
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: jgcb@usp.br; 

 
 

British Journal of Applied Science & Technology 
13(6): 1-11, 2016, Article no.BJAST.22726 

ISSN: 2231-0843, NLM ID: 101664541 

 
SCIENCEDOMAIN international 

            www.sciencedomain.org 

 

 

Area 1 of Approximate Entropy as a Fast and Robust 
Tool to Address Temporal Organization  

 
José Eduardo Soubhia Natali1 and José Guilherme Chaui-Berlinck1* 

 
1Laboratório de Energética e Fisiologia Teórica, Instituto de Biociências/Universidade de São Paulo, 

Rua do Matão tr.14, n.321 – Butantã/São Paulo, CEP: 05508-090, SP, Brazil. 
 

Authors’ contributions 
 

This work was carried out in collaboration between both authors. Both authors contributed equally to 
the study, writing and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/BJAST/2016/22726 

Editor(s): 
(1) Qing-Wen Wang, Department of Mathematics, Shanghai University, P.R. China.  

Reviewers: 
(1) Chen Gao, Tufts University, USA. 

(2) S. Zimeras, University of the Aegean, Greece. 
Complete Peer review History: http://sciencedomain.org/review-history/12742 

 
 
 

Received 22nd October 2015  
Accepted 30

th
 November 2015 

Published 19
th

 December 2015 

 
 

ABSTRACT 
 

Aims: To evaluate the consistency and robustness of an informational entropy analytical tool 
derived from Approximate Entropy (ApEn).  
Study Design: A set of in machina time-series of known properties were generated to test and 
compare the proposed tool with the standard ApEn and with peak-ApEn. 
Place and Duration of Study: Laboratory of Energetics and Theoretical Physiology, Dept. 
Physiology, Biosciences Institute, University of São Paulo. From April 2014 to May 2015.  
Methodology: The proposed tool consists in obtaining a detailed tolerance vector with more than 
100 values and, then, to compute ApEn for window m = 1 for each one of these tolerance values. 
This creates a curve that is numerically integrated using a normalized tolerance vector as the basis, 
thus obtaining the area under the curve of m = 1 ApEn (a1ApEn). In order to make comparisons, 
17 time-series from different generating processes were constructed using Matlab R2013a. 
Employing the above-cited analytical tools, we approached the following queries: (a) for a given 
process, how variable is the estimator value? (b) is a1ApEn more consistent than peak-ApEn in 
classifying different processes?   
Results: The answer for (a) is that, in relation to ApEn, the variance of a1ApEn is significantly 
lower in 16 cases (all P < .01, F-test for sample variance), and we explain why the one exception 
occurs. In relation to peak-ApEn, the variance is lower for all 17 series (all P < .01). The answer for 
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(b) is that a1ApEn is able to correct inconsistencies found when using peak-ApEn (all P < .01, 
Student’s t-test). 
Conclusion: The proposed tool, the area under the curve for ApEn of window 1 (a1ApEn) is 
objective and more consistent than both the ApEn and the peak-ApEn estimators. 
 

 

Keywords: Algorithms; computer-assisted numerical analysis; information theory; approximate 
entropy; consistency; objectivity. 

 

1. INTRODUCTION 
 
Approximate Entropy (ApEn) is a widely 
employed tool to characterize temporal 
organization in time-series (S). This method 
seeks to estimate the degree of organization by 
counting the number of equal events (matches) 
of a sub-vector i of size m along the original 
vector, where the distance between two sub-
vectors is given by the Heaviside function for a 
certain tolerance r. More details can be found in 
[1,2], but the central idea is to count all the 
matches (#) for a certain i, m and r as: 
 

                        (1) 
 
From the counts of each sub-vector i, another 
value, , is computed:   
 

          (2) 
 
Finally, ApEn is obtained through: 
 

ApEn(m,r,N) = m(r)  m+1(r)          (3) 
 

On the one hand, ApEn putatively achieves its 
objective in many cases, as, for example, 
prediction of survivability through body 
temperature regularity and estimation of machine 
health via analysis of vibration in rolling bearings 
[3–9]. On the other hand, drawbacks in the 
estimator are present [2,10,11] and, 
consequently, there is room for improvement. 
 
A first issue is what we call as “positional 
sensitivity”: two arbitrarily chosen fragments of a 
larger original data may possess very distinct 
ApEn values. This problem holds true even for 
highly organized series such as the sum of two 
sine waves (Fig. 1A), where it is possible to 
observe a twofold increase in ApEn values in 
different sampling intervals of the original data 
set (Fig. 1B). This problem is usually mitigated, 
as shown in Fig. 1B, by the use of a moving 

window to obtain the mean ApEn of a given time-
series [6,8,9]. 
 

A second, and much more important issue, is the 
lack of an objective procedure to obtain the value 
of the estimator. ApEn relies on two arbitrary 
choices of parameters, namely, the window size 
of comparison, m, and the tolerance for 
distinguishing two vectors as non-equals, r 
(equations 1-3). This arbitrariness is a huge 
shortcoming in this tool since two very distinct 
series can be classified differently depending on 
the choice of the parameters [2]. A well known 
variation of ApEn, sample entropy (developed by 
Richman & Moorman [10]), also from suffers 
from this weakness. There are two attempts to 
overcome such a problem, as presented below. 
 
One is based on the computation of ApEn for a 
large set of tolerance values in order to obtain 
the highest (peak) ApEn for a given m (peak-
ApEn - [11–13]). The logic behind this approach 
is clear when comparing peak ApEn values in 
different time-series (Fig. 2). Due to the 
formulation of equation 3, small tolerances are 
associated with small ApEn values (since the 
counting is as small for m = k as it is for                      
m = k+1). Therefore, as the tolerance increases, 
ApEn values rise to a peak and then decreases 
with further tolerance increases (since for large 
tolerances all sub-vectors would be considered 
as equal for both m = k and m = k+1, resulting in 
ApEn  0). Therefore, it is possible to observe 
that the use of a single value of r, as suggested 
by Pincus [1] (e.g. 0.15 as illustrated in Fig. 2) 
can lead to spotting different regions of the ApEn 
curves of different time-series. 
 

The other alternative approach is based on a 
double summation of ApEn values along all 
suitable m and r, resulting in a pseudo-volume 
below the surface thus obtained (vApEn, 
developed by Santos et al. [2]). vApEn is much 
more robust than ApEn and Sample ApEn. 
However, it is extremely demanding on 
computational time/resources, and turns out 
prohibitive for series containing more than 400 
points even in powerful conventional computers. 
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Fig. 1. Sum of two sine waves and the corresponding moving ApEn  
(A) Sum of two sine waves, one with frequency of 0.025 Hz and the other with frequency of 0.1 Hz, as a function 
of time (x – in arbitrary units). (B) Using a 150 points window, ApEn values were sequentially obtained along the 

original series. the dotted line represents the mean value. Notice the near two-fold variation in ApEn values 
 

 
 
Fig. 2. ApEn (m = 2) along tolerances (r – normalized, see text) for different generating process 
The vertical line denotes the typically used r = 0.15. Processes: sum of 2 sine waves (2S_a); uniformly distributed 

random numbers (U.D.R.N.); Logistic map (L3.7) and sum of 4 sine waves (S4). See Table 2 for nomenclature 
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Table 1. Some examples of subjectivity and inconsistencies found in the peak-ApEn estimator 
 

Time-series size N Window size m Process 
A  4S SAT_a 
210 1 0.756 (0.054)* 0.324 (0.015) 
210 3 0.192 (0.021) 0.310 (0.012)* 
B  AR_a AR_b 
210 2 1.231 (0.014)*

 
1.198 (0.018) 

300 2 1.317 (0.032) 1.327 (0.020)* 
C  1S_b L3.7 
210 1 0.737 (0.085)* 0.488 (0.006) 
240 1 0.733 (0.088)* 0.487 (0.006) 
270 1 0.761 (0.067)* 0.488 (0.007) 

Subset A: classification changes with the change in the window size m. Subset B: classification changes with the 
change in the size N of the time-series. Subset C: a highly organized series classified as more complex (less 

organized) than a much more variable one. the values of peak-ApEn are presented as means (standard 
deviations) of 2N samples. * indicates a significant greater value with P < .01. See Table 2 for nomenclature 

 
Likewise, peak-ApEn is much more robust                       
than ApEn and Sample ApEn. Nevertheless, 
some inconsistencies still persist as we                   
describe next (and exemplify in Table 1).                  
Firstly, there remains subjectivity in the choice                     
of the value of m, since the classification                        
may change depending on this parameter                  
(Table 1 subset A). Secondly, there is a                       
high dependency on the size of the                             
vector analyzed and reversed results are 
obtained with small differences in size                      
(Table 1 subset B). Finally, well-organized time-
series (e.g., a sine wave) analyzed through only 
one period may present higher peak-ApEn 
values than a more variable series (Table 1 
subset C).  
 
In short, peak-ApEn and vApEn are much more 
reliable than ApEn, but the tools deserve further 
improvement. 
 

2. A NEW TOOL: A1APEN 
 
Here we propose an approach that                               
might be considered as a step forward in                     
relation to peak-ApEn and a step backward                          
in relation to vApEn. a1ApEn is based on                              
the construction of the area under the                        
curve of ApEn versus tolerance r* (see                    
Fig. 2) and is defined for a time-series S of size 
N as: 
 

                (4) 
 
Where the integral stands for a numerical 
integration. The meaning of r* is given in section 
2.1. Why the use of the window m = 1 is 
presented in section 2.2. 

2.1 The Tolerance Vector r and the 
Normalized Tolerance Vector r* 

 
The first crucial step to obtain an accurate 
a1ApEn value is to construct a detailed tolerance 
vector, r. The usual practice to establish a value 
of tolerance for comparison is to compute it as a 
fraction of the standard deviation of the time-
series (see [1]). For instance, some figure 
between 15% and 25% of the standard deviation 
is the most typical choice. Here, we do not use 
the standard deviation as a milestone to compute 
r values.  
 
Because the Heaviside distance d between two 
vectors i = (i1,i2, …,in) and j = (j1,j2, …,jn) is given 
as d(i,j) = max(absolute(ik – jk)), k = 1,2 … n, 
then, for the entire time-series data, there would 
be a pair of points (henceforth we will use “point” 
to refer to a certain datum value in the time-
series S) that has a minimal distance greater 
than zero, and another pair that has a maximal 
distance (this will be absolute(max(S) – min(S))

1
. 

Why we are considering a minimal distance 
greater than zero becomes clear shortly. 
 
The detailed tolerance vector r. Initially, the time-
series is sorted (ascendingly) and the absolute 
difference between each pair of consecutive 
sorted points is used to create a delta-vector, D. 
From the delta-vector, the zeros are excluded, 
and D has size n (unknown before these 
procedures). Then, the tolerance r vector is 
constructed. The first value of r is zero. 

                                                           
1
 An exception for that is a binary series, since for r lower 

than some critical value, no matches can occur, while for r 
higher than that critical value, all the sub-vectors are equal; 
and ApEn should not be employed to characterize a binary 
series at all. 
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Therefore, for r1 = r(1) = 0, only completely     
equal sub-vectors will count as a match. There 
are two paths to construct the subsequent r 
values.  
 
If the time-series size N  300, r will have size = 
n+1, and  
 

 
 
x = 2,3, … n+1, i.e., each value in r is the sum of 
the previous ones in D. Notice that the last value 
of the tolerance vector is r(n+1) = absolute 
(max(S) – min(S)), i.e., the maximal possible 
Heaviside distance among all the pairings in the 
original time-series. 
 
If N > 300, then the first 51 values of r are 
obtained as described above. Then, depending 
on the fraction of the maximal distance that the 
sum of these 51th values reaches, different 
partitioning procedures are taken in order to 
populate the remaining of the tolerance vector r. 
The main focus is to have a large number of r 
values up to the range of 35% of the maximal 
distance, since the ApEn versus r* curve has its 
most significant part within this range (personal 
observations - see Fig. 2 as an example). At the 
same time, from 35% to 100% of the maximal 
distance, fewer values are needed, so 
computational time should not be too much 
affected. The ApEn values are computed using 
each r from the tolerance vector.  
 

Then, the area is obtained through a numerical 
integration (eq. 4) using a normalized tolerance 
vector r* = r/max(r) as the basis. This is very 
important in order to have comparisons on the 
same foot among different time-series. 
Otherwise, high amplitude series would end up, 
inherently, with higher a1ApEn values. 
 

2.2 The Window Size m = 1 
 
If the window size is kept fixed, a1ApEn has no 
subjectivity in the choice of parameters for the 
analysis, a much desired condition. In this sense, 
the window size 1 is chosen because it can be 
shown that it results in the largest area compared 
to m = 2, 3, 4, … up to m << N. In other words, m 
= 1 gives a complete objectivity for the a1ApEn 
measure because one can fix such a window 
size beforehand, having the knowledge that this 
choice will result in the largest area for the time-
series under analysis. We show this result below. 
Equation 2 can be rewritten as: 

         (5a) 
 
or: 
 

          (5b) 
 
Let X(m) be a mean count. Substituting this 
mean count in place of the true counts #i(m): 
 

           (6) 
 
Then, inserting (6) in equation (5b), we obtain a 
mean ϕ, related to the mean counting:  
 

          (7) 
 
Consequently, from equation (3): 
 

          (8) 
 
Replacing (7) in (8) results in an ApEn value 
related to the mean counts in each window: 
 

                (9) 
 

Let us call ApEn  as the expected ApEn value. If 

N→ ∞ is considered, then: 
 

                   (10) 
 

It is clear that the expected ApEn depends on 
how X(m) increases in proportion to X(m+1).  It is 
not possible to define the rule for such a relation, 
but it is known that it must respect the following 
conditions: r* = 0 implies X(m,0) = 1 and r* = 1 
implies X(m,1) = N. It is interesting that even an 
arbitrary rule may still give valuable information 
about the behavior of the curve ApEn versus 
tolerance. Consider the following formulation that 
obeys the above conditions and is able to 
reproduce the curves in Fig. 2: 
 

         (11) 
 

With this rule, it is possible to observe that if q(m) 
possess a linear behavior (i.e., q(m)=a+bm), 

ApEn  (m = 1) encompasses the ApEn  for all 

other windows sizes (see Fig. 3). Furthermore, 
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the only situation in which an area computed       
for m = 2 is greater than an area computed                 
for m = 1 is when q(3) ⁄ q(2) ≫ q(2) ⁄ q(1). 
Generally, this last situation is not expected for             
m << N since, for each inclusion of a                         
new dimension in the state-space (i.e., m, m+1, 
m+2 ...), almost-always there would be a 
proportional decrease in the number of counts 
(Ci). This is particularly accurate for less 
organized time-series, given that the probability 
of decreasing the number of counts remains the 
same with the addition of a new dimension. 

Therefore, we are lead to conclude that the                   
area under the curve of ApEn versus tolerance                   
r for m = 1 is appropriate, remaining no 
subjectivity in the choice of the parameters for 
analysis. 
 

2.3 Testing a1ApEn  
 
Seventeen time-series from different generating 
processes were created in machina (Matlab 
R2013a). Table 2 presents a description of the 
generating processes. 

 

 
 

Fig. 3. Expected ApEn as a function of tolerance (equation (11)) 
Solid lines: m = 1; dotted lines: m = 2. (A) Factor q(1) = 1; q(2) = 2; q(3) = 3. (B) Factor q(1) = 0.25; q(2) = 1.5; 

q(3) = 3. The insets contain real ApEn values for normally distributed random numbers (in A) and a sine wave (in 
B). Notice the resemblance of the expected curves and the real ones. N = 200 

 
Table 2. Designations, descriptions and some estimators of the prototypical processes  

(in alphabetical order) 
  

Designation Process/Description Mean Var Min Max 
1S_a Complete deterministic process of a sine wave 

of angular speed (ω) = 0.025, amplitude (A) = 1 
0.029 0.502 -1.000 1.000 

1S_b Complete deterministic process of a sine wave; 
ω = 0.100, A = 1 

0.001 0.498 -1.000 1.000 

2S_a Complete deterministic process formed by the 
sum of two sine waves: ω1 = 0.025, A = 0.2; ω2 
= 0.100, A = 1 

0.007 0.521 -1.185 1.185 

2S_b Complete deterministic process formed by the 
sum of two sine waves: ω1 = 0.025, A = 0.1; ω2 
= 0.100, A = 1 

0.030 1.015 -1.928 1.928 

2S_c Complete deterministic process formed by the 
sum of two sine waves: ω1 = 0.025, A = 1; ω2 = 
0.100, A = 0.2 

0.029 0.525 -1.142 1.142 

4S Complete deterministic process formed by the 
sum of four sine waves: ω1 = 0.025; ω2 = 
0.100; ω3 = 0.051; ω4 = 0.078. A = 1 for all 
frequencies. 

0.050 2.112 -3.394 3.241 

AR_a Second-order autoregressive model 
(parameters:  0.1; 0.499) 

0.006 0.016 -0.538 0.377 

AR_b First-order autoregressive model (parameter:  
0.4499) 

0.002 0.003 -0.189 0.170 

MA_a 5
th
-order moving average model (parameters: 

0.4, 0.2, 0.1, 0.1, 0.5) 
0.085 0.457 -2.002 2.057 
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Designation Process/Description Mean Var Min Max 
MA_b 5th-order moving average model (parameters: 

0.1, 0.7, 0.9, 0.4, 0.2) 
0.025 1.640 -3.772 3.932 

SAT_a Skewed asymmetric tent map (parameters: a = 
0.2, b = 0.4). Chaos region. 

0.528 0.071 0.004 0.997 

SAT_b Skewed asymmetric tent map (parameters: a = 
0.6, b = 0.1). Chaos region. 

0.550 0.076 0.002 0.999 

SAT_c Skewed asymmetric tent map (parameters: a = 
0.041, b = 0.9). Quasi-2 periodic solution. 

0.501 0.211 0.000 1.000 

L3.6 Logistic map (parameter = 3.6). Quasi-2 periodic 
solution. 

0.647 0.049 0.324 0.900 

L3.7 Logistic map (parameter = 3.7). Pomeau–
Manneville scenario (transition to chaos due to 
intermittency). 

0.667 0.042 0.257 0.925 

N.D.R.N. Normally distributed (pseudo)random numbers 
with zero mean and standard deviation of 1. 

0.035 0.988 -3.797 3.321 

U.D.R.N. Uniformly distributed (pseudo)random numbers 
in the [0,1] interval. 

0.500 0.083 0.000 1.000 

Mean: mean value of the time-series; Var: variance; Min and Max: minimum and maximum values in the series. 
Notice that in the moving average model “MA_a”, the extremities (i.e., the more recent and the more past events) 

have a higher weight in relation to model “MA_b” 

 
For the purposes of testing the “positional 
sensitivity”, each generated series had 360 
points and a moving sampling window of N = 180 
run along these 360 points. Therefore, we 
obtained 181 samples of each original series, 
and each sample had its ApEn (r* = 0.15), peak-
ApEn and a1ApEn values computed. The 
variances of the 181 values obtained for each 
estimator were, then, compared using a F-test for 
sample variance.  
 
For the purposes of testing the consistency of the 
tool, we generated time-series of varying sizes 
(2N = 240, 420 and 600). A moving window of 
half size (N = 120, 210 and 300) run along the 
series. Therefore, for each N, we computed N 
values of the peak-ApEn and a1ApEn estimators. 
Two things are expected: a beforehand known 
well-behaved series should have lower 
estimators values, and, a series classified as 
less-organized for a given N should be classified 
as less-organized for a different N when 
compared to another series. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Results of the Positional Sensitivity 
 
The issue of positional sensitivity is still present 
in the a1ApEn. However, the variance of the 
moving sampling windows is significantly lower 
(all P < .01) than the ones obtained using peak-
ApEn for all the 17 data sets analyzed. 
Regarding ApEn, the variance of a1ApEn was 
significantly lower in 16 cases (P < .01, Fig. 4A). 

The only exception was the tent map C (Fig. 4B). 
This time-series is poorly characterized by ApEn 
using r > 0.15 (Fig. 4C), and all moving sampling 
windows had a very low and similar ApEn value 
( 1.56 x 10-5) and, therefore, a close to zero 

variance resulted. Hence, this exception 
reinforces the benefits of the a1ApEn approach 
indeed. 
 

3.2 Results of the Consistency of a1ApEn  
 
Tables 3 and 4 present mean values of peak-
ApEn and a1ApEn, respectively, obtained for 
each process. The series are classified 
ascendingly accordingly to their mean values for 
N = 120. Table 5 presents the pairing 
comparison between the classification given by 
peak-ApEn and a1ApEn. Coincidences are 
highlighted. Notice that the extremities of the 
classifications are coincident between peak-
ApEn and a1ApEn.  
 
Table 6 shows a symbolic pattern of changes in 
classifications that would occur using peak-ApEn 
if, instead of sorting the processes using the 120 
points size (Table 3), one had chosen the results 
from N = 210 or N = 300. There are two main 
columns, denoted by Δ1 and Δ2. Δ1 is the 
difference between a line “j” and the line “j-1”, in 
Table 3. Δ2 is the difference between a line “j” 
and the line “j-2”, in Table 3. The “+” symbol 
indicates that the process in line “j” maintains its 
classification in relation to the preceding process 
when 210 or 300 points are analyzed. On the 
other hand, the “-” symbol indicates that a 



change in classification would occur. Similarly, 
Table 7 shows the symbolic pattern of changes 
in classifications for a1ApEn. 
 
Two points are to be noted. Firstly, changes in 
classification using peak-ApEn are much more 
pronounced than using a1ApEn. In fact, while the 
latter gives no second-degree changes (Δ
former presents two changes in Δ
while most of the changes in classification by 
peak-ApEn occur for non-coincident processes 
(Table 5), changes using a1ApEn occur at the 
more disorganized processes extremity. We 
discuss the importance of this fact shortly.
 

3.3 Discussion 
 
ApEn is a wide employed estimator of 
organization (complexity) of time
Introduction). As discussed in [14]
devised as an alternative method to approach 
short time-series (< 1,000 data points) originated 
from unknown underlying processes. At that 
time, there was a struggle in empirical time
 

 
Fig. 4. Comparison of the variance of 17 data

(A) Variance of 17 different time-series from a moving ApEn and a moving a1ApEn of 180 points over an original 
data set of 360 points.  Notice that the variance of a1ApEn is smaller for all time
of 20 consecutive points from the skewed asymmetric tent map SAT_c.

for all possible normalized tolerances r*. Notice that the typically utilized r (0.15, the vertical line) does not 
properly c
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change in classification would occur. Similarly, 
Table 7 shows the symbolic pattern of changes 

Two points are to be noted. Firstly, changes in 
ApEn are much more 

pEn. In fact, while the 
degree changes (Δ2), the 

former presents two changes in Δ2. Secondly, 
while most of the changes in classification by 

coincident processes 
(Table 5), changes using a1ApEn occur at the 

re disorganized processes extremity. We 
discuss the importance of this fact shortly. 

ApEn is a wide employed estimator of 
organization (complexity) of time-series (cf., 

[14], ApEn was 
devised as an alternative method to approach 

series (< 1,000 data points) originated 
from unknown underlying processes. At that 
time, there was a struggle in empirical time-

series analysis regarding the r
strange attractors (deterministic chaos) from 
other processes and ApEn proved a valuable tool 
as an estimator of the rate of (informational) 
entropy production of a Markov chain 
approximating a given process (see 
However, as pointed out in a number of studies 
(cf. Introduction), this estimator suffers from 
consistency and objectivity. Fig. 2 illustrates well 
these problems and more robust tools are, 
therefore, relevant. In this study, we pres
new estimator that fulfil this task, i.e., has no 
subjectivity and, at the same time, has 
consistency. To obtain the estimator, one 
constructs, numerically, the area under the curve 
of ApEn values for m = 1, obtained in a detailed 
range of tolerances, along a normalized 
tolerance vector. To supply the tool with a 
complete objective procedure, we show that 
almost-always the area obtained with the 
window size m = 1 will be the largest one in 
relation to other window sizes greater than 1. 
Thus, in face of this, we name the estimator as 
a1ApEn.

4. Comparison of the variance of 17 data-sets with ApEn and a1ApEn
series from a moving ApEn and a moving a1ApEn of 180 points over an original 

data set of 360 points.  Notice that the variance of a1ApEn is smaller for all time-series but SAT_c. (B) A sample 
the skewed asymmetric tent map SAT_c. (C) ApEn of SAT_c for window size m=2 

for all possible normalized tolerances r*. Notice that the typically utilized r (0.15, the vertical line) does not 
properly cover informative values of ApEn 
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series analysis regarding the recognition of 
strange attractors (deterministic chaos) from 
other processes and ApEn proved a valuable tool 
as an estimator of the rate of (informational) 
entropy production of a Markov chain 
approximating a given process (see [14]). 
However, as pointed out in a number of studies 
(cf. Introduction), this estimator suffers from 
consistency and objectivity. Fig. 2 illustrates well 
these problems and more robust tools are, 
therefore, relevant. In this study, we present a 
new estimator that fulfil this task, i.e., has no 
subjectivity and, at the same time, has 
consistency. To obtain the estimator, one 
constructs, numerically, the area under the curve 

obtained in a detailed 
, along a normalized 

tolerance vector. To supply the tool with a 
complete objective procedure, we show that 

always the area obtained with the     
will be the largest one in 

relation to other window sizes greater than 1. 
ce of this, we name the estimator as 

 

sets with ApEn and a1ApEn 
series from a moving ApEn and a moving a1ApEn of 180 points over an original 

series but SAT_c. (B) A sample 
(C) ApEn of SAT_c for window size m=2 

for all possible normalized tolerances r*. Notice that the typically utilized r (0.15, the vertical line) does not 



 
 
 
 

Natali and Chaui-Berlinck; BJAST, 13(6): 1-11, 2016; Article no.BJAST.22726 
 
 

 
9 
 

Table 3. Mean peak-ApEn for time-series of a given process with size N 
 

Process Size (N) 
120 210 300 

SAT_c 0.252 (0.013) 0.256 (0.011) 0.257 (0.005) 
1S_a 0.305 (0.198) 0.559 (0.078) 0.651 (0.023) 
SAT_a 0.306 (0.010) 0.324 (0.017) 0.338 (0.007) 
2S_c 0.318 (0.094) 0.482 (0.061) 0.548 (0.028) 
L3.6 0.442 (0.017) 0.446 (0.006) 0.437 (0.011) 
L3.7 0.478 (0.018) 0.488 (0.006) 0.487 (0.007) 
SAT_b 0.586 (0.014) 0.606 (0.009) 0.621 (0.006) 
2S_a 0.717 (0.028) 0.922 (0.041) 1.014 (0.037) 
4S 0.722 (0.082) 0.756 (0.055) 0.952 (0.043) 
1S_b 0.732 (0.070) 0.737 (0.085) 0.835 (0.033) 
2S_b 0.787 (0.078) 0.953 (0.033) 1.034 (0.016) 
MA_b 1.589 (0.031) 1.793 (0.019) 1.951 (0.023) 
AR_a 1.670 (0.025) 1.951 (0.024) 2.157 (0.015) 
AR_b 1.733 (0.020) 1.947 (0.022) 2.138 (0.039) 
N.D.R.N. 1.749 (0.025) 2.052 (0.020) 2.202 (0.016) 
MA_a 1.793 (0.022) 2.060 (0.017) 2.231 (0.020) 
U.D.R.N. 1.902 (0.029) 2.165 (0.024) 2.333 (0.015) 
Results sorted ascendingly by the values obtained for N = 120. Samples = N for each N (see text). Parenthesis: 

standard deviations. Processes as in Table 2 
 

Table 4. Mean a1ApEn for time-series of a given process with size N 
 

Process Size (N) 
120 210 300 

SAT_c 0.011 (0.0005) 0.012 (0.0003) 0.012 (0.0003) 
1S_a 0.011 (0.009) 0.021 (0.002) 0.025 (0.001) 
2S_c 0.020 (0.009) 0.024 (0.003) 0.027 (0.001) 
4S 0.050 (0.018) 0.041 (0.009) 0.046 (0.003) 
2S_b 0.059 (0.011) 0.054 (0.003) 0.054 (0.001) 
2S_a 0.076 (0.004) 0.075 (0.002) 0.076 (0.001) 
1S_b 0.079 (0.001) 0.080 (0.001) 0.081 (0.001) 
SAT_a 0.135 (0.007) 0.136 (0.004) 0.140 (0.002) 
L3.6 0.143 (0.003) 0.149 (0.004) 0.153 (0.003) 
L3.7 0.240 (0.003) 0.242 (0.002) 0.243 (0.001) 
MA_b 0.258 (0.009) 0.240 (0.009) 0.240 (0.004) 
SAT_b 0.277 (0.003) 0.277 (0.004) 0.274 (0.005) 
AR_a 0.312 (0.022) 0.325 (0.014) 0.326 (0.012) 
AR_b 0.319 (0.013) 0.302 (0.005) 0.306 (0.007) 
N.D.R.N. 0.350 (0.015) 0.355 (0.010) 0.358 (0.012) 
MA_a 0.353 (0.014) 0.352 (0.007) 0.334 (0.019) 
U.D.R.N. 0.546 (0.006) 0.558 (0.007) 0.568 (0.008) 
Results sorted ascendingly by the values obtained for N = 120. Samples = N for each N (see text). Parenthesis: 

standard deviations. Processes as in Table 2 
 
It is expected that a time-series from a given 
generating process could have different values of 
a certain estimator depending on the sample 
interval. Our first goal was to show that a1ApEn 
is less sensitive to the sample interval than 
ApEn. Thus, the tool is not even objective and 
more consistent, but it is also more precise. Next, 
we proceed to show that the new estimator is 
more consistent than, and without the 

subjectivities of, another estimator derived from 
ApEn as well, namely, peak-ApEn. Some of the 
problems with this estimator are illustrate in 
Table 1. 
 
The results from peak-ApEn (m = 1) and a1ApEn 
are shown in Tables 3 and 4, respectively. There, 
the time-series were sorted accordingly to the 
values obtained for each estimator with N = 120. 



 
 
 
 

Natali and Chaui-Berlinck; BJAST, 13(6): 1-11, 2016; Article no.BJAST.22726 
 
 

 
10 

 

The first important point to be noted is that the 
extremities (i.e., low and high values of the 
estimators) are coincident. This indicates that, in 
general, these two tools are able to, apparently, 
recognize time organization in similar ways 
(Table 5).  
 

Table 5. Comparison of the classification 
given by peak-ApEn and a1ApEn as 

presented in Tables 3 and 4 
 

peak-ApEn a1ApEn 
SAT_c SAT_c 
1S_a 1S_a 
SAT_a 2S_c 
2S_c 4S 
L3.6 2S_b 
L3.7 2S_a 
SAT_b 1S_b 
2S_a SAT_a 
4S L3.6 
1S_b L3.7 
2S_b MA_b 
MA_b SAT_b 
AR_a AR_a 
AR_b AR_b 
N.D.R.N. N.D.R.N. 
MA_a MA_a 
U.D.R.N. U.D.R.N. 

Coincidences are highlighted in light orange 

 
Table 6. Ordered by peak-ApEn Deltas 1 and 2 

 
 Δ1 Δ2 

210 300 210 300 
SAT_c     
1S_a + +   
SAT_a - - + + 
2S_c + + - - 
L3.6 - - + + 
L3.7 + + + - 
SAT_b + + + + 
2S_a + + + + 
4S - - + + 
1S_b - - - - 
2S_b + + + + 
MA_b + + + + 
AR_a + + + + 
AR_b - - + + 
N.D.R.N. + + + + 
MA_a + + + + 
U.D.R.N. + + + + 

 
On the other hand, when we address the issue          
of changes in classification that would occur                    
if another size was employed, we find out                  
that peak-ApEn presents much more changes 

than a1ApEn (Tables 6 and 7). This feature 
highlights that a1ApEn is a more robust tool for 
analysis.  
 
As important as the issue of changes in 
classification above, is another fact. Despite of 
the size N, a1ApEn segregates the organized 
deterministic process of sine waves from the 
maps, while peak-ApEn mixes up the ordering of 
these different processes. As we stated, this is a 
very relevant issue since, even for small series 
(N = 120), a1ApEn can correctly identify different 
generating processes. At the same time, it 
should be noted that both tools correctly classify 
the random processes as the less organized 
ones. 
 
Finally, plain inspection of Tables 3 and 4 reveals 
another significant result. As can be observed, 
the standard deviations of a1ApEn are all less 
elevated than those of peak-ApEn, with a 4.8-
times lower median. This implies, as in the case 
of positional sensitivity, that a1ApEn is much less 
prone to variations than peak-ApEn when 
evaluating the organization of a time-series. 
 

Table 7. Ordered by a1ApEn Deltas 1 and 2 
 
 Δ1 Δ2 

210 300 210 300 
SAT_c     
1S_a + +   
2S_c + + + + 
4S + + + + 
2S_b + + + + 
2S_a + + + + 
1S_b + + + + 
SAT_a + + + + 
L3.6 + + + + 
L3.7 + + + + 
MA_b - - + + 
SAT_b + + + + 
AR_a + + + + 
AR_b - - + + 
N.D.R.N. + + + + 
MA_a - - + + 
U.D.R.N. + + + + 

 

4. CONCLUSION 
 
The analytical tool a1ApEn is consistent and                      
has a completely objective procedure to                  
address time-series temporal organization.                   
The tool is able to discriminate                        
adequately different generating processes and 
presents less variance than ApEn and peak-
ApEn. 
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