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Abstract
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of semilocal convergence of Kantorovich, Gutiérrez, α−theory of Smale and the α−theory of
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Diloné-Gutiérrez for the case E0 = M .
Numeric and graphic calculations were obtained by applying Mathematica V10.
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1 Introduction

We must keep in mind that the convergence of an iterative method is not always going to happen.
For this to happen, a series of conditions have to be given on the function, the starting point or on
the root. In this sense, 3 types of convergence results have been distinguished:

1. Local: conditions are given on the root.

2. Semilocal: conditions are given on the starting point.

3. Global: conditions are given over an interval.

Recall that the results of semilocal convergence, in addition to ensuring the convergence of Newton’s
method to a solution of the equation considered, provide results of existence and uniqueness of the
solution.

In this article we analyze the behavior of the famous Kepler’s equation,

f(E) = E − e sinE −M, (1.1)

where eccentricity e ∈ (0, 1) and the mean anomaly M ∈ [0, π] are known parameters. We have
selected this equation as a function test in the analysis of various semilocal convergence results for
the Newton-Raphson method, which when is applied to (1.1) gives the sequence

En+1 = En − f(En)

f ′(En)
, n ≥ 0. (1.2)

The main idea of the paper is to construct the corresponding majoring function for the mentioned
theories for the case E0 = π and then to give conditions on the eccentricity e that guarantee that
these majoring functions have real roots. In this way, we establish conditions for the solution for
Kepler ’s equation in terms of eccentricity e.

The authors consider the results given by Kantorovich [1], Gutiérrez [2], α-theory of Smale [3] and
α-theory of Wang-Zhao [4]. In addition, the authors obtain new results of existence and uniqueness
of solution for the equation (1.1). In this they generalized the study in [5] for the case E0 = M .

We present now the semilocal convergence theorems that we use in this paper. Although they can
be stated in a Banach space setting, we show here the version for real valued functions.The details
of the demonstration of the previous theorems can be found in Diloné [6].

Theorem 1.1 (Kantorovich’s Theorem ). Let us consider f : I → R, where I is an open interval
in R, a differentiable function in I. Let us assume, without loss of generality, that f(x0) ̸= 0 and

i) x0 ∈ I.

ii) f ′(x0) ̸= 0.

iii)
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ≤ β.

iv)
∣∣∣ f ′(x)−f ′(y)

f ′(x0)

∣∣∣ ≤ γ|x− y|, ∀x, y ∈ I.

v) h = γβ ≤ 1/2.

vi) t∗ = 1−
√

1−2h
2β

it is such that (x0 − t∗, x0 + t∗) ⊂ I.

Then, the Newton-Raphson method

xn+1 = xn − f(xn)

f ′(xn)
, n ≥ 0, (1.3)
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is well defined and {xn}∞n=0 converges to x∗ ∈ I, where f(x∗) = 0. In addition, this solution is
located in the range

[x0 − t∗, x0 + t∗]. (1.4)

and it is unique in
(x0 − t∗∗, x0 + t∗∗). (1.5)

As it was pointed out by Argyros et al [7] the Lipschitz condiction in Kantorovich’s theorem can
be weakened by combining a center-Lipschitz with the usual Lipschitz condition.

Theorem 1.2 (Argyros-Hilout’s Theorem ). Let us consider f : I → R, where I is an open
interval in R and f a differentiable function defined in I. Let us suppose that there exist x0 ∈ I,
and η > 0 such that

i)
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ≤ η,

ii)
∣∣∣ f ′(x)−f ′(x0)

f ′(x0)

∣∣∣ ≤ L0|x− x0| for all x ∈ I,

iii)
∣∣∣ f ′(x)−f ′(y)

f ′(x0)

∣∣∣ ≤ L|x− y| for all x, y ∈ I,

iv) hA = LAη ≤ 1
2
, where LA = 1

8

(
4L0 +

√
L0L+ 8L2

0 +
√
L0L

)
v) {x ∈ R, |x− x0| ≤ t∗} ≤ I where t∗ = limn→∞ tn and tn is the scalar sequence given by

t0 = 0, t1 = η, t2 = η +
L0η

2

2(1− L0η)
, tn+2 = tn+1 +

L(tn+1 − tn)
2

2(1− L0tn+1)
∀n = 1, 2, . . .

Then, the Newton-Raphson method defined in (1.3) is well defined and {xn}∞n=0 converges to x∗ ∈ I,
where f(x∗) = 0.

Theorem 1.3 (Gutiérrez’s theorem or Kantorovich’s theorem under strong conditions).
Let us consider f : I → R, where I is an open interval in R, a differentiable function in I. Let us
assume, without loss of generality, that f(x0) ̸= 0 and that

i)
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ≤ a.

ii)
∣∣∣ f ′′(x0)
f ′(x0)

∣∣∣ ≤ b.

iii)
∣∣∣ f ′′(x)−f ′′(x0)

f ′(x0)

∣∣∣ ≤ K|x− x0|.

If the majorizing polynomial

ϕG(t) = a− t+
b

2
t2 +

K

6
t3, (1.6)

has two positive real roots t∗ and t∗∗, then the Newton-Raphson method defined in (1.3) well defined
and {xn}∞n=0 converges to x∗ ∈ I, where f(x∗) = 0. This solution is located in (1.4) and it is unique
in (1.5).

Theorem 1.4 (Smale α-theory). Let f : D ⊆ R → R a continuous and differentiable function in
an interval D where the following conditions hold:

i)
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ≤ β. f ′(x0) ̸= 0.

ii) 1
k!

∣∣∣ f(k)(x0)
f ′(x0)

∣∣∣ ≤ γk−1, for k ≥ 2.

iii) α = βγ ≤ 3− 2
√
2.
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If the majorizing function

ϕS(t) = β − t+
∑
k≥2

γk−1tk = β − t+
γt2

1− γt
, for 0 ≤ t <

1

γ
, (1.7)

has two positive real roots t∗ and t∗∗ then the Newton-Raphson method (1.3) is well defined and
{xn}∞n=0 converges to x∗ ∈ I, where f(x∗) = 0. In addition, this solution is located in the range
defined in (1.4) and it is unique in (1.5).

Theorem 1.5 (Wang-Zhao α-theory). Let us consider f : D ⊆ R → R a continuous and
differentiable function in an interval D where the following conditions hold:

i) f ′(x0) ̸= 0.

ii) β(x0, f) =
∣∣∣ f(x0)
f ′(x0)

∣∣∣.
iii) 1

k!

∣∣∣ f(k)(x0)
f ′(x0)

∣∣∣ ≤ γk, k ≥ 2.

If the majorizing function

ϕW (t) = β − t+
∑
k≥2

γkt
k. (1.8)

has two positive real roots t∗ and t∗∗ , then method defined in (1.3) is well defined and {xn}∞n=0

converges to x∗ ∈ I, where f(x∗) = 0. This solution is located in the range defined in (1.4) and it
is unique in (1.5).

2 Main Results

Applying the conditions of the semilocal convergence theorems of Kantorovich (1.1), Gutiérrez (1.3),
Smale (1.4) and Wang-Zhao (1.5) to the Kepler’s equation, we have obtained, from E0 = π, the
following results on the existence and uniqueness of solution in terms of the eccentricity e.

Theorem 2.1 (Kantorovich’s conditions). If e ≤ 0.247808, then Kepler’s equation has a solution.
This solution is located in the range

[π − t∗, π + t∗]. (2.1)

and it is unique in
(π − t∗∗, π + t∗∗), (2.2)

where δ = 1/(1 + e) and

t∗ =
1−

√
1− πeδ2

eδ
.

t∗∗ =
1 +

√
1− πeδ2

eδ
,

are the roots of the majorizing polynomial

ϕK(t) =
1

2
eδt2 − t+ πδ.

In addition, the Newton-Raphson method, defined by

En+1 = En − f(En)

f ′(En)
, n ≥ 0, (2.3)

starting in E0 = π, converges to this solution.
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Proof. We take E0 = π in Kantorovich’s theorem to check the following conditions:

i) f ′(E0) ̸= 0.

ii)
∣∣∣ f(E0)
f ′(E0)

∣∣∣ ≤ β.

iii)
∣∣∣ f ′(E)−f ′(y)

f ′(E0)

∣∣∣ ≤ γ(E − y), ∀E, y.

iv) h = γβ ≤ 1
2
.

In this case, we see that

f(E) = E − e sinE −M ⇒ f(E0) = π −M ⇒ |f(E0)| ≤ π.

f ′(E) = 1− e cosE ⇒ f ′(E0) = 1 + e

f ′(y) = 1− e cos y.

| f(E0)

f ′(E0)
| ≤ π

1 + e
= β = πδ.

|f
′(E)− f ′(y)

f ′(E0)
| =

e

1 + e
| cosE − cos y| ≤ e

1 + e
|E − y| ⇒ γ =

e

1 + e
= eδ

so the majorizing polynomial is given by (2.3). Then

h = βγ = πeδ2 ≤ 1

2
⇒ πe

(1 + e)2
≤ 1

2
⇒ e ≤ 0.247808.

The rest of the proof follows immediately from the theorem of Kantorovich.

Remark. In some cases, it is possible to weaken the Lipschitz condition in Kantorovich’s theorem,
as it has been indicated in Theorem 1.2. In our case, for the Kepler’s equation, f(x) = x−e sinx−M,
we have f ′(x) = 1− e cosx.

So, for x0 = π, we have

f ′(x)− f ′(y)

f ′(x0)
=

e

1 + e
(cos y − cosx)

=
e

1 + e

∞∑
n≥1

(−1)n

(2n)!

(
y2n − x2n

)
=

e

1 + e

[
sup
x,y∈I

(x+ y

2!
− x3 + x2y + xy2 + y3

4!
+

x5 + x4y + · · ·+ y5

6!
− . . .

)]
(x− y),

and

L =
e

1 + e
sup
x,y∈I

∣∣x+ y

2!
− x3 + x2y + xy2 + y3

4!
+

x5 + x4y + · · ·+ y5

6!
− . . .

∣∣.
For the Lipschitz-center condition:

L0 =
e

1 + e
sup
x∈I

∣∣x+ π

2!
− x3 + x2π + xy2 + π3

4!
+

x5 + x4π + · · ·+ π5

6!
− . . .

∣∣.
So, if L ≤ γ = e

1+e
or L0 < L, then the Theorem 1.2 could be applied, obtaining better bounds for

the eccentricity e.
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Theorem 2.2 (Gutiérrez’s conditions). If e ≤ 0.129927 then Kepler’s equation has a solution. This
solution is located in (2.1) and it is unique in (2.2), where t∗ and t∗∗ are the positive roots of the
majorizing polynomial

ϕG(t) = πδ − t+
1

6
eδt3, (2.4)

whit δ = 1/(1 + e). In addition, the Newton-Raphson method, defined by (2.3), starting in E0 = π,
converges to this solution.

Proof. We take E0 = π in Gutiérrez’s theorem to obtain the following conditions:

i)
∣∣∣ f(E0)
f ′(E0)

∣∣∣ ≤ a.

ii)
∣∣∣ f ′′(E0)
f ′(E0)

∣∣∣ ≤ b.

iii)
∣∣∣ f ′′(E)−f ′′(E0)

f ′(E0)

∣∣∣ ≤ K|E − E0|

and to calculate the parameters a, b and K. As in the previous result, we have∣∣∣ f(E0)

f ′(E0)

∣∣∣ ≤ π

1 + e
= a. (2.5)

(2.6)

In addition,

f ′′(E) = e sinE ⇒ f ′′(E0) = e sinπ ⇒ f ′′(E0) = 0.

|f ′′(E)− f ′′(E0)| = e| sinE − sinE0| ≤ e|E − π|.

Then ∣∣∣f ′′(E0)

f ′(E0)

∣∣∣ ≤ 0 = b. (2.7)∣∣∣f ′′(E)− f ′′(E0)

f ′(E0)

∣∣∣ ≤ e

1 + e
|E − E0| ⇒ K =

e

1 + e
. (2.8)

Substituting (2.5), (2.7) and (2.8) in (1.6) we obtain (2.4) Let us analyze the polynomial (2.4).

ϕ′
G(t) = −1 +

1

2
eδt2.

ϕ′
G(t) = 0 ⇔ −1 +

1

2
eδt2 = 0 ⇔ t = ±

√
2

eδ
. (2.9)

(2.10)

Let us consider t̂ =
√

2/(eδ), then

ϕ′′
G(t̂) = eδ

√
2

eδ
> 0

and ϕG(t) has a local minimum at t̂. Note that

ϕG(t̂) = πδ −
√

2

eδ
+

1

6
eδ

(√
2

eδ

)3

= πδ − 2
√
2

3

√
1

eδ
(2.11)

So the polynomial ϕG(t) has positive roots if ϕG(t̂) < 0, that is

πδ − 2
√
2

3

√
1

eδ
< 0 ⇔ 1

1 + e
<

2
3
√

(3π)2e
⇔ e ≤ 0.129927
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Diloné et al.; BJMCS, 21(3), 1-13, 2017; Article no.BJMCS.30928

Accordingly, when e ≤ 0.129927, Kepler’s equation (1.2) has a solution and the rest of the test is a
direct application of Theorem 1.3.

Theorem 2.3 (Smale’s conditions). If e ≤ 0.142599, then Kepler’s equation has a solution. This
solution is located in (2.1) and it is unique in (2.2), where t∗ and t∗∗ are the positive roots of the
majorizing function

ϕS(t) = πδ − t+
eδt2

2− eδt
, (2.12)

whit δ = 1/(1 + e). In addition, the Newton-Raphson method, defined by (2.3), starting in E0 = π,
converges to this solution.

Proof. We take E0 = π in Smale’s α-theorem. So we must find the parameters β, γ and α that
appear in the following conditions:

i) f ′(E0) ̸= 0.

ii)
∣∣∣ f(E0)
f ′(E0)

∣∣∣ ≤ β.

iii) 1
k!

∣∣∣ f(k)(E0)

f ′(E0)

∣∣∣ ≤ γk−1, k ≥ 2.

iv) α = βγ ≤ 3− 2
√
2.

As in Theorem 2.1 we have ∣∣∣ f(E0)

f ′(E0)

∣∣∣ ≤ π

1 + e
= β.

Furthermore

f ′′(E) = e sinπ ⇒ f ′′(E0) = 0.

f ′′′(E) = e cosπ ⇒ |f ′′′(E0)| ≤ e.

...

|fk(E0)| ≤
{

0, k = 2n, ∀n ∈ N;
e, k = 2n+ 1, ∀n ∈ N.

Then we must find a constant γ such that∣∣∣ 1
k!

fk(E0)

f ′(E0)

∣∣∣ 1
k−1 ≤

[ 1
k!

e

1 + e

] 1
k−1 ≤ γ. (2.13)

Let us introduce the sequence

xk =
[ 1
k!

e

1 + e

] 1
k−1

, k ≥ 2.

As e ∈ [0, 1], {xk} is a decreasing monotone sequence that converges to 0. So we can choose

γ = x2 =
e

2(1 + e)
.

Now we must prove

α = βγ ≤ πe

2(1 + e)2
≤ 3− 2

√
2. (2.14)

This inequality is true for e ≤ 0.142599, so the hypothesis of Smale’s theorem 1.4 are satisfied and
the rest of the proof is a consequence of this theorem.
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Theorem 2.4 (Wang-Zhao’s condition). If e ≤ 0.018826, then Kepler’s equation has a solution.
This solution is located in (2.1) and it is unique in (2.2), where t∗ and t∗∗ are the positive roots of
the majorizing polynomial

ϕW−Z(t) = δe exp(t)− t(1 + eδ) + δ(π − e), (2.15)

whit δ = 1/(1 + e). In addition, the Newton-Raphson method, defined by (2.3), starting in E0 = π,
converges to this solution.

Proof. Once again, we take E0 = π in the α-theorem of Wang-Zhao to check the following
conditions:

i) f ′(E0) ̸= 0.

ii)
∣∣∣ f(E0)
f ′(E0)

∣∣∣ ≤ β.

iii) 1
k!

∣∣∣ f(k)(E0)
f ′(E0)

∣∣∣ ≤ γk, k ≥ 2.

We proceed as in the previous theorem to obtain the parameters β = πδ and γk = eδ/k!. So the
corresponding majorizing function is

ϕW−Z(t) = πδ − t+
∑
k≥2

γkt
k = πδ − t+

∑
k≥2

e

k!
δtk.

= πδ − t+ eδ
∑
k≥2

tk

k!
.

= δ[e exp(t) + (π − e)]− t(1 + eδ). (2.16)

Let’s analyze (2.16)
ϕ′
W−Z(t) = δ[e exp(t)]− (1 + eδ). (2.17)

So, the critical point of equation (2.17) is attained when

ϕ′
W−Z(t̂) = 0 ⇔ t̂ = ln

(
1 +

1

eδ

)
. (2.18)

We check if there is a minimum or maximum. Note that

ϕ′′
W−Z(t) = eδ exp(t). (2.19)

substituting (2.18) en (2.19) it follows that

ϕ′′
W−Z(t̂) = eδ exp[ln

(
1 +

1

eδ

)
] = eδ + 1 > 0,

then, there is a minimum at t̂ defined by (2.18).

Then the majorizing function ϕW−Z(t) has positive solutions if

ϕW−Z(t̂) = (1 + πδ)− ln
(
1 +

1

eδ

)
(1 + eδ) < 0 (2.20)

or equivalently, if e ≤ 0.018826, where 0.018826 is the only positive solution of the equation

exp
(1 + e+ π

1 + 2e

)
− 1

e
− 2 < 0.

The rest of the proof follows immediately.

8
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3 Numerical and Graphical Experiments for Comparison
of Results from the Theorems Proved Above

In the Table 1, the authors compare the increasing functions of the Kantorovich, Gutiérrez, Theorem,
α−theory of Smale and the α−theory of Wang-Zhao, applied to the Kepler equation, depending on
the points E0 = M and E0 = π, and their respective parameters δ.

Table 1. Majorizing functions for different theories of semilocal convergence
according to the starting points and the parameter δ

In the Table 2, the convergence conditions of the theorems mentioned above, are compared depending
of the starting points, of the parameters δ and the maximum value of e theorems for which guarantee
convergence of the Newton Method to a solution of the Kepler equation.

Table 2. Values of δ and e that guarantee the existence of solution for Kepler’s
equation by applying different semilocal convergence techniques for Newton’s

method, according to the starting points

In Tables 3 and 4 we have calculated the values t∗ and t∗∗ for real situations corresponding to
the planets Venus, Earth and Neptuno, as well as satellites Amalthea, Charon, Dione, Enceladus
and Ganymede. We show the corresponding radius of existence and uniqueness of solution to the
Kepler equation. We have denoted these values t∗ and t∗∗ with a subscript that refers to the theory
with which this related: K for Kantorovich, G for strong Kantorovich, S for Smale and WZ for
Wang-Zhao.

Table 3. Radius of existence for four majorizing functions applied to real cases

9
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Table 4. Uniqueness radius for the four majorizing functions

Finally, in the Table 5, we see the majoring functions and the real roots occur when applied theories
cited under optimal conditions and actual Orthosie, Themisto, Europa, 1994 JR1, and 2000PV29,
satellites and Thebe, Metis and Adrastea besides asteroids. In addiction, for each of the tables,
they have built their respective graphs. The red color corresponds to Gutiérrez’s theory, the blue
to Smale’s theory, the green to the Wang-Zhao’s theory and the gray to Kantorovich’s theory.

Table 5. majorizing functions and radius of convergence of the different theories
applied under optimal conditions

5 10 15

x
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1

2

3

4

5

y

50 100 150
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-40

-30

-20

-10
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Fig. 1. Details of the graphs of the majorizing functions ϕS(t) (blue), ϕW (t) (green),

ϕG(t) (red) and ϕK(t) (gray), for cases of the 1994 JR1 satellite, (e = 0.12), (left) and

2000PV29, satellite, (e = 0.013), (right)
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Fig. 2. Details of the graphs of the majorizing functions ϕS(t) (blue), ϕW (t) (green),

ϕG(t) (red) and ϕK(t) (gray), for cases of the planet Earth, (e = 0.0167), (left) and

planet Neptune, (e = 0.0086), (right)
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Fig. 3. Details of the graphs of the majorizing functions ϕS(t) (blue), ϕW (t) (green),

ϕG(t) (red) and ϕK(t) (gray), for cases of the Orthosie satellite, (e = 0.243), (left) and

Themisto satellite, (e = 0.212), (rigth)
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Fig. 4. Details of the graphs of the majorizing functions ϕS(t) (blue), ϕW (t) (green),

ϕG(t) (red) and ϕK(t) (gray), for cases of the Enceladus satellite, (e = 0.004), (left) and

Europa satellite, (e = 0.096), (rigth)
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Fig. 5. Details of the graphs of the majorizing functions ϕK(t) (gray) and ϕW (t)

(green) for cases of the Adrastea satellite, (e = 0.0015), (left), ϕG(t) (red) and ϕW (t)

(green) (right)

4 Conclusion

Given all the results obtained in the previous sections, both the starting point E0 = M and E0 = π,
it is concluded that Kepler’s equation (1.1), the best results are deduced from the Kantorovich
theory. In fact, regarding the values of the eccentricity e, Kantorovich theorem gives the highest
value among the considered theorems. For more detail, in the Table 2 the different theories discussed
in this article are shown, and the corresponding values for the parameter δ and eccentricity e. In
addition, it is found that for the starting point E0 = π, eccentricity values that ensure convergence
of Newton’s method applied to the equation of Kepler, become more restrictive. Draws attention
the case Wang-Zhao α−theory, for which he won a e ≤ 0.018826. This restriction caused that actual
cases of 1994 JR1 satellite and Europa satellite, no convergence is obtained, see Figs. 1 and 4.

Under the optimum conditions for real cases of Orthosie, Themiso, Europe satellites and for Thebe,
Metis and Adrastea asteroids, polynomials of the various theories presented convergence conditions
being Kantorovich which presented the best results again. Other theories expressed similar behavior,
refer to Table 5 and Fig. 2.
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