

British Journal of Mathematics & Computer Science

21(3): 1-8, 2017; Article no.BJMCS.30609

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: ictshamim@yahoo.com;

Simulation of Minimum Path Estimation in Software Defined
Networking Using Mininet Emulator

S. M. Shamim1*, Mohammad Badrul Alam Miah1, Angona Sarker1,

Ali Newaz Bahar1 and Ananya Sarker2

1Department of Information, Communication and Technology, Mawlana Bhashani Science and Technology

University, Bangladesh.
2Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology,

Bangladesh.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors SMS and MBAM designed the
study, performed the statistical analysis. Author AS managed the analyses of the study. Authors ANB and AS

managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2017/30609
Editor(s):

(1) Doina Bein, Applied Research Laboratory, The Pennsylvania State University, USA.
(2) Junjie Chen, Department of Electrical Engineering, University of Texas at Arlington, USA.

(3) Paul Bracken, Department of Mathematics, The University of Texas-Pan American
Edinburg, TX 78539, USA.

Reviewers:
(1) Zheng Zhao, Zhengzhou Science and Technology Institute, China.

(2) Yang Hui, Beijing University of Posts and Telecommunications, China.
Complete Peer review History: http://www.sciencedomain.org/review-history/18458

Received: 21st November 2016
Accepted: 1st March 2017
Published: 1st April 2017

Abstract

Software-Defined Networking (SDN) has become a significant topic of discussion among the network
service providers, operators, and equipment vendors where control planes are separated from the data
plane in networking devices. This paper implements Bellman-Ford algorithm for computing the shortest
path in Software-Defined Networking using Mininet emulator. Bellman–Ford algorithm computes
shortest paths from a single source vertex to all of the other vertices in a weighted digraph. This algorithm
is versatile, as it is capable of handling graphs in which some of the edge weights are negative numbers.
All the simulation has been done using POX as an OpenFlow controller, OpenvSwitch (OVS) as a
forwarding function and Mininet which installed on Ubuntu Virtual Machine (VM). The result of this
paper shows that the simulation of SDN with OpenvSwitch (OVS) and POX controller runs Bellman-
Ford algorithm for finding the minimum path among the designed network topology.

Short Research Article

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS.30609

2

Keywords: Software-defined networking; Bellman-Ford algorithm; OpenFlow switch; POX controller;
virtual machine; Mininet emulator.

1 Introduction

Future internet is required to be more secure, flexible, reliable, and having other advanced features. In
traditional network control plane that provides information used to construct a forwarding table and data
plane that consults the forwarding table are combined together. Network device conducts forwarding table to
make a decision on where to send packets or frames penetrating the device. Since control plane and forward
plane exist directly on the networking device, conventional networks become more complicated.

Software Defined Networking (SDN) is an emerging scheme of networking that enables network
programmability, faster innovation and simplified network management. SDN fulfills most of the task to
achieve require functioning. SDN is revealing a new approach for developing new network services.
Furthermore SDN can simplify network monitoring and network management. The control plane is separate
from the forwarding plane in SDN [1]. OpenFlow [2,3] technology is the first standard for SDN which
capable for controlling multiple hardware or software switches from a single controller. The control plane
communicates with the data plane through OpenFlow mechanism. A single control plane controls several
forwarding devices [4]. Control plane makes the decision what to do with packets (E.g. sets up forwarding
plane rules) i.e. how and where to deliver the packets. SDN uses a centrally managed controller to form flow
tables that set up the forwarding table responsible for delivering packets in the network [5-7]. A simplified
view of this architecture is shown in Fig. 1.

Fig. 1. SDN architecture

SDN separate the vertical integration by decoupling the network’s control plane from the data plane which
underlying routers and switches and forward the traffic. Second, Network switches become forwarding
devices and the control logic is implemented in a logically centralized controller with decouple of the control
and data planes. Logically centralized programmatic model does not postulate a physically centralized
system [8] and production-level SDN network designs resort to physically distributed control planes [9].

Moreover, everything is maintained centrally at the control plane. Consequently there is no need to configure
forwarding plane device manually. The aspect of SDN is to centralize the network control plane. Centralized
network control plane leads to innovative approaches to traffic engineering, reducing network energy
consumption, and data center network management [10-12]. SDN architectural components include SDN
Application (SDN App), SDN Controller, SDN Datapath, SDN Control to Data-Plane Interface (CDPI),
SDN Northbound Interfaces (NBI) [13]. SDN architecture has three layers, an infrastructure layer, a control
layer and an application layer. Infrastructure layer consists of network devices switches, routers, virtual
switches, wireless access point. Control layer consists of SDN controller Floodlight [14], Beacon [15], POX

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS.30609

3

[16], NOX [17], Open Daylight [18] etc. Application layer includes the applications for configuring the SDN
Access control, traffic/security monitoring, energy-efficient networking, management of the network.

The structure of this paper is as follows. Initially, related work has been discussed in section II. In Section
III, materials and methods has been described. Section IV, experiment result describes in details. Finally
conclusion and future work are mentioned in Section V.

2 Related Works

Software Defined Networking has become powerful technologies which are capable to program network
flow paths into flow-table in switches for network control. Data plane and control plane are decoupled in
SDN architecture where network is controlled by manipulating flow-table on control plane. Effective use of
SDNs for traffic engineering has been described in [19] especially when SDNs are incrementally introduced
into an existing network. In [20] provide a profound understanding of the problems related to satisfying
global network objectives, such as maximum flow, in environments where the size of the forwarding table in
network devices is limited. Dijkstra’s algorithm and the modified Floyd-Warshall algorithm have been
implemented in order to find shortest path in OpenFlow [21]. In [22] propose an approach to reduce to the
rule generation computation cost in networking application by excluding duplicated paths during rule
generation time. Network performance between Double Constrained Shortest Path (DCSP) and Dijkstra
algorithms in a smart grid communication network with different link bandwidths has been implemented in
[23]. In [24] authors implement the extended Dijkstra’s algorithm and compare it with the original Dijkstra’s
algorithm under the Abilene network using Mininet tool.

A study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over
fiber network (C-RoFN) has been described in [25]. Author’s present performance of RIP scheme under
heavy traffic load scenario quantitatively evaluated to demonstrate the efficiency of the proposal based on
MDRI architecture. In [26] present a novel cross stratum optimization (CSO) architecture in elastic data
center optical interconnection. Overall feasibility and efficiency of the proposed architecture experimentally
demonstrated on OaaS testbed with four OpenFlow-enabled elastic optical nodes. Authors also compare the
result with MFA, ALB, and CSO-DGLB service provisioning schemes in terms of path
setup/release/adjustment latency, blocking probability, and resource occupation rate.

3 Materials and Methods

3.1 Research methodology

Proposed architecture has been implemented by using Mininet [27,28] which is inexpensive and quickly
configurable network emulator. Mininet is standard Linux based networking emulator where virtual
topologies like virtual host, switch and link can be created. It also supports OpenFlow protocol which can be
used for computer network based SDN simulation. Mininet is also great way to enhance, share, and
experiment with OpenFlow and Software-Defined Networking systems. By single command Mininet creates
realistic virtual network, runs collection of end-hosts, switches, routers, and links on a single machine
(VM, cloud or native) [29]. Mininet released under a permissive BSD Open Source license which is actively
developed and supported.

3.2 Experiment setup

All the simulation has been done by using POX which is Python based open source OpenFlow/Software
Defined Networking (SDN) Controller. POX controller provides an efficient way to implement the
OpenFlow protocol and used for faster development and prototyping of new network application. POX
controller runs different applications like hub, switch, load balancer, and firewall.

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS.30609

4

Designed network topology consists of seven OpenFlow switch, an OpenFlow POX controller and fourteen
hosts where two hosts is connected each of the switch. Host h1, h2 is connected to switch S1 and host h11,
h12 is connected to switch S6. In addition, host h3, h4 is connected to switch S2 and host h13, h14
connected with switch S7. Fig. 2 shows designed network topology.

Fig. 2. Network topology

4 Experiment Results

Packet Internet Group (PING) operates by sending Internet Control Message Protocol (ICMP) echo request
packet to the target host and wait for reply to check the IP connectivity between defined hosts. If network
communication is established, ping tests also determine the connection latency (technical term for delay)
between the two computers. Ping can be used for troubleshooting to test connectivity and to determine
response time.

In the first evaluation to check the connection is performed on the network ping from host h1 to host h12.
The packet from host h1 to host h12 must be analyzed first by the controller before sending a command to
install a flow entry to handle the packet. Since at the beginning switch flow tables are empty, first response
is always the longest in terms of delay compare to others delay. Ping test result between two host h1 which is
connected with switch S1 and host h12 which is connected to switch S6 as illustrated in Fig. 3. Host h1 send
5 echo request packets which are successfully transmitted and received at defined host h12. Transmitted and
received echo request packets and the ping statistics are also shown in Fig. 3.

Fig. 3. Ping test result from host h1 to host h12

When the packet reaches to switch S1, it finds the minimum path to reach the destination address host h12
which connected in switch S6. There are several path exists between switch S1 and switch S6. For example,
host h1 can communicate via switch S1
communicate via switch S1-S2-S6 and finally switch h12. Moreover, there is also a direct path from switch
S1 to switch S6.

According to Bell-Man Ford algorithm, minimum path use to communi
shortest path between host h1 to host h12 is the direct path from switch S1 to switch S6. Simulation result
illustrated in Fig. 4 shows shortest path (S1=00:00:00:00:00:01 and S6=00:00:00:00:00:06) which is used to
communicate between host h1 and host h12.

Fig. 4. Computation of Shortest path from host h1 to host 12

In the second evaluation, host h3 which is connected to switch S2 ping to reach the target host h14 which is
connected to switch S7. The corresponding ping
request packet to the target host h14 and receives corresponding ICMP packet response.

Fig. 5. Ping test result from host h3 to host h14

There are several path exists between switch S2 and S7. Switch S2 may communicate with switch S7 via
switch S2-S1-S4-S5-S7 or S2-S2-S6-
and S7, according to Bell Man Ford algorithm shortes
S7.

Second evaluation result illustrated in Fig. 6 shows the shortest path, which is used to communicate between
host h3 and host h14. The shortest path exist between two switch S2 and S7 is used by the
algorithm where the shortest path is switch S2
S7=00:00:00:00:00:07).

Network and transportation related analysis have become common practice in many application areas within
Geographic Information Systems (GIS) technology. With the advent of GIS technology computation of
minimum paths between different locations on a network is one of the major problems in network and
transportation analysis. Sometimes this computation has to be done in rea
way to solve for the minimum path based on dynamic link statuses through SDN’s high network monitoring

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS

When the packet reaches to switch S1, it finds the minimum path to reach the destination address host h12
which connected in switch S6. There are several path exists between switch S1 and switch S6. For example,
host h1 can communicate via switch S1-S4-S5-S6 and finally reached host h12. In addition, host h1 can also

S6 and finally switch h12. Moreover, there is also a direct path from switch

Man Ford algorithm, minimum path use to communicate host h1 and host h12. The
shortest path between host h1 to host h12 is the direct path from switch S1 to switch S6. Simulation result
illustrated in Fig. 4 shows shortest path (S1=00:00:00:00:00:01 and S6=00:00:00:00:00:06) which is used to

e between host h1 and host h12.

Fig. 4. Computation of Shortest path from host h1 to host 12

In the second evaluation, host h3 which is connected to switch S2 ping to reach the target host h14 which is
connected to switch S7. The corresponding ping results illustrated in Fig. 5 shows host h3 sends five echo
request packet to the target host h14 and receives corresponding ICMP packet response.

Fig. 5. Ping test result from host h3 to host h14

There are several path exists between switch S2 and S7. Switch S2 may communicate with switch S7 via
-S7 or S2-S5-S7. Since host h3 and host h14 is connected to switch S2

and S7, according to Bell Man Ford algorithm shortest path use to communicate from switch S2 to switch

Second evaluation result illustrated in Fig. 6 shows the shortest path, which is used to communicate between
host h3 and host h14. The shortest path exist between two switch S2 and S7 is used by the Bell Man Ford
algorithm where the shortest path is switch S2-S5-S7 (S2=00:00:00:00:00:02, S5=00:00:00:00:00:05,

Network and transportation related analysis have become common practice in many application areas within
ormation Systems (GIS) technology. With the advent of GIS technology computation of

minimum paths between different locations on a network is one of the major problems in network and
transportation analysis. Sometimes this computation has to be done in real time. SDN framework provides a
way to solve for the minimum path based on dynamic link statuses through SDN’s high network monitoring

; Article no.BJMCS.30609

5

When the packet reaches to switch S1, it finds the minimum path to reach the destination address host h12
which connected in switch S6. There are several path exists between switch S1 and switch S6. For example,

S6 and finally reached host h12. In addition, host h1 can also
S6 and finally switch h12. Moreover, there is also a direct path from switch

cate host h1 and host h12. The
shortest path between host h1 to host h12 is the direct path from switch S1 to switch S6. Simulation result
illustrated in Fig. 4 shows shortest path (S1=00:00:00:00:00:01 and S6=00:00:00:00:00:06) which is used to

In the second evaluation, host h3 which is connected to switch S2 ping to reach the target host h14 which is
results illustrated in Fig. 5 shows host h3 sends five echo

There are several path exists between switch S2 and S7. Switch S2 may communicate with switch S7 via
S7. Since host h3 and host h14 is connected to switch S2

t path use to communicate from switch S2 to switch

Second evaluation result illustrated in Fig. 6 shows the shortest path, which is used to communicate between
Bell Man Ford

S7 (S2=00:00:00:00:00:02, S5=00:00:00:00:00:05,

Network and transportation related analysis have become common practice in many application areas within
ormation Systems (GIS) technology. With the advent of GIS technology computation of

minimum paths between different locations on a network is one of the major problems in network and
l time. SDN framework provides a

way to solve for the minimum path based on dynamic link statuses through SDN’s high network monitoring

capability. Our paper implements Bellman Ford Algorithm for computing shortest path over SDN which
shows expected outputs.

Fig. 6. Computation of shortest path from host h3 to host 14

5 Conclusion

It is well known that computation of shortest paths is an important task in many network and transportation
related analysis. A number of different algorithms and a considerable amount of empirical have done to
compute least path in existing network. The d
implementation of minimum path algorithms have remained important research topics within related
disciplines such as operations research, management science, geography, transportation, and computer
science. This paper implements Bellman Ford Algorithm for computing shortest path in Software Defined
Networking using POX controller and Mininet emulator. For future works, we will implement other shortest
path algorithm in SDN and compare the result with each ot
algorithm.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Diekmann C. Software defined networking

Available:http://www.net.in.tum.
(Accessed: 10-12-2015)

[2] Lara A, Kolasani A, Ramamurthy B. Network
survey. Communications Surveys & Tutorials, IEEE

[3] Kobayashi M, Seetharaman S, Parulkar G, Appenzeller G, Little J, Van Reijendam J, McKeown
Maturing of OpenFlow and software
2014;61:151-175.

[4] Bholebawa IZ, Jha RK, Dalal UD. Performance

architecture using mininet. Wireless Personal Commun

[5] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Turner J. OpenFlow:

Enabling innovation in campus networks
2008;38(2):69-74.

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS

Bellman Ford Algorithm for computing shortest path over SDN which

Fig. 6. Computation of shortest path from host h3 to host 14

It is well known that computation of shortest paths is an important task in many network and transportation
related analysis. A number of different algorithms and a considerable amount of empirical have done to
compute least path in existing network. The development, computational testing, and efficient
implementation of minimum path algorithms have remained important research topics within related
disciplines such as operations research, management science, geography, transportation, and computer

This paper implements Bellman Ford Algorithm for computing shortest path in Software Defined
Networking using POX controller and Mininet emulator. For future works, we will implement other shortest
path algorithm in SDN and compare the result with each other to compute the best minimum path finding

Authors have declared that no competing interests exist.

defined networking.
http://www.net.in.tum.-de/pub/diekmann/sdn2014.pdf

Lara A, Kolasani A, Ramamurthy B. Network innovation using OpenFlow: A
Communications Surveys & Tutorials, IEEE. 2014;16(1):493-512.

Kobayashi M, Seetharaman S, Parulkar G, Appenzeller G, Little J, Van Reijendam J, McKeown
software-defined networking through deployments. Computer Networks

Bholebawa IZ, Jha RK, Dalal UD. Performance analysis of proposed OpenFlow-based network
Wireless Personal Communications. Springer; 2015.

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Turner J. OpenFlow:
innovation in campus networks. ACM SIGCOMM Computer Communication Review

; Article no.BJMCS.30609

6

Bellman Ford Algorithm for computing shortest path over SDN which

It is well known that computation of shortest paths is an important task in many network and transportation
related analysis. A number of different algorithms and a considerable amount of empirical have done to

evelopment, computational testing, and efficient
implementation of minimum path algorithms have remained important research topics within related
disciplines such as operations research, management science, geography, transportation, and computer

This paper implements Bellman Ford Algorithm for computing shortest path in Software Defined
Networking using POX controller and Mininet emulator. For future works, we will implement other shortest

her to compute the best minimum path finding

using OpenFlow: A

Kobayashi M, Seetharaman S, Parulkar G, Appenzeller G, Little J, Van Reijendam J, McKeown N.
Computer Networks.

based network

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Turner J. OpenFlow:
ACM SIGCOMM Computer Communication Review.

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS.30609

7

[6] McKeown N. How SDN will shape networking. Open Networking Summit.
Available:http://www.youtube.com/watch?v=c9-K5O qYgA
(Accessed: 09-12-2015)

[7] Nunes B, Mendonca M, Nguyen XN, Obraczka K, Turletti T. A survey of software-defined

networking: past, present and future of programmable networks. Communications Surveys &
Tutorials, IEEE. 2014;16(3):1617-1634.

[8] Koponen T, Casado M, Gude N, Stribling J, Poutievski L, Zhu M, Shenker S. Onix: A distributed

control platform for large-scale production networks. Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, In OSDI. 2010;10:1-6.

[9] Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, Zolla J. B4: Experience with a globally-

deployed software defined WAN. In ACM SIGCOMM Computer Communication Review. ACM.
2013;43(4):3-14.

[10] Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A. Hedera: Dynamic flow scheduling

for data center networks. In Proceedings of USENIX NSDI ’10, 2010. 2010;10:19.

[11] Heller B, Seetharaman S, Mahadevan P, Yiakoumis Y, Sharma P, Banerjee S, McKeown N.

ElasticTree: Saving energy in data center networks. In Proceedings of USENIX NSDI. 2010;10(10):
249-264.

[12] Kim H, Feamster N. Improving network management with software defined networking.

Communications Magazine, IEEE. 2013;51(2):114-119.

[13] ONF Market Education Committee. Software-defined networking: The new norm for networks. ONF

White Paper; 2012.

[14] Floodlight OpenFlow Controller- Floodlight Project.

Available:http://www.projectfloodlight.org/floodlight/
(Accessed: 10-11-2015)

[15] Home-Beacon-Confluence.

Available:https://openflow.stanford.edu/display /Beacon/Home/
(Accessed: 12-11-2015)

[16] About POX — NOXRepo.

Available:http://www.noxrepo.org/pox/about-pox/
(Accessed: 05-11-2015)

[17] NOXRepo.

Available:http://noxrepo.org/wp/
(Accessed: 09-03-2016)

[18] The OpenDayLight Platform— OpenDayLight.

Available:http://www.opendaylight.org/
(Accessed: 25-11-2015)

[19] Agarwal S, Kodialam M, Lakshman TV. Traffic engineering in software defined networks. In
INFOCOM, 2013 Proceedings IEEE. 2013;2211-2219.

Shamim et al.; BJMCS, 21(3): 1-8, 2017; Article no.BJMCS.30609

8

[20] Cohen R, Lewin-Eytan L, Naor JS, Raz D. On the effect of forwarding table size on SDN network
utilization. In IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE. 2014;
1734-1742.

[21] Furculita AG, Ulinic MV, Rus AB, Dobrota V. Implementation issues for Modified Dijkstra's and

Floyd-Warshall algorithms in OpenFlow. In Networking in Education and Research, 2013 RoEduNet
International Conference 12th Edition. IEEE. 2013;1-6.

[22] Sim JH, Kim SH, Park MW, Chung TM. Eliminating duplicated paths to reduce computational cost of

rule generation by using SDN. In International Conference on Computational Science and Its
Applications. Springer International Publishing. 2014;603-613.

[23] Zhao J, Hammad E, Farraj A, Kundur D. Network-Aware QoS routing for smart grids using software

defined networks. InSmart City. Springer International Publishing. 2016;360:384-394.

[24] Jiang JR, Huang HW, Liao JH, Chen SY. Extending Dijkstra's shortest path algorithm for software

defined networking. In Network Operations and Management Symposium (APNOMS), 2014 16th
Asia-Pacific. IEEE. 2014;1-4.

[25] Yang H, Zhang J, Ji Y, He Y, Lee Y. Experimental demonstration of multi-dimensional resources

integration for service provisioning in cloud radio over fiber network. Scientific Reports. 2016;6.

[26] Yang H, Zhang J, Zhao Y, Ji Y, Han J, Lin Y, Lee Y. CSO: Cross stratum optimization for optical as

a service. IEEE Communications Magazine. 2015;53(8):130-139.

[27] Lantz B, Heller B, McKeown N. A network in a laptop: Rapid prototyping for software-defined

networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. ACM,
2010;19.

[28] Mininet – An Instant Virtual Network on your Laptop (or other PC).

Available:http://mininet.org/
(Accessed: 20-13-2016)

[29] Introduction-to-Mininet. mininet/mininet.wiki. GitHub/

Available:https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
(Accessed: 25-02-2016).

© 2017 Shamim et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/18458

