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Abstract 
 

The paper proposes a new method for finding an initial solution in the problem of geometric 
programming. The paper describes the conditions, under which the geometric programming problem of 
obtaining a positive solution of the matrix equation is solved. This equation describes the orthogonality 
and normalization conditions. The authors gave an example of application of the method in case of 
solving the problem of minimizing the risk of the object safety violation for the level crossing (technical 
object with safety requirements). 

 

Keywords: Geometric programming; posynomial; objective function; dual problem; matrix; positive 
solution; orthogonality; normalization.  

 

1 Introduction 
 
A number of practical problems are well approximated to geometric programming [1-5]. We can solve them 
by quantifying into a mathematical optimization model. For example, geometric programming technique is 
extremely useful in engineering analysis and design of electrical circuits (e.g., VLSI circuit component 
sizing) [2] and in solving water resources optimization problems [3]. It has been applied to a wide variety of 
problems in economics as well [4]. 
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2 Main Results 
 
Let us consider the problem of geometric programming [5] for finding the minimum of the objective 
function (criterion) 
 � = ���� = ���	� + ���	� + ⋯ + ��	�.                                (1) 
 
Let ���	� be a posynomial 
 ����� = �� ∙ ∏ x�������� , �� > 0, � = 1,2, … ,  , !�" ∈ ℝ,    
and the vector 	 = �&�, &�, … , &'�  of some components (parameters) &"  is positive. An example of this 
would be a common risk of the technical object safety violation; the criterion would be expressed as a sum 
of particular risks ���	� on a certain threats of safety violation. In this case, x would be the vector of 
parameters of a business object protection system. In the theory of reliability, the function (1) is met as a 
common rate of failure, which expressed as a sum of separate rates of failure ���	�. The coefficients !�" and �� are got by methods of linear regression analysis (see [6]). 
 
The matrix ( = �!�"� is called an exponent matrix. Suppose that the matrix A has the rank )�(� = *. This 
can be written as a block matrix 
 ( = +,-..                                  (2) 

 
Here, basis B is a * × * matrix whose determinant det , ≠ 0, and a submatrix H contains d rows of the 
matrix A, which doesn’t belong to the basis B. The difficulty level is characterized by this number 5 =  −*. In the paper, we consider the case 5 > 1. The case 5 = 1 was considered in [7]. 
 
Let us consider a 5 × * matrix 7 = −- ∙ ,8� and a 5 ×   matrix S= �7, 9:�, where 9: is the identity 5 × 5 
matrix. 
 
According to [8], the minimum �∗ = ��&∗� of the objective function (1) and components &∗"  of optimal 
vector �∗ = �&∗�, &∗�, … , &∗'� are given in analytical form: 
 �∗ = ∏ ���� <=>=∗�>=∗, &∗" = ∏ �'?�� >@∗ A∗<@ �BC@ , D = 1, 2, … , *.               (3) 

 
Here, numbers E� = E�∗  are elements of vector E = FE�, E�, … , E',E'G�, … , EH = �E�'�, E�:�� , where E�'� = �E�, E�, … , E' � and E�:� = �E'G�, E'G�, … , E'G: �, which are found from the equation system: 
 E�'� = �E�, E�, … , E' � = E�:� ∙ 7; E�:� ∙ I = 1; E'G� = <JK=L ∙ ∏ � <CL∙>C�M=C'"�� ;             (4) 

  � = 1, 2, … , 5. 
 

The column vector I = NI�…I:O consists of components I�, each of which is the sum of elements of row with 

number � of the matrix P = �Q�"�. 
 
In expression (4), the first and the second ratios are called the orthogonality and normalization conditions 
respectively, and the last one − third − expresses the condition of optimality. 
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In [8], it was proven that the condition (4) expresses the uniqueness of the solution E > 0 if it exists. To get E in [8], the iteration method of solving was applied, which uses simple matrix operations at each step. The 
convergence of this method has been proven. 
 
In the formulas (4), R denotes the maximum value 
 S∗ = S�E∗� = ∏ �<=>=∗�>=∗���                           (5) 

 

of the dual function S�E� = ∏ �<=>=�>=���  over the area EG = {E�:� > 0: E�'� = E�:� ∙ 7, E�:� ∙ I = 1}. 
 
The following two systems of equations are used for finding the initial solution: 
 E�'� = E�:� ∙ 7 and E�:� ∙ I = 1.                  (6) 
 
That is, we want to find a positive solution to the system of linear algebraic equations. It is known that this 
problem still has no general solution, which would also be acceptable computationally. In this paper, we 
solve the problem under the assumptions that reflect its specific features. 
 
Consider the equation 
 

 E ∙ ( = 0 ⟹  E ∙ +,-. = 0.                                                  (7) 

 
According to the theory of generalized inverse matrices [9], the general solution of equation (7) is given by 
the formula 
 E = X′ ∙ Y�(�, where Y�(� = �9 − ( ∙ (< �                  (8) 

 
by selecting all possible values of an arbitrary vector X′ of dimension n. Here, (<  represents the so-called S - 
inverse matrix for A (see [9]). And in the our case (see (2)), we use the relation (< = �,8�, Z� to determine (<. Because (< ∙ ( = �,8�, Z� ∙ +,-. = 9', (<  is the left inverse of A. From this and (8), it follows that 

 

 E = X′ ∙ [9 − +,-. �,8�, Z'×:�\  =  X′ ∙ [9 − ] 9' Z'×:- ∙ ,8� Z: ^\ = 
= X′ ∙ ] Z' Z'×:−- ∙ ,8� 9: ^ or = X ∙ �7 9:�:× ,                  (9) 

 
where X = �X�, X�, … , X:� is an arbitrary vector. 
 
From (9), it follows that E = �X ∙ 7, X� and, therefore, 
 X = �E'G�, E'G�, … , E'G:� ≡ �E�:��.                             (10) 
 
This is an arbitrary vector X  with a set of components E'G�, E'G�, … , E'G:  with numbers * + 1, * +2, … , * + 5 =   of the vector E. 
 
Let us say that numbers E�, E�, … , E' and E'G�, E'G�, … , E'G: are the basic and free elements of the vector E respectively. 
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Theorem 1. 
 
Let the vector E be selected from the orthogonality condition (7). Then the following statements will be true: 
 

a)  Vector E is written as 
 

 E = E�:� ∙ P                                                                                      (11) 
 
or  
 

 E�'� = E�:� ∙ 7,                                          (12) 
 
where E�'� and E�:� are composed of basic and free (arbitrary) elements of the vector E. In the expression 
(11) and (12), an arbitrary row E�:� can be selected only as a positive one: FE = E�:� P > 0H ⟹  E�:� > 0. 
 

b)  Normalization conditions type of E� + E� + ⋯ + E = 1 is written by free elements of the vector E 
as 

 I� ∙ E'G� + I� ∙ E'G� + ⋯ + I: ∙ E'G: = E�:� ∙ I = 1.             (13) 
 
Moreover, the number E'G� > 0 and the coefficient I� is equals to the sum of row elements Q� of the matrix  
 P, i.e., I� = Q�� + Q�� + ⋯ + Q�' + 1.                                     (14) 
 

c)  The set EG of all admissible vectors E is given by (11) by specifying all possible values of its free 
elements E'G� > 0 satisfying the condition (13). 

 
The dual problem (5) has a feasible solution E if and only if there exists a row E�:� > 0, for which E�'� > 0. 
 

d)  If matrix 7 comprises of at least one column `� < 0, � = 1, 2, … , * then the dual problem (5) hasn't 
solution. 

 
Proof.  
 

a)  Relation (11) follows directly from (9) and formula (13) follows from the fact that FE = E�:� ∙P� ⟺ �E = E�:� ∙ �7, 9� = �E�:� ∙ 7, E�:��� ⟹ �E�'� = E�:� ∙ 7�. 
 
Here, an arbitrary vector E�:� can be selected only as a positive one, because the task is to find out the 
conditions of orthogonality of vectors E = E�:� ∙ P > 0. Hence, we conclude that E�:� > 0. 
 

b)  The normalization conditions ∑ E���� = 1 can be written as 
 E ∙ d = 1 = E�:�P ∙ d = E�:� ∙ I, where 1 is a column of ones from which we obtain the relation (14). 
 

c)  The set of all vectors E > 0 is found by the formula (11) by giving all possible values of its free 
elements E'G� > 0, satisfying the condition (13), because the expression (12) is the general solution 
of the homogeneous equation E ∙ ( = 0. 

 
From this it follows, that the task (7) has a positive solution if and only if there exists a row E�:� > 0, for 
which E�'� = E�:� ∙ 7 > 0. 
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d)  Let the matrix 7  contains a column ̀" < 0. Then according to (11), we obtain the expression E" = E�:� ∙ `", in which, as shown above, E�:� > 0, hence, in view of the `" < 0 it follows, that E" < 0. Hence, we conclude that if the matrix 7 comprises at least one column `" < 0, then the 
problem (7) has no solutions. 

 
Theorem 2. 
 
Let in the equation E�:� ∙ I = 1 , vector I > 0 and each column `" of matrix 7 have at least one positive 
element. Then for the dual problem there exists a positive solution E, given by the conditions: 
 

1.  We define the free variables row as 
 E�:� = �e ∙ IТ ,                                 (15) 

 
where number f = Ig ∙ I = I�� + I�� + ⋯ + I:� > 0, (T denotes transposition). In this case, the following 
conditions are true: E�:� > 0, E�:� ∙ I = 1. 
 

2.  Let the row 
�e Ig ∙ 7 ≡ �h�, h�, … , h'� > 0, i.e., all h" > 0, D = 1, 2, … , * . Then the following 

inequality is true: 
 E�'� = �e ∙ Ig ∙ 7 > 0,                               (16) 

 
which means that the theorem is carried out. 
 

3.  If in the row �h�, h�, … , h'� there is the element h" < 0, and ̀ " is corresponding to its column of 
the matrix 7 ≡ �`� `� … `'�, then we use the expression for the element E" of the row E�'� in the 
form of 

 E" = h" + X ∙ `" − X ∙ I ∙ h" = −h" ∙ � X ∙ I − 1� + X ∙ `", D = 1, 2, … , *,           (17) 
 
where X = �X�, X�, … , X:� is an arbitrary vector. 
 
If the column ̀ " has its components `�" < 0 then in (17) we believe  X� = 0. The rest of the elements of the 
row X > 0 we believe are positive: Xi > 0. In this case, the number X ∙ `" > 0 for any Xi > 0. 
 
Numbers Xi > 0 are chosen by the condition X ∙ I − 1 > 0 and we arrive at the inequalities 
 X ∙ `" > 0, −h" ∙ �X ∙ I − 1� > 0, 
 
whence follows the relation (16). 
 
Proof.  
 

a)  According to the theory of generalized inverse matrices [9], the set of solutions of equation E�:� ∙ I = 1 can be found by the formula 
 E�:� = �e ∙ Ig + X ∙ �9: − �e ∙ I ∙ Ig�                (18) 

 
by specifying all possible values of the random vector X. 
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Provided that  X = 0, we get one of the solutions E�:� = �e ∙ Ig, satisfying the relations E�:� > 0, E�:� ∙ I = 1.  

Further, according to (18), the arbitrary vector X = �X�, X�, … , X:� > 0 is chosen. 
 

b)  For the row E�'� of basic variables E" , �D = 1, 2, … , *�, we have 
 E�'� = E�:� ∙ 7 = Ig ∙ 7 ∙ �e + X ∙ 7 − X ∙ I ∙ Ig ∙ 7 ∙ �e,                (19) 

 
and E" = h" + X ∙ `" − X ∙ I ∙ h" = −h" ∙ �X ∙ I − 1� + X ∙ `". 
 
Let the row �h� , h� , … , h' � > 0. Then we have the inequality (16), and in this case the theorem is true. 
 

c)  If the row Fh�,h�,  … , h',H  has elements h" < 0  and ̀ "  is corresponding to its column of the 
matrix Q, we obtain an expression for element E" of the row E�'� in the form of relation (17). 

 
If the column ̀ " has component `�" < 0, then in (17) we believe X� = 0. The remaining components of the 
row X  remain positive: Xi > 0. Since according to the hypothesis, the column `"  contains at least one 
element ̀ �" > 0, then in (17) the number X ∙ `" > 0 for any Xi > 0. Choosing numbers Xi from the condition X ∙ I − 1 > 0 we arrive at the inequalities: X ∙ `" > 0, −h"  (X ∙ I − 1� > 0, so, E" > 0, whence follows the 
relation (16). 
 

3 Numerical Example  
 
As example of using our method, let us consider a level crossing as a technical object with safety 
requirements. The method, based on the theory of geometric programming, allows us to solve the problem of 
minimizing common risk of the object safety violation in a simple analytic form due to the choice of object 
protection parameter set. 
 
It is known that a large proportion of traffic incidents are committed on level crossing. Thus a task of 
ensuring safety on level crossing is relevant. Let us consider a simplified formulation and solution of the 
task, since the total volume of its solution is problematic and it is beyond the scope of this article. Let's 
consider the following safety threats: 
 

• U1 - drive over level crossing at red traffic light by a law abiding drivers (group I); 
• U2 - drive over level crossing at red traffic light by a criminal drivers (group II); 
• U3 - a vehicle's collision on the level crossing that doesn’t stop the tracks; 
• U4 - a collision with a train and other traffic incidents, which lead to a stop of transport on the 

tracks. 
 
The group II consists of a car thieves, a drunk drivers, pursued criminals and other persons whose contact 
with the police is tantamount to arrest them. The group I consists of violators which do not belong to the 
group II. Common threat U of object safety consists of at least one of the threat U1, U2, U3, U4: j = ∑ j�k� . 
In fact, the number of threats    is much more than 4. But to keep things simple we’ll assume that  = 4. 
This is enough to illustrate the proposed method of estimating and minimizing the common risk of the object 
safety violation. 
 
Suppose that the events j�  are independent, � = 1, 2, 3, 4, and the probability of common risk of the object 
safety violation � = Y�j� is expressed as a sum of particular risks ��: 
 � = �� + �� + �n + �k, 
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where �� = Y�j�� ; �� = Y�j���1 − ��� , �n = �Y�jn��1 − ����1 − ��� ; �k = Y�jk��1 − ����1 −����1 − �n�. 
 

Let in addition, �� = Y�j�� ≈ pqrq. Here, the fraction 
pqrq  is an estimate of the particular risk ��, where s� is 

total number of vehicles which passed through the crossing for time T (let us say T=1 day) and t� is number 
of drivers of the group I which passed through the crossing for time T at red traffic lights. 
 

Similarly, we can estimate other particular risks, for example, �� = Y�j���1 − ��� ≈ puru    . The fraction puru is an estimate of the particular risk ��, where s� is total number of vehicles which passed through the 

level crossing for time T without violators of the group I. Here, t� is a number of drivers of the group II 
which passed through the level crossing for time T at red traffic lights. 
 
Suppose that the technical object has safety protection system. This system includes signal operator, road 
inspectors, technical means of preventing violations such as barriers, remote control system barriers etc. 
 
Protection system gives us the following parameters: 
 &� − time of duty by road inspectors; &� − time between duty; &n − average time between the opening and closing of the barriers. 
 
In fact, the number of parameters &v is much more than * = 3. But this is enough to illustrate the estimation 
method of minimizing the common risk of the object safety violation. A table below is a fragment of 
empirical data for 10 observations, which we used for the calculations. Each row in the table corresponds to 
time T=1 day for situation on the level crossing. 
 

Table 1. A fragment of empirical data for 10 observations 
 

   Probability of threats wx (multiplied by 103) Protection parameters (in hours) 
u1 u2 u3 u4 x1 x2 x3 
2.10 
0.42 
0.75 
2.00 
5.90 
1.80 
0.30 
2.80 
4.90 
3.30 

0.20 
0.53 
0.29 
0.52 
0.16 
0.35 
0.53 
0.23 
0.13 
0.20 

5.80 
1.09 
3.00 
0.17 
3.80 
1.12 
3.08 
1.28 
7.50 
1.44 

0.51 
0.20 
0.63 
0.20 
0.43 
0.12 
0.52 
0.40 
1.22 
2.80 

2.00 
2.50 
3.00 
1.50 
1.30 
1.30 
4.00 
1.70 
2.00 
3.00 

4.00 
3.00 
5.00 
2.00 
3.00 
2.00 
5.00 
3.00 
5.00 
6.00 

0.25 
0.20 
0.25 
0.10 
0.20 
0.20 
0.25 
0.15 
0.20 
0.10 

 
These data are mainly expert evaluation of road inspectors, ambulance workers and staff which services the 
technical means of preventing violations. We assume that the vector & = �&�, &�, &n�  of protection 
parameters is positive. 
 

Let �� = ���&� be a posynomial �� = ���&� = �� ∙ ∏ &"y=Cn"�� , where �� > 0, � = 1, 2, 3, 4.          (20) 
 
Here, the matrix ( = �!�"� is an exponent matrix. Taking the logarithm of both side of (20), we obtain  
  z ���&� = !�{ + !��z &� + !��z &� + !�nz &n , � = 1, 2, 3, 4, �� = |y=}.           (21) 
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Thus, we can get coefficients !�" by methods of linear regression analysis [6]. Writing the equation (21) for 
the first row of the Table 1, we obtain the expression for the risk  ��: z 2,1 = !�{ + !��z 2 + !��z 4 +!�nz 0.25 or !�{ + 0.693!�� + 1.386!�� − 1.386!�n = 0.742. Similarly, writing the equation (21) for next 
rows of the Table 1 we obtain an algebraic system 
 �!� = ��,                  (22) 
 
where !� = �!�{, !��, !��, !�n�g is a column of vector of required coefficients in the posynomial ���&� =�� ∙ ∏ &"yqCn"��  , �� = |yq} and the matrix � is expressed as � = �d, z &�, z &�, z &n�. 

 
Moreover, 1 is a column of ones; z & ", D =  1, 2, 3 is a column for values z &"i of the z &" for the parameter &"  and 10 observations s = 1, 2, …, 10; ��  is a column for values z ��i�&�  of the z ���&� ; �� =�z 2.1   z 0.42 …    z 3.3�g. 
 
According to the method of least squares (MLS) the solution !� = !� � of the equation (22) is given in the 
form [6]: 
 

 !�� =  �G��.                                (23) 
 
Here �G is a pseudoinverse matrix of the matrix �. Calculation method for the matrix �G is given in the 
paper [9]. Recall that the pseudoinverse is defined and unique for all matrices whose entries are real or 
complex numbers. Vector !�� is a solution of equation (22) under the condition that the equation is 
compatibility. In the converse case, !�� is the best approximation solution (according to the MLS). 
 

Thus, !�� =  �G�� =  [yq}yqqyquyq�
\ = [8�.{�8kn8� \ , �� = |8�.{� = 0.125  and the polynomial ��  is expressed as 

�� = ���&� = 0.125&�8k&�n&n8� . Using the given calculate scheme for the risks ��, �n, �k,  we obtain �� = ���&� = 0.8&��&�8�,  �n = �n�&� = 6&�8�&�n&n�,  �k = �k�&� = 0.004&�8�&�n&n8�. The common risk   �  
at the interval [0, T]  of time is expressed as 
 � = ��&� = 0.125&�8k&�n&n8� + 0.8&��&�8� + 6&�8�&�n&n� + 0.004&�8�&�n&n8�. 
 

Coefficient of variation S�  is used for precision and sufficiency to empirical data: S� = e�A� 100% . Here, �� = �� � + �� � + �� n + �� k. Moreover, �� �, � = 1, 2, 3, 4  is a sample mean of observations ��i, Q = 1, 2, … , 10; 

and f� � is the sum of the sample variance f��� = ��!� � − ���� �s − * − 1�,�  where N is the total number of 
observations and m is the number of protection parameters (* = 3); ‖∙‖ means an Euclidean norm of vector; f��� is the sample variance according to the MLS-solutions  !� � =  �G��  for the algebraic system �!� = � � ,� = 1, 2, 3, 4. 
 

In our case, f� = �f��� + f��� + f�n� + f�k� . We obtained S� = 9% as a result of data processing for N=100. This 
good result gives acceptable discrepancy between the experimental and calculated data [9]. 
 
It should be found the vector & = &∗ > 0, with components &"∗ such that value �∗ = ��&∗� is minimal. Using 
exponents !�", we can write the exponent matrix A as 
 

( = F!�"H = +,-. = �−4   2    3 −1−2   0−2−1   3    2   3 −1�, where , = [−4  3 −1   2−2 −23 02\ and - = �−1 3 −1�. 
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Note that 5|�, ≠ 0. It follows that exist an inverse matrix ,8�: 
 

,8� = ���� ��� ��n����n�
����n�

��n�nn
� = �−2 − �� −1−21 −53 −11 �. 

 
In our case sub-matrix - = �−1 3 −1� contains one row of matrix A, which do not belong to the sub-
matrix B. Using the formulas from [8], we get subsidiary variables E�. These ones are called dual variables 
and are found by the formula 
 Eg = �E�,  E�,  En,  Ek� = �� �−- ∙ ,8�, 1� = �� �5, ��� , 3, 1�, where the number I = 5 + ��� + 3 + 1 = k�� . 

Therefore Eg = �E�, E�,  En, Ek� = �k� �10, 27, 6, 2�. 
 

Thus, E� = �{k� , E� = ��k� ,  En = �k� , Ek = �k�. 

 
Using the formulas of the paper [10], we can write the minimal value �∗ multiplied by 10n of the common 
risk y due to �� = 0.125 , �� = 0.8,  �n = 6.0, �k = 0.004 . In our case 

�∗ = ∏ +<=>=.>=k��� = +{.����{ .q}�� +{,��� .u��� +��. ��� +{,{{k� . u�� = 1.55 ,  i.e. minimal value of the common risk is 

0.155%. Then the protection parameters &"∗ , D = 1, 2, 3, can be found from the equations: 
 

&�∗ = ∏ +>=∙A∗<= .Bq= = + �{∙�.��k�∙{.���.8� +��∙�.��k�∙{.� .8�u +�∙�.��k�∙� .8�n��� ; 

 &�∗ = ∏ +>=∙A∗<= .Bu= = + �{∙�.��k�∙{.���.8� +��∙�.��k�∙{.� .8� +�∙�.��k�∙� .8�n��� ; 

 &n∗ = ∏ +>=∙A∗<= .B�= = + �{∙�.��k�∙{.���. +��∙�.��k�∙{.� .n +�∙�.��k�∙� .n��� . 

 
Thus, we get optimal protection parameters (in hours) &�∗ = 1.98, &�∗ = 1.84, &n∗ = 0.15. If the proposed 
model is acceptable with respect to the coefficient of variation, it allows us to solve the problem of 
minimizing common risk of the object safety violation in a simple analytic form due to the choice of object 
protection parameter set. 
 

4 Final Remarks 
 
A new method for finding an initial solution in the problem of geometric programming was proposed. The 
conditions were described, under which the geometric programming problem of obtaining a positive solution 
of the matrix equation can be solved. 
 
There is an example of solving the problem of minimizing the risk of the technical object safety violation. It 
is worth noting that the proposed method allows to provide the solution to the technical problem in the form 
of analytical expression (not in the traditional form of an approximation). 
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