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ABSTRACT

In the present study, Magnetohydrodynamics (MHD) natural convection Casson fluid flow over
a non-isothermal stretching sheet embedded in a porous medium is considered. The set
of governing differential equations are simplified by similarity variables into coupled ordinary
differential equations. The defined stream functions satisfied the continuity equation. Roseland
approximation is utilized and the present study is therefore limited to an optically thick fluid. The
transformed set of coupled nonlinear ordinary differential equations are then solved numerically via
spectral homotopy analysis method (SHAM). Results revealed that the Magnetic parameter (M)
reduces the velocity profile but produce a significant increase in the temperature profile. Also, it
is observed that increasing the thermal radiation parameter increases the thermal condition of the
fluid.
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1 INTRODUCTION

Problems in engineering and scientific disciplines
are majorly described by partial differential
equations (PDEs). These problems are complex
and are difficult to solve analytically. Many
great authors in the past have developed
numerous numerical techniques in solving such
problems. The basic celebrated equations
which govern flow model in fluid mechanics are
the conservation of mass, the conservation of
momentum, and the conservation of energy.
Many researchers have developed various
kinds of fluid flow model based on the above
celebrated equations. Mondal et al.[1] analyzed
the effect of thermal radiation on an unsteady
MHD Axisymmetric stagnation-point flow over
a shrinking sheet in presence of temperature
dependent thermal conductivity with Navier slip.
Metri et al.[2] also discussed thin film flow
and heat transfer over an unsteady stretching
sheet with thermal radiation internal heating in
presence of external magnetic field. Spectral
relaxation method for entropy generation on
a MHD flow and heat transfer of a Maxwell
fluid has been investigated by Shateyi et al.[3].
Shateyi and Makinde[4] analyzed extensively
hydrodynamic stagnation-point flow towards a
radially stretching convective heated disk.

Fluid flow through porous medium finds
applications in engineering such as irrigation,
tribology and lubrication, solidification,
chromatography etc. Convection flow through
porous medium has attracted the attention of
researchers in fluid mechanics. Sharma and
Aich[5] presented Soret and Dufour effects on
steady MHD flow in presence of heat source
through a porous medium over a non-isothermal
stretching sheet. Fagbade et al.[6] studied
influence of magnetic field, viscous dissipation
and thermophoresis on Darcy-Forcheimer mixed
convection flow in fluid saturated porous media.
Heat and mass transfer in visco-elastic fluid
through rotating porous channel with hall effect
was investigated by Gaur and Jha[7]. Ahmed
et al.[8] presented numerical/Laplace transform
analysis for MHD radiating heat/mass transport
in a Darcian porous regime bounded by an
oscillating vertical surface. In the same vein,
Shateyi and Marewo[9] presented numerical

analysis of unsteady MHD flow near a stagnation
point of a two-dimensional porous body with
heat and mass transfer, thermal radiation and
chemical reaction.

The study of Non-Newtonian fluids is gaining
much interest in recent years due to their
applications in many engineering industries.
Ajayi et al.[10] recently considered viscous
dissipation effect on the motion of casson fluid
over an upper horizontal thermally stratified
melting surface of a paraboloid of revolution.
Ullah et al.[11] studied MHD natural convection
flow of Nanofluid over nonlinear stretching sheet
through porous medium with chemical reaction
and thermal radiation. Vijaya et al.[12] studied
magnetic field on the flow and heat transfer in
a casson thin film on an unsteady stretching
surface in the presence of viscous and internal
heating. Jithender et al.[13] studied influence
of viscous dissipation on unsteady MHD natural
convective flow of casson fluid over an oscillating
vertical plate via FEM.

Magnetohydrodynamics (MHD) is the study
of motion of an electrically conducting
fluid as a result of an applied magnetic
field. This word magnetohydrodynamics
can be split into three as Magneto-Hydro-
Dynamics where magneto means magnetic
field, hydro means liquid, dynamics means
movement. Magnetohydrodynamics has
numerous applications in engineering and
biological sciences such as the generation of
electrical power with the help of an electrically
conducting fluid through a magnetic field, in
describing the rheological behaviour of blood,
plasma confinement, and electromagnetic
casting, etc. Due to the numerous applications
of MHD mentioned above many researchers
finds its importance in fluid dynamics. Rao et
al.[14] explored MHD transient free convection
and chemically reactive flow past a porous
vertical plate with radiation and temperature
gradient dependent heat source in slip flow
regime. Mahender and Rao[15] has investigated
unsteady MHD free convection and mass transfer
flow past a porous vertical plate in presence
of viscous dissipation. Ahmed and Das[16]
examined MHD mass transfer flow past a vertical
porous plate embedded in a porous medium in
a slip flow regime with thermal radiation and
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chemical reaction. Rashidi et al.[17] presented
free convective heat and mass transfer for MHD
fluid flow over a permeable vertical stretching
sheet in the presence of the radiation and
buoyancy effects. Effects of hall on unsteady
MHD oscillatory free convective flow of second
grade fluid through porous medium between
two vertical plates have been considered by
Krishna et al.[18]. Krishna and Chamkha[19]
examined Hall effects on unsteady MHD flow of
second grade fluid through porous medium with
ramped wall temperature and ramped surface
concentration.

Heat transfer describes temperature and the flow
of heat. It is everyday experience for heat to
flow from a hot object to a cold object. Many
researchers investigated the importance of heat
transfer in fluid dynamics. Mahbub et al.[20]
studied soret-dufour effects on the MHD flow
and heat transfer of micro-rotation fluid over
a nonlinear stretching plate in the presence of
suction. Makinde and Onyejekwe[21] presented
a numerical study of MHD generalized couette
flow and heat transfer with variable viscosity
and electrical conductivity. In another study,
Idowu et al.[22] presented numerical solution for
thermal radiation effect on inclined magnetic field
of MHD free convective heat transfer dissipative
fluid flow past a moving vertical porous plate
with variable suction. Heat transfer effects on
a viscous dissipative fluid flow past vertical
plate in the presence of induced magnetic
field has been studied by Raju et al.[23].
Ahmad[24] explore visco-elastic boundary layer
flow past a stretching plate and heat transfer
with variable thermal conductivity. Krishna et
al.[25] studied the problem of heat and mass
transfer on unsteady MHD oscillatory flow of
blood through porous arteriole. Krishna et
al.[26] considered heat and mass transfer on
unsteady magnetohydrodynamics oscillatory flow
of second-grade fluid through a porous medium
between two vertical plates under the influence
of fluctuating heat source/sink and chemical
reaction. The problem of heat and mass transfer
on MHD free convective flow over an infinite non-
conducting vertical flat porous plate have been
considered by Krishna et al.[27].

The Spectral homotopy analysis method (SHAM)
is the discrete version of the homotopy analysis

method (HAM). HAM was first introduced by
Liao[28] and he is credited for developing the
method. In 2010, Motsa et al.[29] suggested
SHAM with the use of Chebyshev pseudo-
spectral method to solve linear high order
deformation equations. The benefits of these
newly proposed method (SHAM) are better
accuracy, it requires few iterations, it has less
computational effort. It worth mentioning in
the present study that the spectral homotopy
analysis method (SHAM) is applicable to systems
of nonlinear ordinary differential equations
and partial differential equations. Numerous
researchers used this method in solving
problems in fluid dynamics among which we
mention in this research work those by (Makukula
and Motsa[30]; Atabakan et al.[31]; Makukula
et al.[32]; Makukula et al.[33]; Zou et al.[34];
Shaban et al.[35]; Shateyi and Motsa[36])

In all the literatures discussed above and to the
very best of our knowledge, no study or little
attention has been on MHD natural convection
casson fluid flow over a non-Isothermal stretching
sheet embedded in a porous medium. The
novelty of our work is to present the analysis
of Casson fluid flow over a non-isothermal
stretching sheet embedded in a porous medium.
Effects of parameters such as thermal radiation,
magnetic field, Joule heating and heat generation
are considered significant in the present study.
An elegance and accurate numerical method
called spectral homotopy analysis method is
utilized in solving the present modeled equations.

2 MATHEMATICAL FORMU-
LATION

Consider a steady, incompressible, viscous, MHD
two-dimensional boundary layer flow over a
non-isothermal stretching sheet embedded in a
porous medium. The stretching sheet is placed
at the bottom of the fluid porous medium with the
effects of heat generation and radiation [see Fig
1]. The Rosseland approximation is considered
and the fluid is assumed to be optically thin.
A magnetic field of uniform strength (B0) is
executed transverse to the sheet. The induced
magnetic field is neglected because we assumed
the magnetic Reynolds number to be small. We
take x-axis along the sheet and y-axis normal to
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it.

The rheological equation of state for the isotropic
and incompressible flow of a casson fluid is given
by Mukhopadhylay[37] as:

τij = 2(µB +
py√
2π

)eij , π > πc (2.1)

τij = 2(µB +
py√
2πc

)eij , π < πc (2.2)

As a result of the Boussineq’s approximation
and the basic assumptions made above and
according to Sharma and Aich[38], the equations
governing the flow model can be written as:
Continuity equation

∂u

∂x
+

∂v

∂y
= 0 (2.3)

Momentum equation

u
∂u

∂x
+ v

∂v

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− ν

k
u− σB2

0

ρ
u

(2.4)
Energy equation

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+

σB2
0

ρcp
u2 +

µ

ρcp

(
1 +

1

β

)
(
∂u

∂y
)2 +

Q(T − T∞)

ρcp
(2.5)

subject to the boundary conditions:

u = cx , v = 0 , T =

Tw(x) = T∞ +
Dx2

l2
θ(η) as y = 0 (2.6)

u −→ 0 , T −→ T∞ at y −→ ∞ (2.7)

where u and v are fluid velocity components in
x and y directions respectively, ν is the fluid
viscosity, σ is the electrical conductivity, B0 is
the applied magnetic field, ρ is the density of
the fluid, T is the fluid temperature, T∞ is the
free stream temperature, cp is the specific heat
at constant pressure, Q is heat generation term,
k is the permeability term. The first term ν ∂2u

∂y2

on the RHS of the momentum equation is the
viscous term, the second term ν

k
u is the porous

term, while the term σB2
0

ρ
u is the magnetic field

term. It is noticed that the magnetic term opposes
the flow. In the energy equation, the convection
term is u ∂T

∂x
. This term is responsible for the

distribution of temperature. The diffusion term
is k

ρcp

∂2T
∂y2 , the radiative term is 1

ρcp

∂qr
∂y

. We
assumed in the present study that the radiative
flux that dominate the flow is ∂qr

∂y
and due to this

we neglect the x-direction radiative flux ∂qr
∂x

. The

term σB2
0

ρcp
u2 is the joule heating term. The term

µ
ρcp

( ∂u
∂y

)2 is the viscous dissipation term and the

heat generation term is Q(T−T∞)
ρcp

With the stream function defined as u = ∂Ψ
∂y

and
v = − ∂Ψ

∂x
, the governing equations becomes:

∂2Ψ

∂x∂y
− ∂2Ψ

∂y∂x
= 0 (2.8)

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂x∂y
= ν

(
1 +

1

β

)
∂3Ψ

∂y3
− ν

k

∂Ψ

∂y
− σB2

0

ρ

∂Ψ

∂y
(2.9)

∂Ψ

∂y

∂T

∂x
− ∂Ψ

∂x

∂T

∂y
=

k
ρcp

∂2T
∂y2 − 1

ρcp

∂qr
∂y

+
σB2

0
ρcp

( ∂Ψ
∂y

)2 + µ
ρcp

(
1 + 1

β

)
( ∂

2u
∂y2 )

2 + Q(T−T∞)
ρcp

(2.10)

subject to the boundary conditions:

∂Ψ

∂y
= cx ,

∂Ψ

∂x
= 0 , T = Tw(x) = T∞ +

Dx2

l2
θ(η) as y = 0 (2.11)

∂Ψ

∂y
−→ 0 , T −→ T∞ at y −→ ∞ (2.12)
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Fig. 1. Physical model

Obviously from Eq (8) the stream function satisfied the continuity equation. Utilizing the Roseland
model, the radiative heat flux as reported by Fagbade et al.[39] is defined as:

qr = −−4σ∗

3k∗
∂T 4

∂y
(2.13)

The temperature difference within the flow is assumed to be sufficiently small and T 4 could be
expressed as a linear function of temperature T∞ by truncating in Taylor’s series about k0 as described
below;

T (k) = T (k0) + (k − k0)T
′(k0) +

(k − k0)
2

2!
T ′′(k0) + ...+

(k − k0)
n

2!
Tn(k0) (2.14)

Neglecting higher order in the equation above result to

T 4 u 4T 3
∞T − 3T 4

∞ (2.15)

Invoking Eqs. (13) and (15) on (5), the energy equation becomes:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

16σ∗T 3
∞

3ρcpke

∂2T

∂y2
+

σB2
0

ρcp
u2 +

µ

ρcp

(
1 +

1

β

)(
∂u

∂y

)2

+
Q(T − T∞)

ρcp
(2.16)

simplifying further yields:

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂2T

∂y2
(k +

16σ∗T 3
∞

3ke
) +

σB2
0

ρcp
u2 +

µ

ρcp
(1 +

1

β
)(
∂u

∂y
)2 +

Q(T − T∞)

ρcp
(2.17)

To transform the governing Eqs. (3)-(5), the following similarity transformations are introduced

Ψ =
√
cνxf(η) , η =

√
c

ν
y , θ(η) =

T − T∞

Tw − T∞
, T = T∞ +D

x2

l2
θ(η) (2.18)
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In view of Eq (18), the momentum and the energy equations are reduced to the following coupled
nonlinear ordinary differential equations; (

1 +
1

β

)
f ′′′ −

(
1

kp
+M2

)
f ′ + ff ′′ + f ′2 = 0(2.19)(

1 +
4

3
Ra

)
θ′′ − 2Prf ′θ + Prfθ′ + PrM2Ecf ′2 + PrEc

(
1 +

1

β

)
f ′′2 + Pr∆θ = 0(2.20)

subject to:

f = 0 , f ′ = 1 , θ = 1 , at η = 0 (2.21)

f ′(∞) = 0 , θ(∞) = 0 as η −→ ∞ (2.22)

where

Pr =
νρcp
k

, kp = ck
ν

,M =
(

σB2
0

ρcp

)
, Ec = c2l2

cpD
,∆ = Q

ρcpc
, Ra =

4σ∗T3
∞

kke

are the Prandtl number, Permeability parameter, magnetic parameter, Eckert number, heat generation
parameter and thermal radiation parameter.

3 SPECTRAL HOMOTOPY ANALYSIS METHOD (SHAM)

SHAM is the numerical version of homotopy analysis method (HAM) proposed by Liao[28]. SHAM
is discussed extensively in the investigation of Motsa et al.[29]. In spectral homotopy analysis method,
the linearized equations are solved using the Chebyshev spectral collocation method. Many researchers
preferred spectral methods than other numerical method because of their accuracy, it requires few
iterations and it is very easy to compute. The SHAM requires that the nonlinear equations under
investigation is split into linear and nonlinear parts. In implementing SHAM, we first transform the
domain of the problem from [0, 1] to [−1, 1] using the algebraic mapping defined below:

ξ =
2η

L
− 1 , ξ ∈ [−1, 1] (3.1)

For easy computation and convenience we make the boundary conditions homogeneous by applying
the following transformation

f(η) = f(ξ) + f0(η) , θ(η) = θ(ξ) + θ0(η) (3.2)

where f0(η) = 1−exp(−η) , θ0 = exp(−η) are chosen to satisfy the boundary conditions in Eq. (21)
and (22). Substituting (23) and (24) into the transformed governing equations (19)-(20) and boundary
conditions (21)-(22), we obtain(
1 +

1

β

)
f ′′′(ξ)+f(ξ)f ′′(ξ)+α1f(ξ)+α2f

′′(ξ)+f ′(ξ)f ′(ξ)+α3f
′(ξ)−

(
1

kp
+M2

)
f ′(ξ) = H1(η)

(3.3)(
1 +

4

3
Ra

)
θ′′(ξ) + Prf(ξ)θ′(ξ) + β1f(ξ) + β2θ

′(ξ)− 2Prf ′(ξ)θ(ξ) + β3f
′(ξ) + β4θ(ξ)+

PrM2Ecf ′(ξ)f ′(ξ) + β5f
′(ξ) + PrEc

(
1 +

1

β

)
f ′′(ξ)f ′′(ξ) + β6f

′′(ξ) + Pr∆θ(ξ) = H2(η) (3.4)

subject to:

f(−1) = f ′(1) = 0 , θ(−1) = θ(1) = 0 (3.5)
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where prime connote differentiation with respect to ξ and we set

α1 = f ′′
0 (η), α2 = f0(η), α3 = 2f ′

0(η),H1(η) =

−
(
1 +

1

β

)
f ′′′
0 (η)− f0(η)f

′′
0 (η)− f ′

0(η)f
′
0(η) +

(
1

kp
+M2

)
f ′
0,

β1 = Prθ′0(η), β2 = Prf0(η), β3 = −2Prθ0(η), β4 =

−2Prf ′
0(η), β5 = 2PrM2Ecf ′

0(η), β6 = 2PrEc

(
1 +

1

β

)
f ′′
0 (η),

H2(η) = −
(
1 +

4

3
Ra

)
θ′′0 (η)− Prf0(η)θ

′(η) + 2Prf ′
0(η)θ0(η)− PrM2Ecf ′

0(η)−

PrEc

(
1 +

1

β

)
f ′′
0 (η)f

′′
0 (η)− Pr∆θ0(η) (3.6)

In Eqs (25)-(26), the non-homogeneous linear part is given by(
1 +

1

β

)
f ′′′
l + α1fl + α2f

′′
l + α3f

′
l −

(
1

kp
+M2

)
f ′
l = H1(η) (3.7)(

1 +
4

3
Ra

)
θ′′l + β1fl + β2θ

′
l + β3f

′
l + β4θl + β5f

′
l + β6f

′′
l + Pr∆θl = H2(η) (3.8)

subject to:
f(−1) = f ′(1) = 0 , θ(−1) = θ(1) = 0 (3.9)

Chebyshev pseudospectral method is used to solve (29)-(30). The unknown functions fl(ξ), θl(ξ) are
approximated as a truncated series of chebyshev polynomials of the form:

fl(ξ) ≈ fN
l =

N∑
k=0

fN
k T1k(ξJ) J = 0, 1, 2, ..., N (3.10)

θl(ξ) ≈ θNl =

N∑
k=0

θNk T2k(ξJ) J = 0, 1, 2, ..., N (3.11)

where T1k and T2k are the kth Chebyshev polynomials and their coefficients is given by fk, and θk
respectively, ξ0, ξ1, ξ2, ..., ξN are Gauss-Lobatto collocation point defined by

ξJ = cos

(
πJ

N

)
, J = 0, 1, 2, ..., N (3.12)

where N is the number of collocation points. The derivatives of the function fl(ξ), and θl(ξ) at all the
collocation points are defined as;

drfl
dξr

=

N∑
k=0

Dr
kJfl(ξJ),

drθl
dξr

=

N∑
k=0

Dr
kJθl(ξJ) (3.13)

In Eq. (25) above, r is the order of differentiation, D = 2
L
D where D is the Chebyshev spectral

differentiation matrix. Invoking Eqs (32)-(35) into Eqs (29)-(30), we have

AFL = G (3.14)

7
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Subject to the boundary conditions

fl(ξN ) = 0,
N∑

k=0

DNkfk(ξk) = 1,
N∑

k=0

D0kfk(ξk) = 0, θl(ξN ) = 1.θl(ξ0) = 0. (3.15)

where [
A11 A12

A21 A22

]
(3.16)

A11 =

(
1 +

1

β

)
D3 + α1I + α2D

2 + α3D −
(

1

kp
+M2

)
D, A12 = 0,

A21 = β1 + β3D + β5D + β6D
2 A22 =

(
1 +

4

3
Ra

)
D2 + β2D + β4I + Pr∆ (3.17)

And;
Fl = [fl(ξ0), ..., fl(ξN ), θl(ξ0), ..., θl(ξN )]

G = [Hl(η0), ..., Hl(ηN ),H2(η0), ..., H2(ηN )]

αi = diag([αi(η0), ..., αi(ηN−1), αi(ηN−1, αi(ηN ])

βi = diag([βi(η0), ..., βi(ηN−1), βi(ηN−1, βi(ηN ]) i = 1, 2, 3

We delete the first and the last rows and columns of A in other to implement the boundary
conditions (37). Also, we imposed the boundary conditions (37) on the first and last rows of the
modified matrix A, and setting the modified matrix G to zero, all the values of fl(ξ0), ..., fl(ξN ), θl(ξ0), ..., θl(ξN )
are determined from;

Fl = A−1.G (3.18)

Eq. (40) above provide us the initial approximation for the SHAM solution of the governing equations.
To sought the SHAM approximate solutions of (25)-(26), we define the following linear operators

Lf [f̄(η, q), θ̄(η, q)] =

(
1 +

1

β

)
f ′′′ + α1f + α2f

′′ + α3f
′ −

(
1

kp
+M2

)
f ′ (3.19)

Lθ[f̄(η, q), θ̄(η, q)] = (1 +
4

3
Ra)θ′′ + β1f + β2θ

′ + β3f
′ + β4θ + β5f

′ + β6f
′′ + Pr∆θ(3.20)

where qϵ[0, 1] is the embedding parameter, f̄(η, q), andθ̄(η, q) are the unknown functions. The zeroth
order deformation equation are given by

(1− q)Lf [f̄(η; q)− fl(ξ)] = q~fNf [f̄(ξ; q), θ̄(ξ, q)]−H1, (3.21)

(1− q)Lθ[θ̄(η; q)− θl(ξ)] = q~fNθ[f̄(ξ; q), θ̄(ξ, q)]−H2. (3.22)

Where ~f , ~θ are non-zero convergence controlling auxillary parameter and Nf̄ and Nθ are non-linear
operations given by:

Nf [f̄(η, q), θ̄(η, q)] = ff ′′ + f ′f ′ (3.23)

Nθ[f̄(η, q), θ̄(η, q)] = fθ′ − 2Prf ′θ + PrM2Ecf ′f ′ + PrEc

(
1 +

1

β

)
f ′′f ′′ (3.24)
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Differentiating the above equation m-times with respect to q, setting q = 0 and dividing the resulting
equations by m! yields the mth order deformation equations.

Lf [fm(ξ)− χmfm−1(ξ)] = ~fRf
m, (3.25)

Lθ[θm(ξ)− χmθm−1(ξ)] = ~θRθ
m. (3.26)

Subject to:

fm(−1) = f ′
m(−1) = f ′

m(1) = 0, (3.27)

θm(−1) = θm(1) = 0. (3.28)

Where;

Rf
m(ξ) =

(
1 +

1

β

)
f ′′′
m−1 + α1fm−1 + α2f

′′
m−1 + α3f

′
m−1 −

(
1

kp
+M2

)
f ′
m−1+

n−1∑
n=0

(fnf
′′
m−1−n + f ′

nf
′
m−1−n)−H1(η)(1−Xm), (3.29)

Rθ
m(ξ) =

(
1 +

4

3
Ra

)
θ′′m−1+β1fm−1+β2θ

′
m−1+β3f

′
m−1+β4θm−1+β5f

′
m−1+β6f

′′
m−1+Pr∆θm−1+

m−1∑
n=0

(
fnθ

′
m−1−n − 2Prf ′

nθm−1−n + PrM2Ecf ′
nf

′
m−1−n + PrEc

(
1 +

1

β

)
f ′′
nf

′′
m−1−n

)
. (3.30)

Applying Chebyshev pseudo-spectral transformation on above gives;

Afm = (Xm + ~)Afm−1 − ~(1−Xm)G+ ~Qm−1

subject to the boundary conditions

fm(ξN ) = 0, fm(ξ0) = 0, (3.31)

θm(ξN ) = 0, , θm(ξ0) = 0. (3.32)

where A and G are defined above
Fm = [fm(ξ0), fm(ξ1), ..., fm(ξN ), θm(ξ0), θm(ξ1), ..., θm(ξN )]T

Q1,m−1 =

m−1∑
n=0

[D2fm−1−nfn +DfnDfm−1−n] (3.33)

Q2,m−1 =
∑m−1

n=0 [PrfnDθm−1−n − 2PrDfnθm−1−n +

PrM2EcDfnDfm−1−n + PrEc
(
1 + 1

β

)
D2fnD

2fm−1−n] (3.34)

The boundary conditions above are implemented on A on the left hand-side in rows 1, N,N +
1, (N + 1) respectively as before with the initial solution above. The corresponding rows, all column
of A on the right hand-side G,Q1,m−1, Q2,m−1 are all set to zero. This result in the following recursive
formular m ≥ 1

Fm = (χm + ~)A−1.Āfm−1 + ~A−1[Qm−1 − (1 + χm)G], (3.35)

Θm = (χm + ~)A−1.Āθm−1 + ~A−1[Qm−1 − (1 + χm)G] (3.36)

9
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4 GRAPHS, RESULTS AND
DISCUSSION

A novel and efficient method called spectral
homotopy analysis method (SHAM) was used
to solve the set of governing coupled nonlinear
ordinary differential equations. The effects of
all pertinent flow parameters on the velocity and
temperature profile were examined. To get a
clear insight to physics of the problem, values
of controlling parameters are set as Pr =
0.71, Gr = 2.0,M = 1.0, kp = 0.1, R =
0.5, Ec = 0.01,∆ = 0.1. All tables and graphs
corresponds to the above stated values unless
or otherwise stated. It worth mentioning in the
present study that all programs for generating
solutions were coded in MATLAB R2012a. Our
results were generated at L = 30 and the number
of collocation point at Nx = 100 and we observed
that if the value is increased there is no changes
on the numerical results of the skin-friction and
Nusselt number in Table 1 and 2. In table 1,
an increase in both viscous dissipation term.
Table 2 presents the computed values of thermal
radiation parameter. The table implies increase in
the radiation parameter intensify the skin-friction
coefficient and Nusselt number.

The graphical solution of all controlling flow
parameters are presented in figures 2-7. In
figure 2 the effects of the magnetic parameter
is presented. From the figure 2 it is observed
that increase in magnetic parameter leads to
decrease in the velocity and temperature profiles
respectively. The application of the transverse
magnetic field which gives rise to a drag-like or
resistive force called Lorentz force slows down
the motion of an electrically conducting fluid.
It is observed that the resistive force warm
the stretching sheet and thereby increases the
temperature profile.

The effect of the permeability parameter (kp)
is presented in figure 3. The results revealed
that an increase in (kp) lead to increase in
the velocity profile but reduces the temperature
profile. Figure 4 presents the effect of Prandtl
number (Pr) on the velocity and temperature
profiles respectively. It is noted from the figure
4 that increasing the Pr decreases both velocity
and temperature profiles. This is because
fluids with higher Pr possesses more viscosities

and thereby lower the skin-friction. Also, Pr
decreases the temperature profile due to small
value of Prandtl number say Pr < 1 the fluid
is highly conducive. The Prandtl number for air
is (Pr = 0.71) while that of water is (Pr =
7.0). Furthermore, when Pr = 1 the momentum
diffusion rate is beyond thermal diffusion rate.
Figure 5 depicted effect of the casson parameter
(β) on the velocity and temperature profiles.
A significant reduction in the velocity profile is
observed as the β is increasing. Increasing β
leads to an increase in the fluid dynamic viscosity.
Intensifying the casson parameter increases the
temperature profile as seen in figure (5).

Increasing the viscous dissipative term i.e Eckert
number (Ec) intensifies both the velocity and
temperature profiles as presented in figure 6. Ec
is the relationship between the kinetic energy in
the flow and the enthalpy. Figure 7 presents
the effect of heat generation parameter on the
velocity and temperature profiles. From figure 7,
we discovered that as a result of the generation of
heat there is increase the velocity in the boundary
layer.

Figure 8 displayed the effect of thermal radiation
parameter on the temperature and velocity profile
respectively. Ra described the contribution of
conduction mode of heat transfer to radiation
mode of heat transfer. Thermal radiation
enhances convective flow. When Ra is
increased, there is a significant increase in the
thermal condition of fluid and its boundary layer.
Also, when thermal radiation is increased, there
is enhancement of the heat flux from the plate
which increases both velocity and temperature
profiles as shown in figure 8.

4.1 Validation of Code

In order to validate/verify the accuracy of
the present analysis, the present results are
compared with the published work of Sharma and
Aich[38] when the specie concentration equation,
Dufour, Casson parameter, Joule heating,
thermal and specie buoyancy in the present study
are set to zero. The comparison is found to be
in agreement. The magnetic parameter is found
to decrease velocity and increase temperature
profile in both the present study and that of

10
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Sharma and Aich[38]. In the vein, the radiation
and heat generation parameters increases both
velocity and temperature distributions in the
present study and the previous studies when
specie concentration equation, Dufour, Casson
parameter, Joule heating, thermal and specie

buoyancy in the present study are set to
zero. Hence, the validity of the result is an
encouragement for further study of influence of
other parameters on non-Newtonian fluids in
porous medium.

Fig. 2. Velocity and Temperature profiles for different values of Magnetic parameter M

Fig. 3. Velocity and Temperature profiles for different values of permeability parameter kp

Fig. 4. Velocity and Temperature profiles for different values of Prandtl number Pr
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Fig. 5. Velocity and Temperature profiles for different values of casson parameter β

Fig. 6. Velocity and Temperature profiles for different values of Eckert number Ec

Fig. 7. Velocity and Temperature profiles for different values of heat generation parameter ∆

Fig. 8. Velocity and Temperature profiles for different values of thermal radiation parameter Ra

12



Falodun et al.; JERR, 2(3): 1-16, 2018; Article no.JERR.43913

Table 1. Computational values of skin friction coefficient Cf and local Nusselt number Nu for
different values of Eckert number and casson parameter β for

Pr = 0.71,M = 1.0, kp = 0.1, Ra = 0.5,∆ = 0.1

Table 2. Computational values of skin-friction coefficient Cf and local Nusselt number Nu for
different values of thermal radiation parameter Ra for

Pr = 0.71, Gr = 2.0,M = 1.0, kp = 0.1,∆ = 0.1

5 CONCLUSION

In the present study, we have accounted for
the analysis of the spectral homotopy method
(SHAM) for MHD natural convection Casson
fluid flow over a non-isothermal stretching sheet
embedded in a porous medium.. SHAM adopts
the Chebyshev pheudospectral method to solve
the system of equations. The SHAM is the
numerical version of the proposed method by
Liao[28] called homotopy analysis method. The
SHAM is an efficient method which is easy
to compute and gives accurate results. As
shown in figure 2, the magnetic field strength
applied in the direction of flow gives rise to a
resistive force called Lorentz force. This force
opposes the flow direction and thereby reduces
the fluid velocity. Increase in the permeability
parameter kp gives room for more entrance of
Casson fluid. This is result to increase in the
fluid velocity and the liquid nature of the fluid
decreases the temperature of the fluid. The heat
generation and thermal radiation is significant in
situations where the environment temperature is
high. Thus, increasing these two flow parameters
brings more heat to the environment and thereby
increases the fluid temperature. This behaviour

is shown in figure 7 and 8. Increasing the Casson
parameter (β) decreases the velocity profile and
increases the temperature profile.

The present study plays a predominant role in
science and technology applications. The results
might find wide applications in engineering such
as geothermal system, heat exchangers, gas
turbine, nuclear power plant and thermal energy
storage. The porosity of the present problem
is significant in recovery of crude oil from the
pores of reservoir rocks. This is because of the
prevalence nature which could be applies in a
broad spectrum of disciplines such as chemical
engineering to geophysics.
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