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Abstract 
The quality of the soybean seed can be influenced by several factors that may occur at any stage of production. 
Mechanical damage, deterioration by humidity and the damage caused by bed bugs are among such problems. 
The tetrazolium test is adopted by the seed industry, especially for testing soybeans, due to its accuracy, fast 
result, and the large amount of information it provides. Digital processing and image analysis can be used to aid 
the extraction and classification of standards for minimizing the subjectivity implicit in the test, thus allowing 
more credibility to the information. The aim of this work is testing the effectiveness of Random Forests in the 
supervised classification of soybean embryos images submitted to the tetrazolium test. In order to do so, we used 
the Trainable Weka Segmentation plugin to perform the segmentation process, and the WEKA software to 
evaluate the quality of the classifier model obtained. During the process, 222,646 instances among 230,388 
instances were correctly classified (96.7%), with Kappa index of 0.95, showing the classifier excellent 
performance regarding the proposed dataset. The supervised classification, combined with pixel-based 
segmentation, proved to be efficient in extracting more coherent visual information on seed damage. Also, we 
conclude that the choice of image attributes, along with the algorithm used in the work, showed to be competent 
in the classification process of high dimensionality samples. 
Keywords: seed technology, seed vigor, machine learning 

1. Introduction 
Soybeans are one of the species most in need of consideration, given the degree of collection by producers. Seed 
technology has as main objective to develop efficient mechanisms for the productive chain, using lots of seeds of 
high quality. This set of knowledge, which it is based on practical experience and scientific experimentation, 
begins with the work of genetic improvement and proceeds to the harvesting, processing and distribution of 
high-quality lots, bringing together the genetic, physiological and sanitary attributes (Marcos Filho, 2015).  

The quality of soybean seed, especially in tropical regions, may be influenced by several factors, which may 
occur at any stage of production (field, harvest and post-harvest). Among these problems they bring, 
mechanically caused damages in the harvesting and processing operations, damages caused by deterioration due 
to humidity, arising from drought period, temperature extremes, during maturation, and fluctuations of ambient 
humidity conditions, and damage caused by bed bugs stand out (França Neto, Krzyzanowski, Henning, & Costa, 
2000).  

The tetrazolium test has been outstanding among the quality analysis tests adopted by the seed industry, 
especially for soybeans, not only because of its accuracy and speed, when compared to other tests, but also 
because of the large number of information it provides, such as the diagnosis of possible causes of quality 
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reduction (mechanical damage, deterioration by moisture, and bedbug damage), and the possibility to evaluate 
the quality and vigor of seed lots (França Neto & Krzyzanowski, 2018). 

Even without using expensive equipment and reagents, the accuracy of the test depends on a well-trained seed 
analyst, who knows all the techniques and procedures involved in the test, so the analyst's ability to recognize 
typical patterns of the various types of damage that can be visualized in the seeds is essential to obtain a correct 
diagnosis of the causes of viability loss (França Neto & Krzyzanowski, 2018; Moore, 1985). 

Computational tools that employ digital processing and image analysis to aid the extraction and classification of 
patterns in information that minimize or nullify the subjectivity implied in the accomplishment of some tests 
contribute to a greater information credibility and guarantee of the results, besides reducing the classification 
time of the test. 

The ImageJ platform is a free distribution software, licensed under the GNU (General Public Licenses), and is 
used by an active community, composed by researchers from various knowledge fields. Its use allows a range of 
applications, from data visualization to advanced image processing and statistical analysis. Due to its 
extensibility, it attracts biologists and computer scientists who efficiently implement specific image processing 
algorithms (Schindelin, Rueden, Hiner, & Eliceiri, 2015). 

Image segmentation is generally defined as the decomposition process in non-intersecting regions, where a label 
is assigned to these regions (pixel set), which share certain visual characteristics. Most traditional segmentation 
methods are based on pixel intensity information only. However, humans use other information when 
performing segmentation naturally. For this reason, recently, trainable segmentation methods emerged as an 
important alternative to improve the accuracy of the region labeling process (Arganda-Carreras et al., 2016). 

Recently, a new family of algorithms based on machine learning has been recognized as being successful for 
image classification, by using computational intelligence paradigms, which studies the development of inference 
techniques from samples. These techniques, based on mathematical models, present the ability to “learn” from 
the samples and generalize the knowledge generated for the whole image (Andrade, Francisco, & Almeida, 
2015).  

Learning-based algorithms have been developed to obtain more accurate and reliable information as an 
alternative to the usual pixel-based approaches and objects. Random Forest (RF), Bagging, Boosting, Decision 
Tree, Artificial Neural Network, Supported Vector Machine (SVM) and K-Nearest-Neighbor are among the 
most commonly used learning-based algorithms. These algorithms are also known as machine learning methods, 
which look for the best model for the data, using a set of data with sufficient size and parameters, and decision 
rules created from the input data (Breiman, 2001; Akar & Güngör, 2012).  

Breiman (2001) has proposed Random Forests, that include an additional layer of randomness to the bagging 
procedure. Therefore, in addition to constructing each tree using a bootstrap sample different from data, Random 
Forests change the way classification or regression trees are built. By default, in trees, each node is divided 
according to the best combination of all variables. In a Random Forest, each node is divided using the best 
among a subset of randomly chosen predictors on that node. This classification strategy is efficient when 
compared to other classifiers, such as discriminant analysis, support vector machines, and neural networks, 
besides being robust against overfitting (Breiman, 2001; Liaw & Wiener, 2002). 

Random Forests are composed of a set of decision trees, where the prediction of the class for new values is based 
on a voting system, in which, after generating a large number of trees (forest), the class is chosen, based on the 
majority of tree votes, being formally described as h(x, Θk), where h is the decision tree, x is the input to be 
sorted, and Θk is the kth random vector sampled independently (Breiman, 2001). Hence, each tree votes for the 
most popular class for the x entry to be sorted. 

These forests are obtained through a method to generate multiple versions of a predictor, known as bagging 
(bootstrapping aggregating) Breiman (1996), according to which the final forecast is performed by the average 
of predictions B (Equation 1) or by the majority vote (Equation 2) (Goldstein, Polley, & Briggs, 2011). 

fመav(x)	=	 1

T
∑ fመtT

t=1 (x)                                   (1) 

Where, fመt(x) is the function with the features to be studied; and T is the number of training samples. 

fመbag(x)	=	 1

B
∑ fመ*bB

b=1 (x)                                  (2) 

Where, fመ*b
(x) is the function with the features to be studied; and B is the number of bootstrap samples. 
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Where, Tp is the total of the category classified as true positive; Fp is the total of categories classified as false 
positive.  

Sensitivity (Equation 6) is the ratio of true positives, that is, the model ability to perfectly predict the true class. 

S	=	 Tp

Tp	+	Fn
                                        (6) 

Where, Tp is the total of the category classified as true positive; Fn is the total of categories classified as false 
negative.  

The accuracy (Equation 7) is defined as the ratio of correct classifications, without false positives and negatives. 

Ac	=	 Tp	+	Tn

T
                                       (7) 

Where, Tp is total of the classifier category as true positive; Tn is the total of the classes categorized as true 
negative; T is the total dataset. 

3. Results 
The set of seeds used presents several damages, which can be found in the same embryos. For example, some 
typical patterns can be observed, such as mechanical damage (DM), characterized by abrasions (Figures 3a and 
3b); characteristic damages of moisture deterioration (DU), such as intense red or white lesions on the tissues 
(Figures 3c to 3k); whitish circular lesions, typical of bedbug bites (DP) (Figure 3k to 3o), and also embryos 
without apparent lesions (SL) (Figure 3p). 

 

a) DM b) DM c) DU d) DU 

e) DU f) DU g) DU h) DU 

i) DU j) DU k) DU l) DP 

m) DP n) DP o) DP p) SL 

Figure 3. Example of damage present in the training set; MD-Mechanical damage, DH-Deterioration by 
humidity, BD-Bed bug damage, ND-No damage 
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Table 1. Confusion matrix 

Class 
Predicted class 

Σ 
Background ND MD DH BD 

B 79.255 80 0 121 3 79.459 
ND 119 89.019 32 1.592 81 90.843 
MD 1 174 1.060 483 0 1.718 
DH 201 3.421 60 48.531 77 52.290 
BD 16 794 0 487 4.781 6.078 
Σ 79.592 93.488 1.152 51.214 4.942 230.388 

Note. B-Background; ND-No-damage; MD-Mechanical damage; DH-Deterioration by humidity; BD-Bed bug 
damage.  

 

We observed that 80 instances among the 79,459 instances of the background class were erroneously classified 
as healthy embryos, 121, as deterioration by moisture, and three, as bedbug damage. Therefore, the accuracy of 
the class was 99.7%, with sensitivity of 99.7% and precision of 99.6%. 

Regarding no-damage class, 119 instances among 90,843 were misclassified as background, 32 as mechanical 
damage, 1,592 as deterioration by moisture, and 81 as bedbug damage. The accuracy was 98%, with sensitivity 
of 96.6%, and accuracy of 95.2%. The mechanical damage class was the one with the lowest correctness, since, 
among 1,718 instances, one instance was wrongly classified as background, 174 as healthy embryos, and 483 as 
deterioration by humidity. Its accuracy was 61.7%, with sensitivity of 73.9%, and precision of 92%. 

The class of deterioration by humidity presented 201 instances classified as background, 3,421 classified as 
undamaged, 60 as mechanical damage, and 77 as bedbug damage, obtaining accuracy of 92.8%, sensitivity of 
93.8% and precision of 95.2%. Also, the class of bedbug damage presented 16 instances that were mistakenly 
classified as background, 794 as no-damage, and 487 as deterioration by humidity. Its accuracy was 78.7, with 
sensitivity of 86.8%, and precision of 96.7%. 

The accuracy, sensitivity, precision, and Kappa index values for the model were calculated in relation to data, 
based on the values of the confusion matrix and cross-validation (Table 2). 

 

Table 2. Classifier performance results 

 Ac (%) Pr (%) S (%) Icc (%) Iic (%) K 
B 99.7 99.6 99.7 

96.6 3.4 0.95 

ND 98 95.2 98 

MD 61.7 92 61.7 

DH 92.8 94.8 92.8 

BD 78.7 96.7 78.7 

xp 96.6 96.6 96.6 

Note. B-Background; ND-No-damage; MD-Mechanical damage; DH-Deterioration by Humidity; BD-Bed bug 
damage; Ac-Accuracy; Pr.-Precision; S-Sensitivity; Icc-Instances correctly classified; Iic-Instances incorrectly 
classified; K-Kappa Index; xp-Weighted average.  

 

By the analysis of the results, we observed that, 222,646 instances among 230,388 instances were correctly 
classified (96.7%), and 7,742 were incorrectly classified (3.4%), with a Kappa index of 0.95. Kulkarni and Lowe 
(2016), reached similar results studying RF algorithm for land cover classification concluded that their 
performance was better than all other studied classifiers in terms of overall accuracy and kappa coefficient. Chan 
and Paelinck (2008), evaluating Random Forest and Adaboost classification for ecotope mapping using 
hyperspectral imagery concluted that in terms of accuracy performance, RF have outperformed a neural network 
classifier.  

4. Conclusion 
Supervised classification combined with pixel-based segmentation has proved to be efficient at extracting 
information from the tetrazolium test, allowing more accurate evaluations with less subjectivity. Moreover, the 
image attribute choices, along with the Random Forests algorithm, were efficient in the process of sample 
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classification with high dimensionality, which leads the development of new alternatives technologies 
facilitating to perform exhaustive visual tests. 
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