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ABSTRACT
Predicting the air temperature based on spatially accurate simu-
lations is helpful to agricultural production, commercial activ-
ities, air transportation, water transportation, power supply, and 
national defense. Traditional prediction is not generally based 
on the time series obtained from multiple meteorological sta-
tions and from a spatial perspective. In this study, a deep con-
volution neural network with long short-term memory (CNN- 
LSTM) is constructed to extract the spatiotemporal features of 
temperature and the correlation between meteorological ele-
ments. The accuracies of the simulated and the predicted tem-
peratures are spatially visualized by using the Kriging 
interpolation method. The accuracy of air temperature obtained 
from the CNN-LSTM was compared with those obtained from 
the CNN and the LSTM to verify its performance. The results 
show that there were prominent spatial variations in the tem-
perature, with a latitudinal zonal structure in the southern 
Ningxia and a radial zonal structure in the northern Ningxia, 
China. The accuracies of the simulated and predicted tempera-
ture were high in areas with a small range of the annual tem-
perature. The accuracies of the mean monthly temperature 
simulated by the CNN-LSTM in spring and autumn were higher 
than that in the summer. The predicted annual average tem-
perature increased each year from 2020 to 2025. The CNN-LSTM 
had a higher accuracy of simulating and predicting the tem-
perature as well as a better generalization ability than the CNN 
and LSTM.
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Introduction

The change in temperature is a dynamic and nonlinear process that is influ-
enced by many factors, such as the solar radiation, the latitude, the positions of 
sea and land, atmospheric circulation, relative humidity, terrain, vegetation, 
air pressure, wind speed, and the ocean current (Abdel-Aal 2004; Ramesh and 
Anitha 2014). These factors are interrelated and interact with one another (Ye 
et al. 2013). The trend of changes in temperature in the future is difficult to fit 
by using a simple function because such changes have the characteristics of 
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a temporal sequence, aggregation, asymmetry, spatiotemporal correlation, and 
conditional heteroscedasticity (Krasnopolsky and Fox-Rabinovitz 2006; Prior 
and Perry 2014). Integrating multivariate meteorological and spatial data, 
including the time series of temperature, can improve the accuracy of the 
simulated and predicted temperature (Murthy et al. 2021; Sebastian et al.  
2018).

The methods used to predict temperature include numerical, statistical, 
spatial, machine learning-based, and deep learning-based models. Methods 
based on numerical prediction are mainly used to predict the temperature over 
a short-time series (Byeongseong et al. 2021; Stelian et al. 2019), but it is 
difficult to accurately simulate complex nonlinear atmospheric systems 
(Abramson et al. 1996). Statistical models, such as multiple regression, step-
wise regression, autoregression, and moving average models, are generally 
used for predicting the temperature over a long time series according to 
probability density and cumulative distribution functions with statistical vari-
ables, such as latitude, altitude, aspect, slope, long-wave effective radiation, 
and total solar radiation (Asha, Santhosh, and Rishidas 2021; Livera, 
Hyndman, and Snyder 2011; Murat et al. 2016, 2018). Spatial models, such 
as the Kriging model, the inverse distance-weighted average model, and spline 
function, interpolate the temperature measured by discrete meteorological 
stations into a continuous temperature surface (Carrión et al. 2021; Liu et al.  
2019; Xiao et al. 2019; Şahin 2012). Machine learning methods, such as the 
support vector machine, random forest, and artificial neural network (ANN), 
can be used to accurately predict the temperature over a short-time series 
(Astsatryan et al. 2021; Chevalier et al. 2011; Cifuentes et al. 2020; Gautier, 
Peterson, and Jones 1998; Gos et al. 2020; Hanoon et al. 2021; Hernández- 
Travieso et al. 2020; Lin, Tsai, and Chen 2021; Maqsood, Khan, and Abraham  
2004; Mba, Meukam, and Kemajou 2016; Nury, Hasan, and Alam 2017; Ortiz- 
Garcia et al. 2012; Radhika and Shashi 2009; Tasadduq, Rehman, and Bubshait  
2002; Tran et al. 2021; Ustaoglu, Cigizoglu, and Karaca 2008). In particular, 
ANN via optimization algorithms, such as genetic algorithm, can optimize its 
network structure and parameters (Abdolrasol et al. 2021).

Deep learning is the integration of neural network with graphical modeling, 
optimization, pattern recognition, and signal processing. Features of each 
layer in a deep learning model are extracted from the output of the previous 
layer for classification and prediction (Hou et al. 2022). Deep learning tech-
nology is being used commercially in many fields, such as mechanical fault 
diagnosis, text retrieval, energy prediction, stock market forecasting, image 
recognition, speech recognition, military target identification, process model-
ing and control, health diagnosis, portfolio management, magnetic resonance 
imaging, X-ray analysis, personal credit rating, marketing campaigns, 
unmanned driving, and financial fraud detection (Zhang, Dong, and Yuan  
2020).
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Deep learning has a strong ability for the processing of a large amount of 
nonlinear temperature data in a long time series to improve the accuracy of 
temperature prediction (Zhang et al. 2018). A variety of deep learning meth-
ods, such as the long short-term memory (LSTM), time-series diagram net-
work, stacking automatic encoder, and convolution recurrent neural network, 
have been used to predict the temperature (Jeong et al. 2021). Bidirectional 
LSTM has outstanding robustness in predicting asphalt pavement temperature 
with an R2 of 0.9555 compared with CNN, LSTM, and gated recurrent unit 
(Milad et al. 2021). The methods have good generalization, high accuracy, and 
fast convergence (Sekertekin et al. 2021). However, the methods are generally 
used to predict the temperature based on the time series obtained from a single 
meteorological station, instead of multiple meteorological stations. In addi-
tion, these methods are rarely used to simulate and predict the temperature 
from a spatial perspective (Yu, Shi, and Xu 2021).

The LSTM can map nonlinear changes in the time series of air temperature 
owing to its dynamic storage and memory (Mtibaa et al. 2020). The CNN can 
extract and compress feature vector to obtain the local spatial features of 
temperature (Sun et al. 2021). A combination of the LSTM and the CNN, 
a CNN-LSTM model, might be able to improve the accuracy of temperature 
prediction (Wang 2022). In this study, a CNN-LSTM model is constructed to 
simulate and predict the temperature obtained from meteorological stations in 
Ningxia, China, to verify its performance. The proposed model can capture the 
asymmetric dynamic and spatiotemporal characteristics of temperature. The 
spatial distributions of the measured and predicted temperatures are obtained 
by using the Kriging interpolation method. The accuracy of the temperature 
predicted by the CNN-LSTM was also compared with separate predictions by 
the LSTM and CNN to verify its performance. The novelty of this study is to 
build a CNN – LSTM model with a Kriging interpolation to spatiotemporally 
simulate and predict the hourly temperature time-series data collected from 
multiple meteorological stations with high accuracy. The work here provides 
guidance for decision-making on flood control, drought resistance, ecological 
protection, commercial activities, air transportation, water transportation, 
power supply, and national defense, and agricultural development.

Materials and Methods

Study Area and Data Processing

Ningxia is located in the middle and upper reaches of the Yellow River in 
northwestern China, between 35°14′ N and 39° 23′ N latitude and 104°17′ 
E and 107°39′ E longitude, with a total area of 6.64 × 104 km2. The terrain tilts 
from the southwest to the northeast with altitudes ranging from 1077 m to 
3512 m. The geomorphic types in the area include the Loess Plateau, the 
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proluvial alluvial plain, Ordos platform, and the Liupan and Helan Mountains. 
The south, middle, and north of Ningxia are middle-temperature subhumid, 
semi-arid, and arid areas, respectively, with a dry climate, less rainfall, high 
winds and large amounts of sand, and large annual and daily ranges of 
temperature.

Meteorological data, such as meteorological station, time of data collection, 
hourly temperature, daily average, minimum, and maximum temperatures, 
rainfall, sunshine hours, wind speed, and air pressure, were collected from the 
National Meteorological Science Data Center of China. Repeated, abnormal, 
and discrete values in the collected dataset were preprocessed by filtering, 
filling, elimination, format conversion, and standardization.

The multicollinearity test and Pearson correlation analysis were used to 
calculate the variance expansion factor and correlation coefficient and screen 
the key meteorological elements affecting temperature prediction to eliminate 
redundant information. Key meteorological elements, such as the daily aver-
age, minimum, and maximum temperatures, rainfall, sunshine hours, and 
wind speed, were finally determined. Key meteorological data from 
January 2000 to December 2015 (180 months) were used as the training set, 
and data from January 2016 to December 2020 (60 months) were used as the 
validation set.

Construction of CNN-LSTM Model

The Tensorflow platform was used to construct the CNN-LSTM model. 
Tensorflow is an open-source software library for numerical calculations 
using deep neural networks. It supports the extended kernel library built on 
the CPU and the GPU, and is flexible.

The structure of CNN-LSTM is shown in Figure 1. In the model, the CNN is 
composed of an input layer, a convolution layer, a pooling layer, a full con-
nection layer, and an output layer. The convolution layer is used to extract 
features of the data. The pooling layer is used for information screening and 
selection. The full connection layer is used to connect the CNN and the LSTM 
according to the softmax function. The output layer is used for feature 
classification. High-order features are extracted by the CNN, result in the 

Figure 1. Structure of CNN-LSTM.
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decrease in the dimensionality of the input data xt at time t, and outputs data 
ht-1 at time (t − 1). xt and ht-1 are input into the LSTM. The hidden layer of the 
LSTM is composed of multiple memory units, each of which contains 
a forgetting gate, an input gate, and an output gate.

The forgetting gate is used to determine invalid information collected from 
the forgetting units. The inputs of the forgetting gate are the ht-1 and xt, and its 
output is the degree of forgetting ft of the last cell in the cell state Ct-1 of the 
input at time (t − 1) after the calculation of the sigmoid function. 

ft ¼ Wf ht� 1; xt½ � þ bf
� �

; (1) 

where ft∈[0, 1] is the output of the forgetting gate, “0” means the information 
has been completely forgotten, “1” means that it has been completely retained, 
and Wf and bf are the weight matrix and the bias term of the forgetting gate, 
respectively.

The input gate indicates the degree of update of the current information in 
a given cell state. The sigmoid function is used to update the value of it and 
tanh function is used to generate the state variable Ct. 

it ¼ σ Wi � ht� 1; xt½ � þ bið Þ; (2) 

Ct ¼ tanh WC � ht; xt½ � þ bCð Þ; (3) 

where it is the output of the input gate, Wi and bi are the weight matrix and 
bias term of the input gate, respectively, σ is the sigmoid activation function, Ct 
is the cell state of the current input, and Wc and bc are the weight matrix and 
bias term of the cell state, respectively.

The output gate, which is the output layer after a cell state has been excited, 
is processed by the sigmoid and tanh functions to obtain the values [−1, 1] of 
the cell state. 

ot ¼ σ Wo ht� 1; xt½ � þ boð Þ; (4) 

ht ¼ ot � tanh Ctð Þ; (5) 

where ot is the output of the input gate, Wo and bo are the weight matrix and 
bias term of the input gate, respectively, σ is the sigmoid activation function, 
and ht is the output value.

The method of rolling prediction with one-step extrapolation is used to 
predict the temperature in the next five years. The meteorological data are 
divided into a subsample of estimation {x1, x2, ···, xt-1 ,xt} and a subsample of 
prediction {xt+1 ,xt+2, ···, xt+i}. The dataset {x1, x2, ···, xt-1 ,xt} at time t is used to 
predict the temperature-related data {x2, x3, ···, xt, x’t+1 } at timet + 1, where 
x’t+1 is the predicted value. The predicted value x’t+1 is replaced by the 
measured value xt+1 to predict x’t+2 according to xt+2.
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Such observation data as daily average, minimum, and maximum tempera-
tures, rainfall, sunshine hours, and wind speed, were obtained from 25 
meteorological stations in Ningxia, China, were used to establish 25 predictive 
models of the CNN-LSTM. The annual average temperature recorded in each 
station was simulated from 2016 to 2020, and predicted from 2021 to 2025 to 
verify the generalization ability of the CNN-LSTM model.

The training and prediction processes of the CNN-LSTM model are as 
follows:

(1) Initialize the network weight w and bias vector b, and set the window 
length and the maximum number of iterations.

(2) Standardize the dataset to obtain x = {x1, x2, x3, ···, xn} with the interval 
[0, 1].

(3) Divide x into a training set xt = {x1, x2, x3, ···, xb} and a validation set xv  
= {xb + 1, xb+2, xb+3, ···, xn}.

(4) Obtain the predicted value x´t from the training set xt, and combined it 
with the last L − 1 elements after xt to form a new training set. Input the 
new training set into the CNN-LSTM to obtain x´t + 1, and so on, until 
the prediction set {x´t, x´t+1, ···, x´n} has been constructed.

(5) Inversely normalize the dataset {x´t, x´t+1, ···, x´n} to obtain the pre-
dicted temperature {yt, yt+1, ···, yn}.

(6) Calculate the coefficient of determination R2 to evaluate the perfor-
mance of the CNN-LSTM model.

Spatial Interpolation

The air temperature can be spatially simulated and predicted according to the 
spatial relationship between adjacent meteorological stations. In this study, the 
Kriging method is used to interpolate the measured and the predicted tem-
peratures as well as the predictive accuracy to obtain their spatial distributions. 
The potential relationship among meteorological stations in terms of air 
temperature is determined to reveal the spatial difference between the pre-
dicted and the measured temperatures.

Kriging interpolations, such as ordinary Kriging, simple Kriging, and col-
laborative Kriging, are methods of local spatial interpolation that form 
unbiased, optimal estimation of regionalized variables based on the assump-
tion of stationary. Ordinary Kriging is used in this study as follows: 

z0 ¼
XI

i¼1
wizi: (6) 

where z0 is the estimated value at point 0, wi is the weight related to point i, zi is 
the attribute value of point i, and i is the number of known points.
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Results

Simulation of Air Temperature

A sensitivity analysis was conducted to investigate the relationships between 
the input and output variables of the CNN-LSTM model. There are many 
hyper-parameters of the CNN-LSTM model, such as input size, patch size, 
filter layer size, characteristic number, activation function, learning rate, and 
drop out.

Optuna is a software framework to automatically optimize super- 
parameters of a deep learning model based on historical data by trial and 
error. It could capture the interval of a parameter with high probability and 
discard that with low probability to improve search efficiency. Therefore, the 
optuna was selected in this study to analyze the sensitivity of the hyper- 
parameters to find the optimal combination of the hyper-parameters, in 
which the loss function value of the training data and the generalization 
error of the test set were both minimized. The optimal hyperparameters 
were obtained as follows: input size = 30, output size = 1, batch size = 128, 
number of epochs = 200, learning rate = 0.0001, and dropout = 0.5. The activa-
tion function was rectified linear unit (ReLU). The loss function is the mean 
absolute error (MAE). The Adam optimizer was applied.

The prior knowledge is added to the CNN-LISTM model, including the 
original network structure, initial weight, layer-wise learning rate decay, con-
straints to the loss function, and freeze of the deep weight of the backbone. The 
prior distribution is the probability distribution of the current temperature. 
The posterior distribution of temperature is updated dynamically, which is the 
normalization of the product of prior distribution of the current temperature 
and likelihood function of the next measured temperature. Figure 2 shows the 
curves of the prior measured and posterior temperatures collected from the 
Yinchuan meteorological station, Ningxia, China, from 1 January 2016 to 
31 December 2020 simulated by CNN – LSTM. The posterior temperatures 
simulated by the CNN – LSTM model coincided with the prior measured 
temperatures.

The annual average temperature measured from 25 meteorological stations 
in Ningxia was interpolated by using the ordinary Kriging in ArcGIS 10.6 to 
compare the measured temperature with the simulated and predicted values. 
Figure 3a shows the characteristics of distribution of the annual average 
temperature measured in 2016. It was between 6.9°C and 11.5°C and was 
high in the north and low in the south. The annual average temperature in 
Yuanzhou District, Xiji County, Jingyuan County, and Longde County was 
lower than 9°C. However, the annual average temperature in Zhongning and 
Litong was higher than 11°C. The low temperature in southern Ningxia 
occurred owing to the high altitude of the Liupan Mountains. The high 
temperature in the northwestern Ningxia occurred because the Helan 
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Mountains on the western border of Ningxia block the cold, westerly wind in 
winter from flowing into northwestern Ningxia.

The eigenmatrix of the key meteorological elements in 2016 at each meteor-
ological station was input to the CNN-LSTM model to obtain the simulated 
average temperature at the meteorological stations on the next day. The 
monthly and annual average temperatures of each meteorological station 
were calculated according to the simulated daily average temperature. The 

Figure 2. Prior measured and posterior temperatures from 2016 to 2020 simulated by CNN – LSTM.

Figure 3. The distribution of the annual average temperature in 2016, measured (a) and simulated 
by the CNN-LSTM (b).
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Kriging method was used to spatially interpolate the simulated values to obtain 
the distribution of the annual average temperature in 2016 (Figure 3b). The 
simulated temperature was less than 9°C in southern Ningxia, between 9°C 
and 10°C from the north of Yuanzhou to Yanchi and Tongxin, and between 
10°C and 11°C in the other places. Compared to the simulated temperature, 
the observed temperature was lower than 9°C in southern Ningxia, between 
9°C and 10.5°C from the north of Yuanzhou to Yanchi and Tongxin, and 
between 10°C and 11.5°C in the other places. The range of the simulated 
temperature [8°C, 11°C] was smaller than that of the measured temperature 
[6.9°C, 11.5°C], and their spatial distributions were basically consistent. The 
latitudinal zonality of the temperature distribution in the south of Ningxia was 
prominent due to the influence of the east-west Liupan Mountains and the 
distribution at the latitude. However, the longitudinal zonality of the tempera-
ture distribution in the central and northern Ningxia was prominent due to 
the influence of the northeast-southwest Helan Mountains and the distribu-
tion of the longitude.

The curves of the observed and the simulated annual average temperatures 
in 2016 are shown in Figure 4 and were found to be in good agreement. In 
particular, the accuracies of the simulated annual average temperatures in 
Yanchi, Yongning, Pingluo, Qingtongxia, Mahuangshan, Shitanjing, and 
Shahu were the highest.

Accuracy of the Simulated Temperature

The annual average temperature in each meteorological station in Ningxia in 
2016 was simulated by separately using the CNN and the LSTM models. The 

Figure 4. Curves of the observed and simulated annual average temperatures in 2016 at 25 
stations in Ningxia.
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values of R2 of the simulated and measured annual average temperatures 
obtained by the CNN, LSTM, and CNN-LSTM were calculated. The spatial 
distribution of R2 was obtained by using the Kriging interpolation method to 
validate the performance of the CNN-LSTM model (Figure 5).

The accuracies of the simulated average temperature obtained by using the 
CNN, LSTM, and CNN-LSTM had similar spatial distribution. The values of 
R2 in the south of Ningxia, such as Jingyuan, Longde, and Pengyang, were 
large because these areas are mountainous and hilly, with a low annual average 
temperature and annual difference in temperature. The values of R2 in central 
Ningxia, such as in Xingqing, Xixia, and Jinfeng, were large. It is because the 
blocking of the cold westerly winds by the Helan Mountains on the western 
edge of this region in winter increased the air temperature and led to a smaller 
difference in temperature than in the other regions. In addition, the dense 
distribution of meteorological stations in this region can lead to a high accu-
racy of spatial interpolation. Small values of R2 were mainly distributed in the 
northern, eastern, and western marginal areas of Ningxia, such as Pingluo, 
Huinong, Dawukou, Shapotou, and Yanchi. Small values of R2 were also 
obtained in the west and east of Ningxia because these areas are located 
along the edge of the Tengger Desert and the Mu Us Desert, respectively, 
with large differences in the annual and daily temperatures. The reason for 
small values of R2 in the north is unknown, and needs to be further studied.

Spatial differentiation is prominent among the accuracies of the simulated 
average temperature obtained from the CNN, LSTM, and CNN-LSTM. The 
CNN yielded the smallest area for which the temperature was simulated highly 
accurately (R2 ≥ 0.75) and was mainly distributed in Jingyuan, Longde, 

Figure 5. Spatial distribution of R2 between the measured and the simulated temperatures in 
2016, as obtained by the CNN (a), LSTM (b), and CNN-LSTM (c).
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Pengyang, and Yuanzhou. It also had the largest area for which the tempera-
ture was predicted with a poor accuracy (R2 ≤ 0.45), and was mainly distrib-
uted in Huinong, Dawukou, Pingluo, Shapotou, Yanchi, Zhongning, and 
Tongxin. The area for which the temperature was predicted highly accurately 
(R2 ≥ 0.75) by the LSTM was larger than that for the CNN, and was mainly 
distributed in Jingyuan, Longde, Pengyang, Yuanzhou, Xiji, and Haiyuan. The 
LSTM also had a smaller area than the CNN for which its accuracy was poor 
(R2 ≤ 0.45), and this was mainly distributed in Huinong, Dawukou, Shapotou, 
and Yanchi. The CNN-LSTM recorded the largest area for which the predicted 
temperature was highly accurate (R2 ≥ 0.75) and was mainly distributed in 
Jingyuan, Longde, Pengyang, Xiji, Yuanzhou, Haiyuan, Xixiat, Xingqing, 
Jinfeng, Tongxin, Yongning, and Yanchi. It also had the smallest area for 
which its accuracy was poor (R2 ≤ 0.45), and this was mainly distributed in 
Huinong, Dawukou, and Shapotou. Therefore, simulations by the CNN- 
LSTM yielded the highest accuracy and the CNN delivered the worst.

The differences in the spatial distributions of the accuracy of the simulated 
average temperature obtained by using the CNN, LSTM, and CNN-LSTM may 
be related to their structures. The CNN-LSTM model can store information in 
a long-term memory unit, and this has a positive effect on the simulation of 
complex time series data for temperature. On the contrary, the CNN had the 
lowest accuracy owing to the lack of a structured memory. The input gate, 
forgetting gate, and output gate of the LSTM could adequately process long- 
time temperature data, because of which its simulated temperature was more 
accurate than that simulated by the CNN.

The monthly average temperatures in January, April, July, and October in 
2016, representing winter, spring, summer, and autumn, respectively, were 
simulated by using the CNN-LSTM model to further assess its performance. 
The values of R2 of the monthly average temperatures in January, April, July, 
and October were calculated. The spatial distributions of R2 in the four 
months were obtained by using spatial Kriging interpolation (Figure 6). In 
winter (January), the temperature over a large area was highly accurately 
simulated by the CNN-LSTM (R2 ≥ 0.8), and was mainly distributed in 
Yuanzhou, Pengyang, Xiji, Jingyuan, Zhongning, and Pingluo. The area that 
was highly accurately simulated by it in spring (April) (R2 ≥0.8) was the 
largest, and was mainly distributed in Pingluo, Zhongning, Tongxin, Yanchi, 
Haiyuan, Yuanzhou, Xiji, Pengyang, and Jingyuan. The proposed method 
accurately simulated the temperature in the smallest area in summer (July) 
(R2 ≥ 0.8), and this was mainly distributed in Jingyuan, Longde, Pengyang, and 
Xiji. The accuracy of simulation in autumn (October) was similar to that in 
spring. The areas for which the temperature was predicted highly accurately 
(R2 ≥ 0.8) were mainly distributed in Pingluo, Zhongning, Yuanzhou, 
Pengyang, Jingyuan, Tongxin, Yanchi, and Xiji. Therefore, the CNN-LSTM 
obtained the highest accuracy of the simulated monthly average temperature 
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Figure 6. Distributions of R2 of the monthly mean temperatures in January (a), April (b), July (c), 
and October (d) in 2016, as simulated by the CNN-LSTM.
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in spring and autumn, followed by winter, and the lowest in summer. The 
accuracies of the simulated temperature in different months might have been 
related to the different factors influencing the changes in temperature in these 
months, and this needs to be further studied.

Temperature Prediction

The year 2020 was selected as the base year, and the climate was assumed to be 
stable in the next five years. The values of key meteorological elements, such as 
the daily average, minimum, and maximum temperatures, rainfall, sunshine 
hours, and wind speed, were input to the CNN-LSTM model to predict the 
annual average temperatures at the 25 meteorological stations in Ningxia in 
the next five years. The Kriging method was used to spatially interpolate the 
predicted annual average temperature at each meteorological station in 
Ningxia from 2021 to 2025 (Figure 7).

The distribution of the annual average temperature from 2020 to 2025 
exhibited prominent latitudinal zonality in the south and longitudinal zonality 
in the north of Ningxia. The area with high annual average temperature (≥  
10.5°C) gradually increases from 2020 to 2025, compared with the distribution 
of the annual average temperature in the base year of 2020. The areas with 
a high temperature were mainly distributed in Zhongning and Litong in 2020, 
northwestern Ningxia in 2021, and in northern Ningxia from 2022 to 2025, as 
the annual average temperature increased year by year. Areas with low tem-
perature from 2020 to 2025 (≤ 7.5°C) were mainly distributed in Liupan 
Mountains in southern Ningxia, and decreased year by year. Therefore, the 
annual average temperature in Ningxia will show an upward trend in the next 
five years.

Discussion

The proposed CNN-LSTM model for temperature prediction can automati-
cally learn the relationships among the temperature, precipitation, wind field, 
and other meteorological elements. It can extract the characteristic informa-
tion of a large number of meteorological elements at different time scales. 
Highly correlated meteorological elements were input to the CNN-LSTM to 
deal with the dispersion of data to make the model portable and efficient. 
Kriging interpolation method was used to obtain the spatial distribution of the 
simulated and predicted temperatures as well as their accuracies. These results 
can reflect the macro distribution of the trend of monthly and annual average 
temperatures according to the topographic characteristics of Ningxia. The 
temperature in southern Ningxia exhibited prominent latitudinal zonal differ-
entiation while that in northern Ningxia had prominent radial zonal differ-
entiation. The accuracy of prediction in regions with small annual variation in 
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temperature was higher than that in areas with large variations in it. The 
accuracy of simulation of the temperature in spring and autumn was higher 
than that in summer. The predicted annual average temperature in Ningxia 
showed an upward trend year by year. The CNN-LSTM has a higher accuracy 
of simulation and prediction as well as better generalization performance than 
the CNN and LSTM.

The proposed deep learning model for temperature prediction is a data- 
driven model with nonlinear fitting. Considering more elements, such as the 
ocean current, terrain, and atmospheric circulation, and more meteorological 
stations in the province (study area) as well as its surrounding provinces, can 
improve the accuracy of temperature prediction and the capability of the 

Figure 7. Spatial distributions of the annual average temperatures from 2021 to 2025 in Ningxia, as 
predicted by the CNN-LSTM according to the annual average temperature in the base year of 2020.
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model for generalization. In addition, too long a stride for temperature pre-
diction can generate large cumulative errors during continuous prediction. 
Therefore, it is important to design a reasonable predictive stride to reduce the 
cumulative error in continuous prediction.
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