. Finally, they were able to estimate the 
thickness of scales with an RMSE of less than 0.09 (Taylan et al. 2021). Issues, 
such as transportation difficulties and the necessity for personnel to wear 
safety gear, arise when using radioisotopes as the basis for an always-on 
power source. As a consequence, there has been considerable interest in 
exploring the potential of X-ray tubes as a tool for measuring the properties 
of multiphase flows. Researchers in (Basahel et al. 2021) determined the 
regime type and volumetric percentage of two-phase flows using an X-ray 
tube and a NaI detector. Two multilayer perceptron neural networks were 
trained using the temporal attributes they gathered from the detector’s input 
signals. In (Taylan et al. 2021), three-phase flows were studied by modeling 
them in the homogeneous, annular, and stratified regimes at different volume 
fractions. In addition, three RBF neural networks were trained using the rather 
exact frequency characteristics of the input signals. In (Roshani et al. 2021), the 
MCNP algorithm was used to model the effects of combining four petroleum 
products in varying proportions by pairing them together. Three multilayer 
perceptron (MLP) neural networks were trained on the recorded signals to 
provide predictions about the volume distribution of the three products. The 
volume ratio of the fourth product was easily calculated after the volume ratios 
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of the first three were known. The presented method foresaw the objects’ types 
and quantities; however, it was unable to attain high accuracy due to a lack of 
feature extraction techniques. Balubaid and his coworkers (Balubaid et al.  
2021) investigated wavelet transformations as a potential feature extraction 
strategy to expand previous studies (Roshani et al. 2021). The computing load 
was optimized, and accuracy was enhanced as a result of this effort.

This study aims to provide a very accurate volume percentages diagnostic 
approach by drawing on previous work in the field. This was accomplished by 
the simulation of a three-phase flow regime consisting of water, gas, and oil in 
variable volumes. Inside the simulated pipe, scales with different thicknesses 
were considered. An effort has been made to accurately predict volume 
fractions by extracting temporal characteristics of mean value of the square 
root (MSR), skewness, waveform length (WL), and kurtosis received by the 
detector and feeding them into two GMDH neural networks. The innovations 
of the current article are as follows.

1-Increasing accuracy in determining volume percentages.
2-Determination of volumetric percentages inside the scaled pipe.
3-Examining the temporal characteristics of signals received from sodium 

iodide detectors.
4-Reducing the number of detectors to one, which reduces the cost of 

constructing the detection system, simplifies the detection system, and reduces 
the computational load applied to the system.

Detection Model

There has been a growing interest among academics in modeling X-ray or 
gamma-radiation-using structures using the MCNP method (Hosseini et al.  
2021; Iliyasu et al. 2022; Mayet et al. 2022; Sattari, Roshani, and Hanus 2020). 
The methodology proposed in this research was simulated using the MCNP 
code simulation platform (Pelowitz 2005). The paper proposes a framework 
based on the radioactive isotopes 241Am and 133Ba. Both of its photons have 
energies of 59 and 356 keV, respectively. The detector at end of the steel flow 
pipe collects the photons emitted by the aforementioned dual energy source. 
The dimensions of this sodium iodide detector are 2.54 centimeters × 2.54 
centimeters. However, a three-phase flow is simulated in the test pipe under 
a stratified flow regime. A ten centimeter diameter and a half centimeter wall 
thickness characterize the pipe. Internal to this pipe is a scale made from 
BaSO4 of varying thicknesses. There is a scale with a density of 4.5 grams per 
cubic centimeter in the pipe, with thicknesses of 0, 0.5, 1, 1.5, 2, and 3 cm so 
that water, oil, and gas can flow through it. In this model, the density of water 
is 1, the density of gas is 0.00125, and the density of oil is 0.826 grams per cubic 
centimeter. In this investigation, the MCNP program code was employed to 
realize the design with 7 choices of the scale thickness, there are 36 possible 
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volume percentages, yielding a total of 252 simulations. It is important to 
highlight that the experimental structure utilized in the work (Nazemi et al.  
2016) was the foundation for validating the simulated structure used in this 
analysis. Counts from detectors in both the experimental and simulated 
structures were compared. It was thought that they would complement each 
other well. As a whole, the outlined structure is shown in Figure 1. It should be 
mentioned that t he simulation findings of this investigation have been con-
firmed by previous studies (Nazemi et al. 2016). In this work, numerous 
laboratory structures were developed and compared with the findings 
obtained from the MCNP code. Since the Tally output in the MCNP algorithm 
is per source particle, both were standardized to units to compare experi-
mental and simulation results. The largest relative error of 2.2% was the 
discrepancy between the simulation findings and the laboratory structure. 
Figure 2. displays a visual representation of the signals picked up by the 
detector at a scale thickness of 0.5, 1.5, and 2.5 cm. LamberteBeer’s law 
describes the attenuation for a narrow gamma ray beam as follows:

I ¼ I0e� μρx (1) 

I and I0 represent the intensity of primary and un-collided photons, respec-
tively. The mass attenuation coefficient and absorber density are denoted by µ 
and ρ, respectively. The beam path length via the absorber is denoted by 
x. According to this formula, the detector will record varying intensities due 
to photons colliding with various substances. This variation in measured 
intensity could be helpful in calculating the volume fractions of the three- 
phase flows inside the pipe.

Gamma Source

30cm

Pipe 
Scale

Detector

Oil Water
Dual-energy gamma source 

of   Am and   Ba241 133
Density= 1g/cm3Density= 0.826 g/cm3

Gas
Density= 0.00125 g/cm3

made of BaSO4

Inner diameter =10 cm
wall thickness = 0.5 cm

Made of sodium iodide
Dimensions = 2.54 cm × 2.54 cm 

10cm

Figure 1. Architecture of the simulated detecting system.
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Feature Extraction in the Time Domain

Since the signals that acquired in the vprior part were multidimensional, 
deciphering them was a laborious and time-consuming process. To this 
end, an effort was undertaken to extract temporal features from the 
given data in an effort to simplify and partition it. The signals captured 
by NaI detector were analyzed to determine four temporal characteris-
tics: kurtosis, skewness, WL, and MSR. Following are the corresponding 
equations for these characteristics:

● kurtosis: 

g2 ¼
m4

σ4 (2) 

m4 ¼
1
N

XN

n¼1
x nð Þ � m½ �

4 (3) 

m ¼
1
N

XN

n¼1
x nð Þ (4) 

● skewness: 

g1 ¼
m3

σ3 (5) 

Figure 2. The signals recorded by detector at scale thicknesses of 0.5, 1.5 and 2.5 cm.
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m3 ¼
1
N

XN

n¼1
x nð Þ � m½ �

3 (6) 

● waveform length (WL): 

WL ¼
XN� 1

n¼0
x nþ 1ð Þ � x nð Þj j (7) 

● mean value of the square root (MSR): 

MSR ¼
1
N

XN

n¼1
x nð Þð Þ

0:5 (8) 

Here, n is the number of values in the dataset, N is the total number of 
observations, and x(n) is the representation of the main signal. The extracted 
features are shown two by two in Figure 3. As it can be seen in this figure, with 
the simultaneous use of these four characteristics, it is possible to distinguish 
different volume percentages.

The GMDH neural network has been trained with these properties. It 
was indicated before that a total of 252 separate simulations have been 
run, and that four distinct temporal characteristics have been derived 
from the signals from each of those runs. This means that there are 
a total of 252 columns and 4 rows in the current matrix. The volume 
fractions of each phase within the pipe could be calculated from the 
neural network’s output.

Figure 3. Extracted temporal characteristics from detector.
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GMDH Neural Network

An Ukrainian mathematician called M.G. Ivakhnenko developed 
a mathematical approach he named the Group Method of Data Handling 
(GMDH) for resolving difficulties of prediction and categorization 
(Ivakhnenko 1971). Self-organization is a key feature of Ivakhnenko’s sug-
gested model, which allows for the automated selection of parameters includ-
ing network topology, effective inputs, number of hidden layers, and number 
of neurons in hidden layers. The Kolmogorov-Gabor polynomial, which is 
detailed below, characterizes the connection between input and output in this 
neural network. 

y ¼ a0 þ
Xm

i¼1
aixi þ

Xm

i¼1

Xm

j¼1
aijxixj þ

Xm

i¼1

Xm

j¼1

Xm

k¼1
aijkxixjxk þ . . . (9) 

a (a1, a2,. . ., am) are the vector’s weights or coefficients, X (x1, x2,. . ., xm) are 
additional vector inputs or the same extracted characteristics, and y is the 
network’s output. The GMDH neural network is implemented in the following 
five phases.

First, Equation 10 is used to fit the inputs (extracted properties) of a neural  

network, two at a time and for each m
2

� �

admixture. It is the job of this   

procedure to get the C coefficients from the least squares solution. Each 
quadratic polynomial’s solution provides a prediction for the target solution. 
The neural network’s neurons are charged with the calculation of these 
polynomials. 

Z ¼ c1 þ c2xi þ c3xj þ c4x2
i þ c5x2

j þ c6xixj (10) 

Second, The neurons that forecast the expected output most inaccurately are 
eliminated.

Third, The previously chosen neurons are interpreted as inputs character-
ized by quadratic polynomials, as in the first step. In this process, a polynomial 
of higher order is generated by combining lower-order polynomials.

Fourth, the second phase is carried out once more, and the neurons with the 
most faults are obliterated. Polynomials are generated from polynomials, and 
the process is continued until the target error is reached.

Fifth, Using test dataset to verify the network’s functionality. In order to 
avoid over-fitting and under-fitting, the available data are separated into two 
categories: training data and test data. The training data consists of all the 
inputs used to train the model by the neural network. Using test data, the 
trained neural network’s performance could be assessed. As long as the 
proposed neural network appropriately manages these two data sets, it will 
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be free of over-fitting and under-fitting concerns. About 70% of the data is 
utilized for training the neural network, while the remaining 30% is used for 
testing the network after it is considered trained. Acceptable performance 
under operating situations is guaranteed if the developed neural network can 
demonstrate its accuracy on these data sets. In recent years, several researchers 
(Zych et al. 2014, 2018) have been curious in applying complex mathematical 
methods and artificial neural networks to different fields of study.

Conclusions and Implications

Two GMDH neural networks were trained using a 4 × 252 input matrix, each 
using inputs of four features from the preceding sections. The output of each 
neural network was a 1 × 252 matrix including the volume percentage of the water 
phase and the gas phase. In this research, several neural networks were trained to 
determine volume percentages. To calculate the percentages of gas and water 
volume, two GMDH neural networks have been trained. The number of their 
hidden layers was 2 and 3, respectively, and this structure is configured automa-
tically and using the self-organization capability of the GMDH network. Figures 4 
and 5 showed the optimal network for determining the volumetric proportion of 
water and gas. To calculate the network’s error value, two metrics are proposed: 
root mean squared error (MSE) and mean relative error (MRE). These criteria 
equations are as follows:

MRE% ¼ 100�
1
N

XN

j¼1

Xj Expð Þ � Xj Predð Þ

Xj Predð Þ

�
�
�
�

�
�
�
� (11) 

Input Layer

Water volume Fraction

First Hidden Layer

Second Hidden Layer

Output Layer

Third Hidden Layer

Selected Neuron

Unselected Neuron

MSR

Skewness

Kurtosis

WL

Figure 4. The GMDH neural network predicting water volume proportion.
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RMSE ¼
PN

j¼1 Xj Expð Þ � Xj Predð Þ
� �2

N

" #0:5

(12) 

Where N is the total number of observations, “X(Exp)” and “X(Pred)” denote 
the ANN’s experimental and predicted values, respectively.

The available data are divided into two types: training data and test 
data. Figures 6 and 7 depict the neural network’s regression and fitting 
responses to these two classes for both networks. In fitting diagram, the 
blue dashed line represents the target output and the black line represents 
the output of the neural network. As it is clear from this figure, the two 
graphs coincide with each other, which indicates the good performance of 
the neural network. The regression diagram features a blue line 

Input Layer

Gas volume Fraction

First Hidden LayerSecond Hidden Layer

Output Layer

Selected Neuron

Unselected Neuron

MSR

Skewness

Kurtosis

WL

Figure 5. The GMDH neural network predicting gas volume proportion.

(a) (b)

Figure 6. Regression diagram for a) the training and b) test data related to the neural network for 
predicting the percentage of water phase.
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representing the expected result and black square representing the net-
work’s actual results. The better the proposed neural network performs, 
the closer the blue line and the black square will be. The usage of 
a radioisotope source is problematic because of the potential health risks 
it poses to humans and the need for workers to wear protective clothing 
and equipment. As shown in Figure 8, the offered method for determining 
the volume percentages of each phase inside the pipe includes the follow-
ing steps. As can be seen in the figure, the MCNP algorithm first 
simulated the flows going through the pipe and the various thicknesses 
of the scale within the pipe during the design phase of the detection 
system’s architecture. The four properties of MSR, skewness, kurtosis, 
and WL were obtained by analyzing the received signals from each 
simulation. Two GMDH neural networks were given the obtained char-
acteristics to make predictions about the water and gas volumes. It is 
important to point out that the oil phase volume fraction could be easily 
determined by calculating two other volume fractions. When the neural 
networks were trained, their outputs were compared to the target values, 
and the error value was calculated. The origin may also not be stopped. 
The low error rate in this research and reducing the number of detectors 
to one were accomplished by properly processing the obtained data and 
training the neural network utilizing the signal’s valuable qualities that. 
The presence of scale allows for very precise estimations of volume as 
a percentage. It is strongly recommended that researchers in this field 
employ the different feature extraction and feature selection methods for 
the approach outlined in this study and evaluate the performance of 
various neural networks in following investigations.

(a) (b)

Figure 7. Regression diagram for a) the training and b) test data related to the neural network for 
predicting the percentage of gas phase.
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Gamma Source

30cm

Pipe 
Scale

Detector

Oil Water
Dual-energy gamma source 

of   Am and   Ba
Density= 1g/cmDensity= 0.826 g/cm

Gas
Density= 0.00125 g/cm

made of BaSO

Inner diameter =10 cm
wall thickness = 0.5 cm

Made of sodium iodide
Dimensions = 2.54 cm × 2.54 cm 

Water volume Fraction MSR
Skewness
Kurtosis
WL

Gas volume Fraction MSR
Skewness
Kurtosis
WL

Using the MCNP code to simulate the structure of the detection system

Analysis of received signals and extraction of time characteristics

Training GMDH neural networks to determine volume percentages

Figure 8. The general process of the current research.
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Conclusion

Identifying the volume percent of each condensate phase that travels through the 
oil pipe will allow for system optimization and improvement of oil industry 
performance. Therefore, creating and instituting a method to determine volume 
percentage might be a helpful assistance in addressing the issues in the oil 
industry. In this research, the gamma-ray attenuation method was used to develop 
an optimal setup for predicting the volumetric percentage of three-phase con-
densates in a stratified flow regime. The detecting system, which calculates the 
volume percentage of each phase, consists of a dual-energy gamma generator and 
a NaI detector placed on opposite sides of the pipe. All of these procedures is 
simulated using MCNP code. A three-phase laminar flow was simulated in 36 
different volume percentages and in 7 different scale thicknesses. From the signals 
received from all 252 simulations, 4 time characteristics of MSR, WL, skewness, 
and kurtosis were extracted. In total, a 4 × 252 matrix was available, which was 
used as input of two GMDH neural networks to determine the volume percen-
tages of water and gas. The volume percentage of the oil phase may be easily 
estimated by subtracting the quantity of water and gas from the total volume of the 
pipe. The RMSE value of the water and gas predictor neural network are less than 
0.49 and 0.9, respectively, which is a tiny error when compared to previous 
experiments. The oil and petroleum industry would benefit greatly from using 
the detection method presented in this research.
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