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Automated Creation of an Intent Model for Conversational 
Agents
Alberto Benayas, Miguel Angel Sicilia, and Marçal Mora-Cantallops

Computer Science, University of Alcalá, Alcalá de Henares, Spain

ABSTRACT
Conversational Agents (CA) are increasingly being deployed by 
organizations to provide round-the-clock support and to 
increase customer satisfaction. All CA have one thing in com
mon despite the differences in their design: they need to be 
trained with users’ intents and corresponding training sen
tences. Access to proper data with acceptable coverage of 
intents and training sentences is a big challenge in CA deploy
ment. Even with the access to the past conversations, the pro
cess of discovering intents and training sentences manually is 
not time and cost-effective. Here, an end to end automated 
framework that can discover intents and their training sen
tences in conversation logs to generate labeled data sets for 
training intent models is presented. The framework proposes 
different feature engineering techniques and leverages dimen
sionality reduction methods to assemble the features, then 
applies a density-based clustering algorithm iteratively to 
mine even the least common intents. Finally, the clustering 
results are automatically labeled by the final algorithm.
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Introduction

Conversational Agents (CA) are increasingly being employed to provide 
round-the-clock services to customers (Deloitte 2019; Research, & Markets  
2021). Many companies are using commercial solutions to deploy their CA. 
Despite the differences among such solutions, they have one thing in common: 
they all need to be trained on large amounts of data. To train a CA effectively, 
as many intents as possible need to be covered, along with the proper training 
sentences for those intents.

Many companies have access to the conversation history between human 
agents and customers. Traditionally, conversational designers go through the 
corpus to discover intents and training sentences, relying on their experience 
to design the conversation flow. This is time-consuming, labor-intensive, and 
lacks consistency as different designers might have different ideas about the 
intent and flow of conversation.
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The intent label sets are usually decided by conversational designers in 
advance based on their experience. However, it is not often known the exact 
intents a new unlabeled data has, and the assigned label names maybe, to some 
extent, be subjective. There have been attempts to help the human labeling 
process. For instance, Wen et al. (2017) suggested an improvement over 
Wizard-of-Oz (Kelley 1984) data collection method by incorporating crowd
sourcing to collect domain-specific data.

Finally, data used to train CAs generally belongs to a narrow domain and 
therefore the differences across intents are in many cases very subtle. In 
addition, CA data is generally based on short texts between customers and 
agents that do not include extensive information about its topic or 
meaning.

Haponchyk et al. (2018) proposed a supervised approach to automatically 
cluster questions into user intents. Williams et al. (2015) proposed facilitating 
domain experts’ work by allowing them to build an intent model by working 
on the intent definition, labeling, and evaluation through user interfaces. Shi 
et al. (2018) leveraged a dynamic hierarchical clustering method for intent and 
slot labeling and showed the effectiveness of their model in reducing the cost 
of labeling. Chatterjee and Sengupta (2020) proposed an extension to 
a density-based clustering algorithm to mine the intents in a highly skewed 
corpus of conversation history. Furthermore, they also argue that their frame
work can detect even the least common intents which are usually left out due 
to the nature of common clustering algorithms.

In this work, a framework for a data-driven approach to train conversa
tional agents is proposed, with the objective of improving on the most 
common approach of training them on conversational designers’ intuition. 
The main contribution of the work is as follows:

● A framework to extract intents and their associated sentences from raw 
conversation history is proposed. It works in three different steps: a) 
representing utterances using an assembly of feature sets, b) dimension
ality reduction and c) automatic clustering of similar utterances.

● A novel feature extraction methodology that can cater to the diversity of 
topics in conversations and utterances of different lengths.

● An automated dataset labeling methodology that works without human 
intervention, can be used to build an intent model.

The rest of this paper is structured as follows. In section 2 the related work is 
reviewed. In section 3, the methodology that has been followed is detailed. 
Section 4 describes the design of the experiments that are carried out and 
presented in section 5, finally, section 6 discusses the results, implications, and 
limitations of the current work, while section 7 concludes.
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Related Work

Identifying intents and the way they are sentenced by the customers is 
crucial in training reliable task-oriented conversational agents. Intents are 
labels that are given to a group of customers’ inquiries that summarize 
what they want. Traditionally, conversational designers use their expertise 
and subject knowledge to come up with a list of intents and different 
sentences that they think might be uttered by the customers to convey 
those intents. However, a more desirable approach would be to discover the 
intents and their corresponding sentences from real conversations between 
customers and agents.

Collecting good quality data and labeling it properly is an expensive and costly 
task. Previous works aimed to reduce the labeling cost and effort using various 
techniques. In Mallinar et al. (2018) a labeling framework is proposed using weak 
supervision functions. Other works use techniques such as clustering (Chatterjee 
and Sengupta 2020; Shi et al. 2018), semi-supervised learning (Thomas 2009), 
transfer learning (Goyal, Metallinou, and Matsoukas 2018) and active learning 
(Settles 2009). Clustering in particular is one of the most popular methods of 
identifying patterns in data. Different algorithms are available for clustering 
purposes, with some of the most popular and widely used being K-Means 
(Lloyd 1982), DBSCAN (Ester et al. 1996) and HDBSCAN (McInnes, Healy, 
and Astels 2017). Each of these algorithms has its own set of pros and cons. For 
example, K-means is very fast and assigns every point to a cluster but the number 
of clusters must be known beforehand. Moreover, the clusters have to be of 
spherical shape. On the other hand, density-based algorithms like DBSCAN or 
HDBSCAN are appropriate when there is no prior knowledge about the number 
of clusters. The problem with these algorithms is that they are not able to assign 
a cluster to all points and, thus, some of them are left out of any cluster (and 
labeled as noise) in the end.

Shi et al. (2018) provided several feature engineering methods, but they 
assumed that no feature set should overweight the others as they all should 
have the same predictive power. Chatterjee and Sengupta (2020) utilized 
a modified version of DBSCAN (ITER-DBSCAN) to discover intents in low- 
density areas of the space. This work is

different from that of Chatterjee and Sengupta (2020) as we do not use prior 
knowledge about the number of clusters in the dataset for fine-tuning the 
clustering algorithm but we rather set the hyper-parameters on the training 
data and then let the algorithm find the intents on the test dataset which is 
what is done in real-world situations. This work is also different from that of 
Shi et al. (2018) as there is no reason to assume that all feature sets should 
weigh equally. This work proves that it is not true in most cases.
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Methodology

Each conversation between agent and customer is considered as a sequence of 
queries and response pairs where the Q is the customer’s and R is the agent’s 
utterances. Our aim is to label each Q with its corresponding label which is the 
intent of the customer. The number of intents C is to be determined in the 
labeling process. In detail, the framework can be split into three steps. The full 
pipeline is described in Figure 1.

Feature Engineering

Utterances in a dialog are normally short texts, which in many cases do not 
contain a strong signal. For this reason, using a single feature engineering 
method might not be enough for all cases. In order to capture a rich signal, 
a set of feature engineering methods are used to extract semantic, lexical, 
syntactic and the topics in the text, which generate features sets V� for 
utterances Q. A concatenation of different feature sets forms a richer repre
sentation of the inputs.

Figure 1. Process steps. In the first step, several features sets V* are calculated and concatenated. In 
the second step, the different feature sets are passed through a dimensionality reduction process, 
in which the number of feature sets V* are then concatenated to form a single feature set VR. In the 
last step, the resulting feature set VR is then passed to a density-based clustering process. The 
resulting clusters are then labeled using the TF-IDF algorithm. The goal of this step is to produce 
a reduced but reliable labeled dataset.
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Semantics
To capture the semantics, sentence embeddings are calculated using transfor
mers based models (Vaswani et al. 2017). Extracting embeddings from models 
such as BERT (Devlin et al. 2019), which is a deep bidirectional transformers 
model, can be performed by pooling the last hidden state, either maxing or 
averaging or by taking the CLS token’s vector embeddings, which is a token 
that contains a sentence-level embedded representation. Also, a fine-tuned 
BERT model is trained using a Siamese BERT network, as described in 
(Reimers and Gurevych 2019). It is tuned on positive pairs by matching 
sentences belonging to the same class, and on negative examples by matching 
sentences from different classes. In situations in which there is no prior 
knowledge of the classes, which is in most cases, the positive examples are 
generated with the support of a probabilistic retrieval algorithm such as the 
BM25 OKAPI algorithm to match sentences with high similarity, as in 
(Thakur et al. 2021). The length of the vectors obtained using this method 
varies depending on the model, but typically they are 768, which is BERT’s 
original design. This vector is called VW.

Lexical
In many cases, especially in very short sentences, the intent is decided by the 
presence of certain lexical units. So this consideration is included by introdu
cing the frequent key n-gram feature VK. An n-gram is a contiguous sequence 
of n items from a given sample of text. VK = {x1,···,xc} represents the informa
tion of n-grams in the utterance. After removing stop words, the top 
K n-grams (for n = 1,2,3,4) are chosen and the occurrence frequency of each 
n-gram as a discrete vector VK is counted. If domain experts are available, they 
can also define or include a specific set of n-grams to be counted. The length of 
the resulting vectors is, thus, k� 4.

Syntactical
It is assumed that the arrangement of the part of speech (POS) tags may affect 
the sentence syntactical structure. A POS tag is a special label assigned to each 
token in a text to indicate the part of speech and often also other grammatical 
categories. Therefore, a bag-of-POS as the POS tag feature VP is used. Given np 
types of POS tags, VP = {p1,···,pnp} is a discrete vector in which each dimension 
pi represents a POS tag POSi.

Topics
To capture existing topics, each sentence is mapped to a vector of possible 
topics within the corpus. Firstly, a term frequency-inverse document frequency 
(TF-IDF) matrix of the whole dataset is generated. Using an Latent Dirichlet 
Allocation (LDA) topic model, for each utterance, a vector is built in which 
each dimension represents a topic and the value that represents the probability 
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of the sentence belonging to that topic. The length of the generated vector 
depends on the requested number of topics passed to the LDA model. This is 
denoted as vector VT.

Dimensionality Reduction

The generated vectors could be too long, becoming unpractical, and, therefore, 
would hinder the subsequent clustering process. A dimensionality reduction 
process is recommended in most cases.

The dimensionality reduction methodologies included in this framework 
are linear such as Principal Component Analysis (PCA) (Jolliffe 1986), not 
linear like Uniform Manifold Approximation and Projection (UMAP) 
(McInnes, Healy, and Melville 2020) or t-distributed stochastic neighbor 
embedding (tSNE) (van der Maaten and Hinton 2008), and deep autoencoder 
Salakhutdinov and Hinton (2009).

The dimensionality reduction can either be performed on each feature 
set individually or after concatenating all of them. The implications of 
doing it at different moments are that some feature sets would be over
weight or underweight in the final process (if performed after the conca
tenation) or they would all have equal weights (if performed after the 
concatenation).

Clustering

Algorithm
Given a corpus of conversation history, the number of intents is unknown, 
thus density-based clustering algorithms are adopted, as they are the most 
appropriate for this task. The algorithm receives a set of points and groups the 
points together if they are closely packed, meaning that they are close neigh
bors within a high-density area. In this model, there is no need to know the 
number of clusters beforehand and the clusters do not need to have a spherical 
shape, with a radius equal to the distance between the centroid and the furthest 
data point as opposed to some algorithms such as a K-means. The current 
work uses a modified version of ITER-DBSCAN as proposed by Chatterjee 
and Sengupta (2020).

Normalization
Data points might have a high dimensionality and different scales, which 
complicates tuning the algorithm. For this reason, points are L2-normalized 
to push them onto the surface of a hyper-sphere in which the maximum 
distance between two points is 2. After normalization, the distances are 
bounded in the range [0,2] making the tuning process faster.
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Execution
In each iteration of the clustering loop the minimum allowed distance for 
a density group to be considered a cluster is extended, thus conditions are 
relaxed. Since the distances between points are bounded in the range [0,2], 
there is a high level of control over the granularity level of the clusters. When 
the loop finishes, a silhouette analysis is performed to remove noise: points 
with negative values are removed from their clusters, and clusters with nega
tive silhouette mean are canceled completely. This means that all their points 
remain unlabeled. This ensures that points are not forced into clusters where 
they do not belong in. Finally, as clustering is an iterative process, some 
clusters might overlap. To address this, a merging process is carried out to 
merge clusters based on similarity. A greedy algorithm checks whether cluster 
pair distances are below a given threshold to merge them.

Label Generation

The final step of the process is to generate labels for the extracted clusters. 
Texts within each cluster share features and words that can be used to infer 
labels for them. For every cluster, all the texts within are joined to form 
a unique paragraph. The result is a paragraph per cluster, which is used to 
generate a TF-IDF matrix. Output rows are normalized using the L2 norm and 
then the most relevant terms are selected by filtering those above a given 
threshold. The resulting set of words is used as labels for each cluster.

Experiments

The proposed framework suggests a feature extraction method and 
a clustering method. The clustering method depends on the output of the 
feature extraction process. At the same time, feature extraction needs 
a learning process to generate metrics to understand its performance.

Feature extraction is evaluated in a standalone approach by training 
a classifier such as random forest on each feature set combination. This way 
the predictive power of each feature set can be compared against the others. By 
using Shapley additive explanations (Lundberg and Lee 2017), which is 
a game-theoretic approach to explain the output of any machine learning 
model, the contribution of each feature set to the final score can be calculated.

To measure the performance of the proposed clustering algorithm, it is 
compared against other well-known clustering algorithms, such as DBSCAN, 
OPTICS (Ankerst et al. 1999) and HDBSCAN. A concatenation of all the 
feature sets proposed (VW, VK, WP, WT) is used as the data to be clustered in 
this test. Some variants in terms of dimensionality reduction will also be 
applied, to look for that setup that performs better with each clustering 
algorithm.
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Finally, the entire framework is evaluated by looking at the best hyperpara
meter combination and feature set selection for each dataset.

Metrics

To measure the performance of the feature extraction method, due to the 
unbalanced nature of the data sets the most appropriate classification metric is 
F1-Score, which is the harmonic mean of the precision and recall.

Evaluating the performance of a clustering algorithm is not as trivial as 
counting the number of errors of a supervised classification algorithm. Doing 
so requires the existence of a ground truth, which is rarely available in real-life 
problems or requires manual assignment by human annotators.

In this work three publicly available labeled data sets are used. This allows 
leveraging their labels to measure how well a clustering process performs 
based on two principles: completeness (each class is contained in fewer 
clusters) and homogeneity (each cluster contains fewer classes).

V-Measure (Rosenberg and Hirschberg 2007) balances completeness and 
homogeneity but is not adjusted to randomness. A random clustering process 
in which there are as many clusters as samples in the dataset will obtain a score 
above zero, depending on the number of labels in the dataset. To overcome 
this problem, Adjusted Mutual Information (AMI) (Vinh, Epps, and Bailey  
2010) is a mutual information-based metric that normalizes against chance.

Parameter Settings

Our framework relies both on the feature engineering method and on the 
clustering method to perform well, as they are dependent on each other. 
Therefore, hyperparameters on both sides must be fine-tuned together. 
A hyperparameter optimization process is performed to search for the best 
hyperparameter setup. There are several hyperparameter optimization tech
niques available (Alibrahim and Ludwig 2021), such as Bayesian Optimization 
(Mockus and Mockus 1991) or Genetic Algorithms (Di Francescomarino et al.  
2018). For practical reasons, in this work Bayesian Optimization is the chosen 
approach. The decision of whether to select a certain feature set or not is also 
considered a hyperparameter in this optimization process.

Data

To evaluate the effectiveness of our model in different contexts, experiments 
are conducted on three publicly available data sets, namely the ATIS dataset 
(Hemphill, Godfrey, and Doddington 1990), Banking (Casanueva et al. 2020) 
and SNIPS (Coucke et al. 2018).

e2164401-8 A. BENAYAS ET AL.



ATIS is a non-balanced dataset consisting of 4454 observations and 16 
classes, having a single class dominating the rest, with over 74% of occur
rences, and 2 classes with less than 7 samples, which are difficult to cluster. The 
Banking dataset includes 10,003 examples and 77 classes. Classes are not 
balanced but there is not a class that dominates the rest. SNIPS is a balanced 
dataset that contains 13,084 and 7 classes.

Results

The no-free lunch theorem is validated in our experiments. An optimal 
configuration that works in all cases does not exist, but rather the selection 
of feature sets and the hyperparameters change from problem to problem.

Feature Engineering

A feature set is considered of high quality when it represents accurately the 
relations within the data. The texts or sentences representing similar ideas or 
belonging to the same class have vectors that are close to each other, and at the 
same time, are far away from those belonging to different ideas or classes.

Feature sets have been tested in a standalone approach and also as part of 
the entire framework. An example of the results of the standalone testing can 
be seen in Figure 2. The contribution of each feature set to the F1-Score

when using all of them is calculated using Shapley additive explanations and 
it is shown in Table 1. Semantics feature set VW has the most predictive power 

Figure 2. F1-score calculated using random forest on ATIS dataset for all feature sets combinations.
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among all the feature sets for all evaluated data sets. In fact, any feature set 
combination which excludes feature set VW yields worse results. Based on 
these results, feature set VW should be considered as the backbone of any 
intent mining process, and the rest of the feature sets should work as 
a complement to it. Taking a closer look at the different ways of producing 
feature set VW, the fined tuned model using a siamese training approach 
performs better than a vanilla pre-trained BERT model, as expected. 
Regarding the pooling approach, using the CLS token or max-pooling yields 
similar results and outperforms mean pooling. However, this is not true when 
using the pre-trained model, in this case using a mean pooling produces better 
results, as can be seen in Table 2. Mean pooling is safer than max-pooling 
because it smooths out the output but misses specific information, so it works 
better on models not fit to the data. A fine-tuning process can specialize the 
model on the given data, so in this case, the usage of max pooling can collect 
more meaningful features.

Clustering

The clustering process is in charge of identifying relevant groups of data points 
and labeling them accordingly. This task becomes easier if such groups of data 
points are compact and have clear boundaries. Nevertheless, the iterative 
nature of the algorithm makes it possible to identify such groups.

Clustering algorithm work by calculating distances. When confronting the 
proposed iterative clustering method with other existing algorithms, this 
generally outperforms the rest. This is in fact expected due to the iterative 
nature of the algorithm, but the trade-off is more computational time. 
Depending on the complexity of the data set, the performance difference 

Table 1. Contribution of each feature set to the F1-score in absolute values. VW outperforms all the 
other feature sets.

F1-Score Contribution

Baseline All Features Gain VW VK VP VT

SNIPS 14.28 99.25 84.97 31.39 20.27 22.07 21.88
ATIS 5.01 91.39 86.30 56.18 13.96 7.62 8.60
Banking 0.04 96.63 96.59 52.18 12.54 14.85 17.00

Table 2. F1-score comparison on the different ways of calculating VW. fine tuned models 
outperforms pretrained models. Max pooling and CLS token yield better result than mean 
pooling.

Pretrained Fine Tuned

CLS Max Mean CLS Max Mean

SNIPS 96.30 95.11 96.38 99.24 99.27 93.82
ATIS 37.40 35.80 40.45 91.14 88.43 89.68
Banking 73.86 70.62 74.84 96.64 96.69 79.13
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varies. Simpler data sets such as SNIPS do not show any difference. Therefore, 
depending on the problem complexity, it might make sense to use one or 
another. The results of the clustering comparison for each dataset can be 
observed in Table 3.

The results of the entire framework hyperparameter optimizations can be 
seen in Table 4. It is to be noted that the hyperparameter optimization process 
aimed to maximize AMI score and no other metrics such as the number of 
clusters found. The SNIPS dataset is not considered a challenging problem, 
based on the balanced nature of the dataset and the reduced number of classes. 
The best setup is to use VW (with max-pooling), VP, and VT. Dimensionality 
reduction is applied using UMAP and a number of dimensions of 120. The 
clustering algorithm runs for 8 iterations, with a merge threshold of 0.0399. All 
7 classes were successfully discovered, and the number of labeled samples was 
100%. AMI score is 0.9782, outperforming all the previous standalone tests. 
Regarding ATIS, the existence of a class that heavily dominates the data set 
makes it more challenging. In this case, two setups have been selected, one 
maximizing AMI and the other optimizing the number of clusters found. The 
feature sets selected varies from one approach to the other, but what does not 
change is the use of UMAP for dimensionality reduction. Finally, the Banking 
data set represents a problem in which there is a large number of classes, it is 
unbalanced and some of them have a small number of samples. In this case, 
VW (with CLS pooling), VP, and VK are the selected feature sets. 
Dimensionality reduction using UMAP is also the best option. AMI score 
resulted in 0.9287 and 68 classes were found, covering 100% of the samples. All 

Table 3. Clustering comparison. Iterative clustering method with other existing algorithms gen
erally outperforms the rest. Depending on the complexity of the dataset, the performance 
difference varies. Simpler datasets such as SNIPS do not show any significant difference. 
Therefore, depending on the problem complexity, it might make sense to use one or another.

DBSCAN OPTICS HDBSCAN Iterative (Ours)

AMI V-Msr AMI V-Msr AMI V-Msr AMI V-Msr

SNIPS 0.9721 0.9721 0.9746 0.9746 0.9591 0.9592 0.9752 0.9753
ATIS 0.9000 0.9015 0.8893 0.8906 0.8196 0.8219 0.9200 0.9210
Banking 0.9155 0.9216 0.9266 0.9319 0.8998 0.9072 0.9285 0.9334

Table 4. Framework results. Features columns indicate the feature sets that were selected. For VW it 
indicates the pooling approach. Dim. Reduction and clustering columns indicate the methods and 
hyperparameters used in the dimensionality reduction and clustering steps, respectively. Results 
column summarizes AMI and V-measure score, number of clusters found and percentage of points 
assigned a label.

Features Clustering Results

VW VK VP VT Iters Thres. AMI V-Msr Clusters Label %

SNIPS Max - OK OK 8 0.039 0.9782 0.9783 7/7 100%
ATISAMI Max - OK OK 6 0.077 0.9210 0.9220 9/16 99.62%
ATISnclusters CLS OK OK OK 8 0.022 0.8111 0.8145 16/16 97.4%
Banking CLS OK OK - 9 0.010 0.9287 0.9335 68/77 100%
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those results remark that there is not a fixed configuration or hyperparameter 
setup that works best in all cases, but instead varies from problem to problem.

Generated Labels

The generated labels for the SNIPS dataset are presented in Table 5. It can be 
observed that the automatically generated labels are a great approximation to 
the original class labels. Some of them can be considered an exact match, like 
add playlist or music play that match AddToPlaylist and PlayMusic respec
tively. Examples such as forecast weather, points rate and book restaurant table 
contain at least one of the keywords existing in the original class name. For 
class SearchScreeningEvent, the proposed label does not contain any of the 
words in the class name, but it could be argued that the words playing schedule 
theaters are related to the actual intent, which is, in this case, to look for the 
schedule of a certain play. On Table 6 the generated labels for the top 7 intents 
in ATIS dataset are presented. The intents are either an exact match, such as 
flight for atis_flight, or have a straightforward interpretation like in does code 
fare mean for atis abbreviation, which refers to a common question posed by 
airlines customers.

Final Discussion

In this work, an automated end-to-end framework has been proposed to find 
intents from unlabeled conversational data and also to generate an initially 
labeled dataset that will work as a starting point for building an intent 
classifier. Results show that the generated labels for the clusters found are 
a good approximation to the actual labels.

Table 5. Generated labels for SNIPS dataset.
Original Class Generated Label

AddToPlaylist add playlist
PlayMusic music play
GetWeather forecast weather
RateBook points rate
BookRestaurant book restaurant table
SearchCreativeWork called tv
SearchScreeningEvent playing schedule theatres

Table 6. Generated labels for ATIS dataset.
Original Class Generated Label

atis flight flight
atis airfare fare round trip
atis ground service ground transport
atis airline airline flight
atis abbreviation does code fare mean
atis aircraft aircraft type use
atis flight time flight schedule time
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In practice, this framework could speed up the development of projects 
such as conversational agents or chatbots, by reducing the time required to 
analyze and extract value from large volumes of unlabeled data, which is 
a common scenario in large enterprises. This framework could also eliminate, 
or at least reduce by a significant factor, the need for human labelers, which 
represent an important component when calculating the economic impact of 
a project.

The main limitations of this framework can be found in the common 
computational and memory limitations of density-based clustering algo
rithms, in which requirements grow exponentially with the number of samples 
to be clustered. Therefore, when working with enormous volumes of data, it 
will require working with a sample of the data instead of the entire dataset. To 
address this limitation, this framework could be extended in future work by 
adding a label propagation layer. This way, the generated labels can be 
extended to the rest of the target dataset at a small cost.

Another limitation of this study lies in the interpretation of the results. It is 
up to the user to check if the proposed clusters and labels are fit for the 
intended purpose. The way data is clustered is based on semantic, lexical, and 
syntactic similarity, which might not follow the same subjective criteria the 
user might be looking for. For instance, the user might want data to be 
clustered based on which would be the best downstream task agent or pro
cessor to be sent to, and not based on the semantic, lexical, and syntactical 
similarity.

Conclusion

The proposed framework can tackle the intent mining problem end to end. It 
sets a sequence of steps to be performed that extracts linguistic features from 
texts in different ways and finds clusters within the data representing the 
intents. The framework also produces labels automatically and without the 
need for human intervention that can be used as the intent labels.

There is not a single configuration that works best in all cases, even though 
there are some patterns that perform better in most cases. Features generated 
by transformer models have the most predictive power, being the other feature 
sets a good complement for it. However, one has to fine-tune a transformer 
model to get the best performance out of it. Choosing the right dimensionality 
reduction method is important but UMAP showed to work better than the 
rest, at least for the data set tested in this work. Finally, using an iterative 
version of the density-based clustering algorithm works best at capturing 
clusters of different sizes and shapes.

Future research lines would include an extension to the current work by 
adding a label propagation layer that assigns the generated labels to a larger 
dataset. Another improvement could be the extension of the cardinality of the 
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least represented clusters found by generating synthetic data that would still 
fall within the same cluster to facilitate the training of the intent classifier. 
Finally, this framework deals with mining intents but could also be extended to 
identify the relevant entities within the data.
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