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Abstract 
 

Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans [1,2]. A mathematical model 
that explains the transmission of Tuberculosis is developed. The model consists of four compartments; the 
susceptible humans, the infectious humans, the latently infected humans, and the recovered humans. We 
conducted an analysis of the disease-free equilibrium and endemic equilibrium points. We also computed 
the basic reproduction number using the next generation matrix approach. The disease-free equilibrium 
was found to be asymptotically stable if the reproduction number was less than one. The most sensitive 
parameter to the basic reproduction number was also determined using sensitivity analysis. Recruitment 
and contact rate are the most sensitive parameter that contributes to the basic reproduction number. 
Ordinary Differential Equations is used in the formulation of the model equations. The Tuberculosis 
model is analyzed in order to give a proper account of the impact of its transmission dynamics and the 
effect of the latent stage in TB transmission. The steady state's solution of the model is investigated. The 
findings showed that as more people come into contact with infectious individuals, the spread of TB 
would increase. The latent rate of infection below a critical value makes TB infection to persist.   
However, the recovery rate of infectious individuals is an indication that the spread of the disease will 
reduce with time which could help curb TB transmission.   
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1 Introduction 
 
Tuberculosis (TB) is an airborne disease caused by the bacterium Mycobacterium tuberculosis [1]. 
Mycobacterium is carried in air particles called droplets nuclei. Depending on the environment, these tiny 
particles can remain suspended in the air for several hours, potentially infecting anyone who breathes them 
in. However, not everyone who inhales the bacteria gets sick because some people's immune system 
immediately kills the bacteria. In others, the bacteria remain in a latent or dormant The bacteria become 
inactive, but they remain alive in the body. People with latent tuberculosis have no symptoms of TB; they 
don't feel sick and can't spread the disease to others. Once infected, an individual stays infected for many 
years possibly latently-infected for life [1,3]. TB is one of the oldest recorded human and animal diseases. It 
has been in animals before the existence of human species. Evidence that supports human cases of TB, as 
well as its role in human mortality, goes back to centuries. It’s not noticeable when the individual is infected 
and that makes the transmission of the disease easier [3]. 
 
The rate of tuberculosis cases in many countries of sub-Saharan Africa over the past decade is largely 
attributed to Human immunodeficiency Virus (HIV) and other emerging infections. Mathematical model of 
disease transmission within the human population have been acknowledged in helping policymakers and 
epidemiologists interpret epidemiological trends and understand the dynamics of the disease spread with 
efficiency of disease prevention and control. 
 
In order to efficiently control and prevent infectious disease like TB one has to be adequately informed about 
the mechanism of the spread and the transmission dynamics of the disease. This will help our predictions 
and our strategies to eliminate diseases. The study of epidemic dynamics is an important theoretic approach 
to investigate the transmission dynamics of infectious diseases since they describe change over time [1].  
 
From different analysis and numerical simulations, mathematical models can is often used as a tool to 
understand the spread of infectious diseases and how to control it. Mathematical models developed for the 
transmission of tuberculosis are numerous.  
 
Authors in [4] proposed a mathematical model that analyzed the study of TB transmission dynamics based 
on MSLR model. One of the principal attributes of these models is that the force of infection is a function of 
the number of infectious hosts in the population at any given time t. Other such as the recovery of infectious 
individuals and the death rate are modelled as linear terms with constant coefficients.   
 
In their paper, the effect of vaccination and treatment on the transmission dynamics of TB was analyzed. The 
endemic equilibrium state of the model using the basic reproduction number shows that TB can be 
effectively controlled or eradicated if the total removal rate from both the latent and the infectious classes is 
usually less than the product of the total contraction and total breakdown of susceptible class. Their model 
was basically addressing mainly vaccination and treatment as a way of controlling the spread of TB.  
 
Authors in [5], observed and predicted epidemiological models which review earlier study on modelling 
different aspects of tuberculosis dynamics. They observed that there was an increase in tuberculosis in the 
1990s and the emergence of drug-resistant in the first decade of the 21st century. They based their models on 
various mathematical systems such as systems of ordinary differential equations, simulation models Markov 
Chain and Monte Carlo method using a statistical analysis of TB patient data sets. 
 
The above authors also extended the same model, Murphy et al. [2003] to form a new model considering 
how the presence of a genetically susceptible sub-population alters the effects of TB treatment at both latent 
and active stages. It is assumed that treatment doesn't confer immunity, but instead it moves individuals from 
actively infected to latently infected. Treatment of latently infected individuals reduces their reactivation 
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rate. Results indicate that the exclusive treatment of latently infected individuals alone is not as effective as a 
treatment of actively infected individuals alone. Their research focused mainly on the treatment of latently 
infected as a way of reducing the spread of the disease.  
 
Authors in [6,7], proposed a model by considering that the recovered individuals can only be re-infected by 
making contact with infectious individuals. They came up with SEIR model. In their research, they 
developed a model for the transmission of TB disease by considering recurrent infection and vaccination. 
The DFE and its stability are presented and its relation to the basic reproduction number and vaccination 
reproduction number is discussed. Numerical examples show that vaccination is able to prevent the disease 
from spreading. They recommended that further study can be done for the optimal vaccination level as the 
function of the recurrent rate of infection. Their main focus was on the reoccurrence of TB .Many of these 
models address mainly immunization and treatment of the latently infected individuals.  
 
According to [8], on tuberculosis, the Sustainable Development Goals (SDGs) for 2030 adopted by the 
United Nations in 2015, as one of the targets is to end the global TB epidemic. The WHO End TB strategy 
approved by the World Health Assembly in 2014, calls for a 90% reduction in TB deaths and an 80% 
reduction incidence rate by 2030, compared with 2015.   
 
To combat the challenges of TB epidemic, there has been a massive scale-up of both treatment and 
diagnostic facilities particularly in Africa where TB is endemic. 
 

2 The Model 
 
This model is developed from [6,9] who combined immunization with latent TB treatment controlling the 
spread of TB. From their model, we assume the immunization and treatment of TB and focus on the effect of 
the latently infected in the transmission of TB. This model developed in this study is an improvement of the 
one developed by authors [6,2] in that it deals mainly with the general transmission dynamics and isolates 
the latent stage as the main contributing factor. This model is analysed qualitatively. 
 
The population at a given time t is denoted by N (�) . The model divides the population into four 
epidemiological classes with respect to their disease status in the environment. The total population, 
represented by N(t), is divided into the subpopulation of susceptible humans (S), infectious humans (I), 
latent (L), and recovered (R).the total population becomes; 
 
         N(�)=S(�)+ L(�)+ I(�)+ R(�), where; 
 
S(t)= the susceptible population that are at risk of developing infection from TB. 
 
I(t)= infectious humans, showing symptoms of the disease. 
 
L(t)= latent population, population having the disease but not showing the symptoms. 
 
R(t)= those that have recovered after treatment and have got temporary immunity. 
 

The susceptible humans enter into the population at a rate   . Susceptible humans acquire the disease 

through ingestion or contact and inhalation of spores. Contact with infectious humans at a rate   and 

individuals recover from the disease at a rate  . Humans who are infected with the disease die at a rate δ 

and the recovered human may lose immunity and return to the susceptible compartments at a rate  . The 

natural death rate of the entire human compartments is   . Susceptible humans become latently infected at 

the rate   , and latently infected become infectious at the rate   . 
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Fig. 1. Model flow chart showing the compartments 
 

From the figure above, the model equation become; 
 

 

 

 

 

dS
SI R S

dt

dI
SI L I

dt

dL
S L

dt

dR
I R

dt

   

    

  

  

     

    

  

  

                                                                                                  (1) 

                                                                                             

2.1 Assumptions of the model 
 
From this model;  
 

1.  We assume that there is random mixing of individuals in the population. 
2.  We also assume that infected and latent individuals recover from the symptoms of TB after 

treatment. 
3.   We further assume that some of the newborns and migrants may be possibly latently infected at the 

time they are born or migrate into the population. 
4.  We also assume that the latently infected will not go back to the susceptible because they already 

have the bacteria. 
 

2.2 The disease free equilibrium 
  
The disease free equilibrium points is where there are no infections in the population.  
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At the disease free equilibrium, there is no infection hence no recovery that is; I=L=R=0. Therefore at the 
equilibrium, we have, 
 

0
dS dI dL dR

dt dt dt dt
                                                                                                                  (2)                                

 
From equation (1) we have: 
 

  0S      

 

S


 S
 





                                                                                                                          (3)                       

 
The disease free equilibrium points from the model is expressed as follows; 
 

 , , , ,0,0,0E S I L R
 

 
  

 
                                                                                                 (4)                

 

2.3 Stability of the disease free equilibrium 

 
We will determine the stability of the disease-free equilibrium points which is done by linearizing the system 

of differential equations by obtaining the Jacobian at disease-free equilibrium; ,0,0,0
 

 
 

 
  The 

Jacobian of the system of differential equation is as shown below. 
 

J= 

S S S S

S I L R

I I I I

S I L R

L L L L

S I L R

R R R R

S I L R

    
    
 
    

    
 
    

    
    
 
    

                                                                                                          (5)                         

 

 
 

 
 

0

0

0 0

0 0

I S

S S
J

    

     

  

  

    
 

   
  
 

   

                                   (6)         

 

But I=0 S
 





 Therefore the stability will be calculated using the Jacobian Matrix at the disease-free 

equilibrium by finding the determinant of the matrix. 
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 

 

 
 

0

0 0,0,0,0

0 0

0 0

J


  

 


   

  
  

  

 
   

 
             

  
   

=0 

 

 

 

 

 
 

0

0 0

0 0

0 0

J I


   

 


    

 

   

   

 
    

 
 

       
 

   
    

 =0 

 
Where λ is the Eigen value 
 
Using the Jacobian at the disease free equilibrium we determine the Eigenvalue at the disease-free 
equilibrium. 
 

       
1 2 3 4

, , ,


        
    


             


               (7) 

 
Since all Eigenvalues are negative, then the disease-free equilibrium is locally asymptotically stable.  
 

2.4 The basic reproduction number 
 
The basic reproduction number is defined as the average number of secondary cases arising from an average 
primary case in an entirely susceptible population over the period of infection [10,11]. The reproduction 
number is used to predict whether the epidemiological model has a disease-free equilibrium (DFE) at which 
the population remains in the absence of the disease. If ��< 1 then the disease-free equilibrium (DFE) is 
locally asymptotically stable. If �� > 1 then DFE is unstable. In order to get the reproductive number, we 

calculate it using the next generation matrix from the model equations
 0i

j

f x
F

x





,  

 0i

j

v x
V

x





 . 

 

iF  = rate at which new infections enter the compartment 

 

iV  = transfer of individuals out and into the ith compartment. 

 

0X   = DFE 
 

using the second and third equations above, we obtain; 
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0

SI
F

 
  

 
  

 

 
 

I I
V

S L

   

  

    
  

   
  

 

 
V

V
I  

  




   


      F I SI   

 

V

L
 


 


  

 

,0,0,0

f
F

I  






 


  

 

0

SI
F

 
  

 
  

 

,0,0,0DFE
 

 
  

 
  

 
Matrix F defines new infections in different compartments, differentiated w.r.t I and L evaluated at the DFE. 
 

if SI    
1

2

f
F

f

 
  

 
      

0

SI
F

 
  

 
  

 

0
L L

L I
V

I I

L I

 

   

  
    

          
   

  

 

  
01

V
  

      

  
      

  

 

0

0 0
0 0

SI SI

F L I

 


  
         

 
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  

1

1
0

0
0

10 0
FV

 



       



 
         
      

  

 

Now we calculate the eigenvalues of the matrix to determine the basic reproduction number, 0R   defined as 

the spectral radius (dominant eigenvalue) of the matrix. This is computed by 0A I   where A is the 

matrix and I is the 2x2 identity matrix. 
 

   0

0 0

 


       



 
      

 
    

 

0   
 

   



    


  

                                                                                             (8)                           

 
FV-1 is called the next generation matrix. The spectral radius of FV-1 is equal to R0. 
 
R0  is the maximum Eigen value of FV-1. Therefore; 
 

  0R


    


  
 

 

We now give the condition necessary to ensure a disease-free population; 
 

Theorem   
 

If 
 
 

   

   

 


  
, the disease will not take hold in the population. 

 

Proof 

At the disease-free equilibrium,
  0R



    


  
then 0 1R   

 

  

  

   

   

 
 

1


    

     

        

        

   


   


  

   

     

     

 


  

                                                                                             (9)                                               
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Lemma 
 

If 
 
 

   


   

 


  
then the disease will take hold in the Population. 

 
When  
 

0 1R  , then 
   

1


    


  
                                                                                       (10)                   

 

2.5 Endemic equilibrium  
 
The endemic equilibrium points where the disease will co-exist in all compartments of the population, that 
is, the state where the disease persistent in the population [12,4]. In this situation, if E*(S*I*L*R)   0 Using 
the systems of equations above, we derive the endemic equilibrium point. 
 

I
R



 



                                   

S
L



 



  

 

 
S

SI I


    
 

   


   

 

 *

S   



 
   

 

  0S L    
 

 

  L
  

  


  
  

 
  

 

 
 

*

L    

  

 



  

 

 
I

SI S


  
 

    


  

 

I
SI

      
  

   

       
            

  

 

   
   

    
  

    
            
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 

 

*
I

  
 




  

 

 
  


 

    

 =
    

  
       

     

     

   
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The endemic equilibrium becomes    
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      (11) 

 

2.6 Stability of the endemic equilibrium 
 

2.6.1 The stability analysis of the endemic equilibrium   
 
If the basic reproduction number is less than one, then the endemic equilibrium is asymptotically stable 
[10,13,11]. 
 

Using the Jacobian matrix, 
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The characteristic equation of the Jacobian matrix becomes   0J I    
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 Solving and selecting the dominant eigen value, we obtain; 
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Therefore; the basic reproduction number of the endemic equilibrium is; 
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  0R

              
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         


   
                         (12)            

 
Whether the disease persists or dies out in the population depends on the magnitude of the basic 

reproduction number. The DEE is asymptotically stable if 0 1R  and unstable if 0 1R   . On the other 

hand, the EE is locally asymptotically stable when 0 1R   and unstable when 0 1R  . 

 
Lemma: In order to control the spread of TB in any population, effort must be made to ensure that the EE is 

unstable, 0 1R  . 

 

Theorem:  If 0 1R  then the endemic equilibrium is asymptotically stable. 

 

The characteristic equation is  J I  =0. Taking the dominant eigenvalue, the basic reproduction number 

is. 
 

        
  0R

              

     

          


   
 

 

The Endemic Equilibrium is locally asymptotically stable when 0 1R   and unstable when 0 1R  . 

 
Proof: 
 

If 0 1R  the disease-endemic e 
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If 0 1R   then, 

 
The disease endemic equilibrium is asymptotically stable. Hence the disease will continue to exist in the 

population. Otherwise, it will die out with time if 0 1R   . 

 

3 Conclusion 
 
In this paper, the effect of latently infected population on the transmission of TB was analyzed. Since the 
population that is latently infected cannot be identified, they can easily spread the disease during their 
transmission from latent to infectious and if there is a random mixing of individuals in the population. The 
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duration of the latent infection is not known and varies from one individual to another. The endemic 
equilibrium state of the model using basic reproduction number shows that TB can be effectively controlled 
if the rate of both the latently and infectious class is always less than one. From the results, as the 

transmission rate increases or as the recovery rate decreases, 0 1R   and the disease-free equilibrium is 

unstable. This indicates that the disease will spread when there is an outbreak. Consequently, as the 

transmission rate decreases, or the recovery rate increases.   0 1R  the DFE will be stable hence the disease 

will not spread. 
 

The model gave a basic reproductive number 0 1R  , This means that the disease will persist in the 

population. 
 

4 Recommendations 
 
TB transmission can be minimized in the population if the effort is made to ensure that the endemic 
equilibrium of the model is never stable. This can be achieved if the following recommendations are 
considered; 
 

1) People should be enlightened on the mode of TB transmission dynamics and home care strategies 
of people with TB. 

2) The government should intensify the education on TB in the churches, schools, to the individuals in 
the communities of its existence, free access to medical care and treatment duration.  

3) The government should integrate TB programs into other existing health services such as outreach, 
maternal and child welfare programs among others in order to increase its awareness. 
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