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A power-law-based approach to mapping COVID-19 cases in the United States
Bin Jiang and Chris de Rijke

Faculty of Engineering and Sustainable Development, Division of GIScience, University of Gävle, Gävle, 80176, Sweden

ABSTRACT
This paper examines the spatial and temporal distribution of all COVID-19 cases from January to 
June 2020 against the underlying distribution of population in the United States. It is found that, 
as time passes, COVID-19 cases become a power law with cutoff, resembling the underlying 
spatial distribution of populations. The power law implies that many states and counties have 
a low number of cases, while only a few highly populated states and counties have a high number 
of cases. To further differentiate patterns between the underlying populations and COVID-19 
cases, we derived their inherent hierarchy or spatial heterogeneity characterized by the ht-index. 
We found that the ht-index of COVID-19 cases persistently approaches that of the populations; 
that is, 5 and 7 at the state and county levels, respectively. Mapping the ht-index of COVID-19 
cases against that of populations shows that the pandemic is largely shaped by the underlying 
population with the R-square value between infection and population up to 0.82.
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1. Introduction

The novel coronavirus COVID-19 has rapidly 
spread around the world and triggered an unpre-
cedented pandemic in the few months since 
January 2020. At the time of writing this paper, 
over 34.2 million people globally had been infected, 
with over 1 million deaths, and the situation is still 
developing. How to better understand the spread 
mechanisms of the coronavirus in space and in 
time across different levels of scale concerns many 
scientists such as geographers, cartographers, and 
epidemiologists. Many previous studies have 
already examined the spatial distribution of 
COVID-19 cases using conventional geographic 
information systems (GIS) and mapping methods 
such as hotspot and time series analyses (ESRI 
2020). These methods are developed essentially 
under Gaussian statistics (Jiang 2015) with the 
assumption that data vary around a characteristic 
mean (e.g., 1.75 m as the characteristic mean for 
human height). A common problem of these meth-
ods is that the resulting spatial patterns are sensi-
tive to human subjective decisions like parameter 
settings. For example, either the number of classes 
or class intervals has to be decided subjectively. In 
contrast, we adopt a power-law-based approach 
under Paretian statistics for examining spatial and 
temporal distribution of COVID-19 cases in the 
United States.

We examine the spatiotemporal distribution of 
all COVID-19 cases in the US across multiple 
scales of space and time. In space, there are two 

levels of scale – state and county – whereas in time 
there are three levels: monthly, weekly, and daily. 
We detected a power-law distribution 
(y ¼ kx� a þm, where a is called power-law expo-
nent between 1 and 3, and k and m are two con-
stants.) for each of three parameters: population, 
infection, and death. All these three parameters 
demonstrate power laws with cutoff, despite of 
some fluctuations for both infection and death. 
The power law indicates that these three para-
meters bear an inherent hierarchy or spatial hetero-
geneity, with far more small events than high ones. 
To derive this hierarchy, we used head/tail breaks 
(Jiang 2013) so that each state or county is assigned 
a ht-index for each of these three parameters to 
indicate its hierarchical level. The derived hierarch-
ical levels provide new insights into the develop-
ment of the pandemic for individual states and 
counties relative to their populations. For example, 
the pandemic is largely shaped by the underlying 
population with the R-square value between infec-
tion and population up to 0.82. The power-law- 
based approach enables us to see spatiotemporal 
patterns that the conventional methods are unable 
to discover. The approach has a profound implica-
tion on power-law-related research in terms of 
whether data exhibit a power law or any other 
similar distribution. That is, from a dynamic view, 
power-law is usually observed when a complex sys-
tem is fully developed, before which the system is 
likely to exhibit other less-power-law distributions 
such as lognormal and exponential. For example, 
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there is little doubt that a tree as a complex biolo-
gical system demonstrates a power-law distribution 
for its trunk, branches, and leaves, because there 
are far more leaves than branches, and far more 
branches than trunk. However, the tree is unlikely 
to hold a power law at the stage of the germination 
of the seed. We will further discuss this implication 
before the conclusion.

The remainder of this paper is structured as 
follows. Section 2 introduces the data source initi-
ally collected by Johns Hopkins University, and the 
head/tail breaks illustrated by a simple example of 
the 10 numbers. The power-law detection is based 
on the maximum likelihood method (Clauset, 
Shalizi, and Newman 2009), arguably the most 
robust statistical test. Section 3 presents our results 
and discussion, as well as an animation map 
(http://lifegis.hig.se/COVID19/). Section 4 high-
lights the implication we briefly mentioned above. 
Finally, Section 5 draws a conclusion of this paper 
and points to possible future work.

2. Data source and methodology

Over three million people have been infected and 
208,000 people have died from COVID-19 in the 
US from January to June of 2020. Johns Hopkins 
University (2020) has gathered this data and pub-
lished it on the GitHub website. This data is com-
pared with the country’s population at both state 
and county levels. In general, the two parameters – 
infection and death – are highly related to popula-
tion. Like the population in the US, the numbers of 
infection and death are highly concentrated in 
a few well-populated states and counties. In this 
study, we intend to compare COVID-19 cases 
against the underlying population, in order to 
develop new insights into spatiotemporal patterns 
of the pandemic from the multiple scales of space 
and time.

Like all countries, the US population is not 
evenly distributed, and it has a very high degree 
of concentration in a few cities, states, or counties, 

the so-called inherent hierarchy or spatial hetero-
geneity. At the city level, this kind of spatial dis-
tribution is usually characterized by a power-law 
distribution, such as Zipf’s law (Zipf 1949). Zipf’s 
law states that in terms of population the first 
largest city is twice as big as the second largest, 
three times as big as the third largest and so on. At 
the county level, the top 20% counties accommo-
date 80% of the population – the so-called 80/20 
principle (Koch 1998) that is credited to the Italian 
economist and polymath Vilfredo Pareto (1848–-
1923). What is behind Zipf’s law and the 80/20 
principle – or the power law in general – is the 
inherent hierarchy or spatial heterogeneity, which 
can be illustrated through the head/tail breaks clas-
sification scheme (Jiang 2013, Figure 1). This is 
a recursive function that can be used to derive the 
inherent hierarchy of data with a heavy-tailed dis-
tribution. The derived hierarchical levels or classes 
reflect the recurrence of far more small numbers 
than large ones, or spatial heterogeneity, character-
ized by the ht-index (Jiang and Yin 2014).

Unlike conventional classification methods, with 
which the number of classes or class intervals are 
subjectively determined, head/tail breaks adopts the 
wisdom of crowds thinking (Surowiecki 2004), 
through which both the number of classes and 
class intervals are objectively determined by the 
data; in other words, the data speaks for itself. 
Head/tail breaks is a recursive function, through 
which a dataset is conceived as the head of the 
head of head and so on, and all the tails and the 
last head constitute the derived classes or inherent 
hierarchical levels.

To further illustrate the recursive function, let us 
use a simple example of the 10 numbers (1, 1/2, 1/ 
3, . . . 1/10), which follow exactly a rank-size dis-
tribution in the so-called rank-size plot in which 
the x-axis is rank, while the y-axis is size. Strictly 
speaking, these 10 numbers cannot be said to be 
distributed according to Zipf’s law, for it is 
a statistical regularity. Instead these 10 numbers (1 
+ e1, 1/2 + e2, 1/3 + e3, . . . 1/10 + e10) (where ei is 

Head TailIteration 1 

Iteration 2 Tail

Class 1

Data

Head Class 2Class 3

[1, 1/2, 1/3,...1/10]

[1/4, 1/5,...1/10]

[1, 1/2, 1/3]

[1/2, 1/3]

[1]

Figure 1. Illustration of head/tail breaks classification with a simple example of the 10 numbers. (Note: The 10 numbers [1, 1/2, 1/3, 
. . ., 1/10] are classified into three classes: [1/4, 1/5, . . ., 1/10], [1/2, 1/3], and [1], which can be said to have three inherent 
hierarchical levels. (Jiang and Slocum 2020))
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a very small value epsilon) are said to fit Zipf’s law. 
Back to the first 10 numbers (Figure 1, Jiang and 
Slocum 2020), its average is 0.29, which partitions 
the 10 numbers into two groups: those greater than 
the average (1, 1/2, 1/3) called the head, and those 
less than the average (1/4, 1/5, 1/6, . . . 1/10) called 
the tail. For those in the head (1, 1/2, 1/3), their 
average is 0.61, which further partitions the three 
into two groups: the one greater than the average 
(1) called the head and those less the average (1/2, 
1/3) called the tail. The number of iterations or the 
notion of far more smalls than larges occurs twice, 
so the ht-index (Jiang and Yin 2014) is three, 
indicating three inherent hierarchical levels. As 

shown in this example, the head percentage is far 
less than the preset 40%. The 40% is a very loose 
condition for something to be a minority to meet 
the notion far more smalls than larges.

In this study, we detect power laws using the robust 
maximum likelihood method (Clauset, Shalizi, and 
Newman 2009), calculate the ht-index for all 
COVID-19 cases in the US, and compare these calcu-
lated parameters with those of the population at both 
state and county levels along the time dimension. This 
type of comparison provides new insights into the 
spatiotemporal patterns of the pandemic. Before get-
ting into the results, we would like to make one point 
explicitly clear about power-law exponent a. It is 

Figure 2. Power laws of infection (blue), death (red), and population (gray). (Note: At the state level (a, b), because of the large 
areal unit, the power laws with cutoff are not so striking, whereas at the county level (c, d), because of the small areal unit, the 
power-law with cutoff are very striking. The hierarchy of population is mapped both (e) state and (f) county levels, indicating far 
more less-populated states than well-populated ones, or far more less-populated counties than well-populated ones. Interestingly, 
the notion of far more smalls than large recurs four and six times at the state and county levels, respectively, thus with the ht- 
indexes being 5 and 7, indicating the inherent hierarchical levels. All the five levels are shown in panel (e), whereas only the top 
four levels are shown in panel (f) for the sake of legibility.)
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a good indicator for heterogeneity of data: the higher 
the exponent, the more heterogeneous the data. For 
example, y ¼ x� 2, and y ¼ x� 3, the dataset with the 
exponent 3 is more heterogeneous than the one with 
the exponent 2. Throughout our study, we will show 
that the ht-index is a better indictor than the power- 
law exponent for characterizing the heterogeneity of 
data.

3. Results and discussion

The population of the US looks like a power-law distribu-
tion at both state and county levels, as shown in Figure 2, 
but they are power laws with an exponential cutoff, strictly 
speaking. It is pretty the same for both infection and death 
gradually developing toward power laws with cutoff as 
time passes (shown as light blue and light red to dark blue 
and dark red). In March or before early April, both infec-
tion and death exhibit moderate power laws, while after 
April they are power laws with cutoff. As an example, 
Table 1 shows that how death at the county level demon-
strates a power law or a power law with cutoff with 
detailed statistics.

The likelihood ratio (LR) (Clauset, Shalizi, and 
Newman 2009) can be used to determine power laws or 
power laws with cutoff hold in comparison to its alter-
native heavy-tailed distributions such as lognormal and 
exponential. As a rule, a positive LR favors the power-law 
fit, while a negative LR says the alternative fit. On the 
other hand, the LR is trustworthy if the statistical fluctua-
tion of LR is relatively small. Therefore, an additional 
p-value is defined to the LR is trustworthy statistically 
(Clauset, Shalizi, and Newman 2009); if p < 0.1, then the 
LR is trustable.

At the state level, the LR is not statistically significant as 
the p-values are too high; therefore, we cannot be certain 
that either of the distributions is a better fit. This is likely 
due to the small sample size (n = 51). At the county level 
with the large sample (n = 3262), the alternative lognormal 
distribution is more likely than the power law distribution 
for most of the weeks. However, the support for power 
laws with cutoff are even more likely than the lognormal 
distribution. In the end, power laws with cutoff are more 
likely than the lognormal and exponential distributions.

The log-log plots in Figure 2 indicate that the overall 
spatial distributions of infection and death are very much 
shaped by the underlying population. That is, those 
populated states and counties tend to have far more 
cases of infection or death. This is of course not out of 
our expectation, since the more the population, the more 
likely the infection or death. Given the power-law dis-
tribution of the population and by applying the head/tail 
breaks, we derive ht-indexes of 5 and 7 at the state and 
county levels, respectively. In other words, the population 
is automatically classified into 5 and 7 classes, as shown in 
Figure 2(e,f). These two patterns regarding population at 
the state and county levels reflect the patterns of COVID- 
19 cases fairly well. That is, the states and counties on the 
West and East Coasts tend to have higher numbers of 
COVID-19 cases than those inland, which will be exam-
ined in the following. These two patterns at the state and 
county levels constitute the basic patterns to which 
COVID-19 cases can be compared in order to develop 
new insights into the pandemic in terms of its spatial and 
temporal patterns.

It is clear from Figure 2 that the power-law distribu-
tions have different exponents. The different power-law 
exponents indicate the different degree of heterogeneity 
or hierarchy; that is, the higher the exponents, the more 
heterogeneous the data. In this connection, the ht-index 
is a better indicator than the power exponent as it better 
reflects the inherent hierarchy. As shown in Figure 3(a,b), 
the ht-indexes of both infection and death increase 
toward that of population. There is little wonder that 
the ht-index of the population remains unchanged – 
that is, 5 at the state level and 7 at the county level – 
indicating that the population is more heterogeneous at 
the county level than that in the state level (Figure 3(a,b)). 
This is because the population in the large areal unit of 
states tends to be more homogenized than that in the 
small areal unit of counties. According to this logic, the 
population in the small areal unit of cities tends to be 
more heterogenized than that in the large areal unit of 
counties. This is indeed true, as shown in the literature 
(e.g., Newman 2005). What is interesting for infection 
and death is that they have a very low ht-index of 0 or 1 at 
the very beginning and increase rapidly toward 5 and 7, 
with some fluctuation in the course of development of the 

Table 1. Support of a moderate power law or a power law with cutoff in comparison to alternatives.
Lognormal Exponential PL with cutoff

LR P LR P LR p Support

Week 12 −4.74 0.1 122.24 0.02 −4.46 0 moderate PL
Week 13 −0.29 0.82 229.23 0.03 −0.2 0.52 moderate PL
Week 14 −0.03 0.9 182.22 0.03 −0.02 0.86 moderate PL
Week 15 −0.3 0.68 175.6 0.03 −0.18 0.55 moderate PL
Week 16 −4.04 0.01 514.44 0 −2.35 0.03 PL with cutoff
Week 17 −1.68 0.27 340.5 0 −1.62 0.07 PL with cutoff
Week 18 −1.51 0.29 353.76 0 −1.6 0.07 PL with cutoff
. . .
Week 27 −2.21 0.18 308.44 0 −3.48 0.01 PL with cutoff
Week 28 −2.66 0.14 328.65 0 −3.78 0.01 PL with cutoff

(Note: LR = likelihood ratio, PL = power law, p = p-value as defined in Clauset, Shalizi, and Newman 2009)
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pandemic. This means that lockdown policies or social 
distancing measures are definitely effective at containing 
and combating the spread of the virus; otherwise, the 
situation would be far more devastating than it is cur-
rently. The result shows that COVID-19 cases are largely 
shaped by the underlying population, seen through the 
increasing correlations between infection and population 
and between death and population (Figure 3(c,d)). In 
other words, two patterns shown in Figure 2(e,f) largely 
reflect those of infection and death; that is, populated 
states and counties tend to have far more COVID-19 
cases.

As elaborated above, the ht-indexes of infection and 
death at both the state and country levels are persistently 
approaching to that of population, and the correlations 
between infection and population, and between death and 
population increase also as time goes (Figure 3). This is 
the overall picture. On the other hand, the hierarchical 
levels for these three parameters (population, infection, 
and death) provide a much more complex and interesting 
picture about the pandemic (Figure 4). By examining the 
ht-indexes of the three parameters (population, infection 
and death) for individual states and counties, we can see 
how the pandemic hits individual states and counties 
differently relative to their total populations. For example, 
New York and its nearby states are hit most hard as 
reflected by the larger red circles, whereas California and 

Texas are affected far less, as shown by larger gray circles 
(Figure 4(d)). It is important to assess how this latest 
situation evolved from a dynamic point of view. For 
example, the situation in January and February was very 
mild; only five states had a relatively high degree of infec-
tion, with Washington State having the highest. The situa-
tion took a drastic turn into very wild in March, when 
there were suddenly six states with larger red circles, 
indicating that hierarchical levels of death were larger 
than those of population and infection. This was 
a dangerous sign. From March to April, and from May 
to June, the situation got worsened, with a few exceptions 
such as Washington State. These are the new insights that 
are developed from the state level. The same insights can 
be seen at the county level, and the reader can refer to or 
further explore the animation map as cited in the note of 
Figure 4.

4. Implication

This study has an important implication for power- 
law-related studies. The distributions of many natural 
and societal phenomena follow a power law over 
a wide range of magnitude, which has been extensively 
studied in a variety of scientific fields, such as physics, 
biology, economics, geography, demography, and 
social sciences (e.g., Bak 1996; Newman 2005). 

Figure 3. Relationship between COVID-19 cases and populations. (Note: The ht-indexes for the population are 5 and 7 respectively 
at the state (a) and county (b) levels, while the ht-indexes for the infection and death increase from mild to wild status despite 
some slight fluctuations. The correlations between infection and population, and between death and population increase at both 
the state (c) and county (d) levels.)
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Surrounding a power-law distribution and its variants 
such as lognormal and exponential, an increasing 
number of research works have been made to illustrate 
what is the appropriate distribution for a real-world 
data. The first author of this paper has long developed 
an argument that a power law is an idealist status, 
when a complex system becomes mature or well- 
developed (Jiang and Yin 2014). Before the idealized 
status, the system is likely to show some deviation 
from a power law, thus a less-power-law distribution 
such as lognormal or a power law with an exponential 
cutoff. In this regard, it is better to use the ht-index to 
characterize the dynamic process or evolution of the 
system. This study proves that the ht-index is a good 
indicator, apparently a better one than the power-law 

exponent, for the inherent hierarchy or heterogeneity 
of a complex system from a dynamic point of view.

5. Conclusion

In this paper, we have found that COVID-19 cases in the 
United States have developed over time from a less het-
erogeneous state to a more heterogeneous one, or equiva-
lently from a very flat hierarchy to a very steep hierarchy, 
persistently approaching that status of the populations. 
Thus, the COVID-19 spatiotemporal patterns are largely 
shaped by the underlying population patterns, i.e., well- 
populated states or counties tend to have more people 
affected or died. While this finding may seem obvious, 
deviations from this overall trend help us see the 

Figure 4. The hierarchy of COVID-19 cases compared with that of population. (Note: Each state has three circles: gray for population, 
blue for infection, and red for death. Panels (a)–(f) show the status of the pandemic in January, February, March, April, May, and 
June respectively at the state level. For the county level, please refer to the animation map at http://lifegis.hig.se/COVID19/.)
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particularities of the COVID-19 patterns at local scales. 
On the one hand, the spatial distribution of COVID-19 
cases is persistently approaching a power law with cutoff, 
despite the implemented lockdown and social distance 
measures, indicating enormous spatial heterogeneity in 
terms of the distribution of COVID-19 cases. On the 
other hand, the observation that the ht-index of 
COVID-19 cases does not exceed that of population 
implies that lockdown and social distance measures do 
indeed have some effect; otherwise, the situation would 
become far more devastating than it is now. The power- 
law-based approach enables us to uncover these interest-
ing patterns of COVID-19 cases, so opens a new way of 
mapping geographic phenomena. Our future work points 
to this direction.

Highlights

(1) A statistical physics approach to mapping COVID-19 
cases or other dynamic phenomena

(2) This is a timely research work that may be of value for 
combating the COVID-19 pandemic

(3) The pandemic is largely shaped by the underlying dis-
tribution of population

(4) The ht-index is a better indicator than the power-law 
exponent for characterizing the hierarchy
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