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ABSTRACT 
 

Taking local anisotropy into consideration, in this paper, some new analytical models of relativistic 
anisotropic charged quark stars with a linear and quadratic equation of state have been developed. 
The Einstein-Maxwell field equations have been solved with a particular form of metric potential and 
electric field intensity. The plots generated show that physical variables such as metric potentials, 
radial pressure, energy density, charge density, anisotropy, radial speed sound are consistent with 
realistic stellar models. We obtained some models consistent with stellar objects as 4U 1538-
52,Cyg X-2, OGLE-TR-122b and red dwarf Proxima Centauri.  

 

 
Keywords: Quadratic equation of state; charged quark stars; metric potential; electric field intensity; 

local anisotropy. 
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1. INTRODUCTION  
 
The Einstein´s theory of general relativity (GR) is 
considered as a fundamental theory to 
understand the behavior and structure of stellar 
massive objects as neutron stars, quasars, 
pulsars and white dwarfs [1-4]. The first 
theoretical study in GR is carried out by Karl 
Schwarzschild [5] in 1916 with the discovery of a 
universal vacuum exterior solution. Also Einstein 
makes important contributions to the research on 
the structure of the universe producing relevant 
advances in the fields of astrophysics and 
cosmology [6].  
 
For many decades, the star interior was 
considered made of perfect fluid where are equal 
the radial (pr) and tangential (pt) pressures and 
this leads to the isotropic local condition pr = pt  
[7]  but the theoretical studies of Ruderman [8] 
and Canuto [9] on realistic star models suggest 
that the nuclear matter can present anisotropy 
inhigh  density ranges ( ρ > 10

15 
g cm

3
). In the 

massive objects the radial pressure differs from 
tangential and the anisotropy in the pressures 
can be induced by a solid core, phase 
transitions, presence of magnetic field and pion 
condensation [10,11]. Usov [12] suggest that 
strong electric field may also cause pressure 
anisotropy. In the pioneering work of Bowers and 
Liang [13] consider an anisotropic fluid model 
and conclude that anisotropy influence in the 
maximum equilibrium mass and surface redshift. 
Chandrasekhar [14] studied the conditions of 
dynamic instability in fluid spheres in the 
framework of general relativity. Dev and Gleiser 
[10] have presented new exact solutions for 
distribution of matter with tangential pressures 
and uniform energy density and propose an 
equation which relates the radial and tangential 
pressures in order to integrate analytical the 
Einstein field equations.  Authors as Cosenza et 
al. [15], Bayin [16], Krori et al. [17], Herrera and 
Ponce de León [18], Ponce de León [19,20], 
Bondi [21], Herrera [22],Herrera and Santos [23], 
Herrera et al. [24,25], Dev and Gleiser [10,26], 
Ivanov [27,28], Mak and Harko [29,30], Mak et al. 
[31], Viaggiu [32], Malaver  [33-38], Pant et al. 
[39]  have studied the effect of anisotropy on the 
physical properties of a distribution of matter in  
relativistic compact objects. 
 
The possibility of the existence of strange quark 
stars in hydrostatic equilibrium was first 
speculated for Itoh [40] in a seminal treatment. In 
the hypothesis of the strange quark matter, the 
quark matter consists of equal number of up, 

down quarks and the strange quarks can be 
considered as the absolute ground state for the 
confined state of hadrons [41]. It is know that 
strange stars form during the collapse of the core 
of a massive object after a supernova explosion 
so this kind of stars are not part of equilibrium 
configurations as neutron stars and white dwarf.           
 
An important distinction between strange stars 
and conventional neutron stars is that the 
strange stars are self-bound by the strong 
interaction, gravity just make them massive, 
whereas neutron stars are bound by gravity. This 
allows a strange star to rotate faster than would 
be possible for a neutron star. The most 
fascinating distinction between a strange star 
and a normal neutron star is the surface electric 
fields associated with it. Strange stars possess 
ultra-strong electric fields on their surfaces, 
which, for ordinary strange matter, is around 10

18
 

V/cm and 10
20

 V/cm for color superconducting 
strange matter [42,43]. The influence of energy 
densities of ultra-high electric fields on the bulk 
properties of compact stars was explored in [43–
49]. It also has been shown that electric fields of 
this magnitude, generated by charge distributions 
located near the surfaces of strange stars, 
increase the stellar mass by up to 30% 
depending on the strength of the electric field. 
These features may allow one to observationally 
distinguish strange stars from neutron stars. 
 
Many researches as Ponce de León [19], Patel 
and Vaidya [50], Tikekar and Thomas [51], Mak 
and Harko [52], Chaisi and Maharaj [53–55], 
Maharaj and Chaisi [56,57], Sharma and Maharaj 
[58], Varela et al. [59], Komathiraj and Maharaj 
[60], Takisa and Maharaj [61–63], Takisa et al. 
[64], Maharaj and Takisa [65], Feroze and 
Siddique [66,67], Feroze [68], Feroze and Tariq 
[69], Bhar et al. [70], Murad [71] and Malaver 
[72,73] have developed mathematically exact 
analytical models of strange stars with a linear 
equation of state based on MIT bag model and 
with quadratic equations of state for different 
metric potentials. We would too like in pointing 
out that novel paradigm PHYSICS necessitates 
knowing what is going on inside these galaxies 
and stars especially that are anisotropic may 
hold clue to the quantum nature [74] that ansatz 
new paradigm PHYSICS has been developed to 
formalisms that have sound logic with 
assumption-free theoretical advancements that 
has ability to be gaged from the quantum to 
astrophysics regime metrically [75-78]. Also, 
Bhar and Murad [79] consider a Chaplygin 
equation of state with locally anisotropic matter 
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distribution using a particular type of metric 
function. Pure physical time transforms have 
been ansatz developed, that have not been 
available before in literature, that has capability 
to prove universe is like a black box, however, 
observable parameters are derivable in terms of 
density matrix and four-vector time fields matrix 
gaged to switch mode four-vector-ket matrix [80]. 
Currently, findings of the James Webb telescope 
discovered six galaxies that appeared between 
500 and 700 million years after the Big Bang that 
essentially seem to contradict the present 
understanding of how the first galaxies were 
formed [81]. Hence, quantum astrophysics 
theoretical to experimental observable 
measurement methodologies with reworking 
formalism from Helmholtz decomposition then 
algorithmically gaging to fibrational discontinuum 
energy fields with a four-vector time fields to four-
vector-ket matrix and four element wave function 
point-to-point bra matrix together displaying 
astrophysical observable signal/noise matrix will 

be experimentally required to get to the bottom of 
this new PHYSICS [75-81].  
 
As stated the principal motivation of this work is 
to develop some new analytical relativistic stellar 
models by obtaining closed-form solutions of 
Einstein-Maxwell field equations in presence of 
electric field with a linear and quadratic equation 
of state for anisotropic matter. We have used the 
metric potential proposed by Thirukkanesh and 
Ragel [82] and generalized for Malaver [33] or 
Thirukkanesh-Ragel-Malaver ansatz. This paper 
is structured as follows: The next section, Sect. 
2, we show the solution of Einstein-Maxwell field 
equations of anisotropic fluid and derives the 
pressure and density relation. In Sect. 3 we 
present a new classes of models for compact 
objects. In Sect. 4 physical acceptability 
conditions are discussed. The new models 
obtained are physically analyzed in Sect. 5. The 
conclusions of the results obtained are shown in 
Sect. 6. 
 

2. EINSTEIN-MAXWELL FIELD EQUATIONS 
 
We consider a spherically symmetric, static and homogeneous spacetime. In Schwarzschild 
coordinates the metric is given by: 
 

)θdφ+(dθr+dre+dte=ds 2(r)2(r)2 22222λ2 sin     (1) 

 

where )(r  and )(r are the metric potentials and are the functions of radial coordinate r.. Let us 

further assume that the matter distribution inside the compact star is locally anisotropic whose energy 

momentum tensor 


T is given by the following:  
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where   is the energy density, rp is the radial pressure, E  is electric field intensity, tp is the 

tangential pressure of the fluid distribution[79]. 
 
Taking the speed of light c and the constant G as the unity, i.e. c=G=1,the Einstein field equations for 
the charged anisotropic matter are given by: 
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The energy density and the pressure are measured relative to the comoving fluid 4-velocity 

aa eu 0
 and  the primes means differentiation with respect to the radial coordinate r. Using the 

transformations,  
2Cr=x , 

(r)e=Z(x) 2λ
and 

(r)e=(x)yA 2ν22
with arbitrary constants A and 

c>0, suggested by Durgapal and Bannerji [83], the Einstein field equations can be written as: 
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 is the charge density, rt pp   is the anisotropy parameter and dots denote differentiation with 

respect to the variable x. With the transformations of [83], the mass within a radius r of the sphere 
takes the form 
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x

dxEx=m(x)
0

2

3/24C
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where          CZ
x

Z




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


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
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1
  

 
The interior metric (1) with the charged matter distribution should match the exterior spacetime 
described by the Reissner-Nordstrom metric:  
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where the total mass and the total charge of the star are denoted by M and q

2
, respectively. The 

junction conditions at the stellar surface are obtained by matching the first and the second 
fundamental forms for the interior metric (1) and the exterior metric (14).  
 
In this paper, we imposed the following equations of state, linear and quadratic, respectively, relating 
the radial pressure to the energy density, where m is a positive constant 
 

mpr        and  
2mpr                   (15) 

 

3. CLASSES OF MODELS FOR COMPACT OBJECTS  
 
In order to solve the Einstein-Maxwell field equations, in this work we have chosen the metric potential 

proposed by Thirukanesh and Ragel [82] and Malaver [33] which has the form  n
axxZ  1)( , where 

a is a real constant and n is an adjustable parameter and we take the electric field intensity used for 
Lighuda et al. [84] that can be written as: 
 

 n
axkxxkxZ

C

E
 1)(

2

2

  (16) 

 
with k as an arbitrary real constant. The gravitational potential chosen is regular at the stellar center 
and well behaved in the interior of the sphere and the electric field is finite at the center of the star and 
remains continuous in the interior. In this research we have analyzed the particular cases for n=1 for 
linear equation of state and n=2 for quadratic equation of state. 
 
For the case n=1, using Z(x) and eq. (16) in eq. (7) we obtain  
 

  axkxaC  13                                                           (17) 

 
Substituting eq.(17) in eq. (15) for a linear equation of state  the radial pressure will be  given for 
  

  axkxamCmpr  13                                                    (18) 

 

With eq. (16) and Z(x) in eq. (12) the charge density is expressed as follows: 
 

 222 432 axkC                                                             (19) 

 

Using eq.(17) in eq. (13) we obtain for the mass function 
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Substituting (17), (15) and Z(x)in eq. (7) we have  
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Integrating eq. (21), we obtain   
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Where 1C  is the constant of integration  

 

For the metric functions   
2e  and 

2e  we have  
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and the anisotropy   is given by for  
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With n=2 and quadratic equation of state we found the following expressions for  , rp , ,2 )(xM , 

2e , 
2e and    
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For convenience we have let  
 

mkCaA 236  , mkCaB 2221 , mCakmkCaC 23 25100                                            (33) 

 

 akmCkkmCaD 1510280 22    , kCakmmCaE 15180750 3                                     (34) 

 

3030  CamF                                                                                                                    (35) 

 

4. CONDITIONS OF PHYSICAL ACCEPTABILITY FOR NEW MODELS 
 

For a model to be physically acceptable, the following conditions should be satisfied [33,85]:  
 

(i) The metric potentials 
2e and 

2e assume finite values throughout the stellar interior and are 

singularity-free at the center r=0.  
(ii) The energy density ρ should be positive with a maximum value in the center and a decreasing 

monotonically function inside the star. 
(iii) The radial pressure also should be positive with a maximum value in the center and a 

decreasing monotonically function of radial parameter and must vanish at the boundary.  

(iv) The radial pressure and density gradients   0rdp
dr

 and  0d
dr

  for 0 r R  .  

(v) The anisotropy is zero at the center r=0, i.e. Δ(r=0) =0. 
(vi) The solution must not have singularities, i.e., for 0 ≤ r ≤ R the metric functions, the charge, 

density, and pressures are non-negative. 
(vii) The electric field should be a monotonically increasing function of radius, towards the surface of 

the sphere. 
(viii) Any physically acceptable solution must satisfy the causality condition where the radial speed 

of sound 
2

srv should be less than speed of light throughout the model, i.e.  

                                  0 ≤ 
d

dp
v r

sr 
2 ≤1.  
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(ix) The internal metric and the external metric must be continuous about the surface r=R. 
(x) The interior solution should match with the exterior of the Reissner-Nordstrom spacetime, for 

which the metric is given by 
 

222222

1

2

2
2

2

2
2 sin

2
1

2
1  drdrdr

r

Q

r

M
dt

r

Q

r

M
ds 





















 

 
through the boundary r=R where M and Q are the total mass and the total charge of the star, 
respectively.  

 
The conditions (ii) and (iv) imply that the energy density must reach a maximum at the centre and 
decreasing towards the surface of the sphere. 

 

5. PHYSICAL ANALYSIS OF THE NEW MODELS  
 

For n=1 with linear equation of state  the metric potentials  
2e and 

2e have finite values and remain 

positive  throughout the stellar interior. At the center  
 2 0

1e


  and
    2

13
2

1

202 1



m

cAe 
. We 

show that in r=0     00
)(2

0
)(2 





 r

r
r

r ee 
and this makes is possible to verify that the 

gravitational potentials are regular at the center. The energy density and radial pressure are positive 

and well behaved between the center and the surface of the star. In the center  aCr 3)0(   and

maCrpr 3)0(   ,   therefore the energy density will be non-negative in r=0 and ( 0)rp r  > 0 . In 

the surface of the star  ( r R ), ( ) 0rp r R  and we have 

 

 
akC

kakkakC
R

2

122 22 


 

(36) 

 

For the radial pressure and density gradients we obtain   
 

  3322 212 rakCaCrrkC
dr

d




 

(37) 

 

  322 212 rakCaCrkCrmC
dr

dpr                                            (38) 

 

 In order to maintain of causality, the radial sound speed should be within the limit 0 ≤ 
2

srv ≤1 in the 

interior of the star [85]. In this model, we have:                                                                                   
 

0 ≤ 
3

12 
d

dp
v r

sr
≤1                                               (39) 

 
On the boundary r=R, the solution must match the Reissner–Nordström exterior space–time as 
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 22222

1

2

2
2

2

2
2 sin

2
1

2
1  ddrdr

r

Q

r

M
dt

r

Q

r

M
ds 





















 

(40) 

 

and therefore, the continuity of 
2e and 

2e across the boundary r=R is 
 

2e = 
2e = 

2

22
1

R

Q

R

M
                                                                             (41) 

 
Then for the matching conditions, we obtain 
 

63422 22
2

RakCRkCaCR
R

M
                                                                  (42) 

 

With the quadratic equation of state and n=2, we have for the metric potentials 
 2 0

1e


 ,

    602

110.
2

2

202 1

FCam

ecAe



and     00

)(2
0

)(2 





 r
r

r
r ee 

at the centre r=0. Again the 

gravitational potentials are regular in the origin. The energy density and radial pressure also are 

positive and well behaved in the stellar interior. In the center aCr 6)0(   and
236mCapr  , 

therefore the energy density will be non-negative in r=0 and ( 0)rp r  > 0. For the radial pressure 

and density gradients we obtain  
 

    232222 141210 aCrrakCaCrkCrCraC
dr

d




 

(43) 

 

       23222222222 1412101562 aCrarkCaCrkCrCraaCrkCrCraamC
dr

dpr 
 

(44) 

 
The causality condition implies that  
 

0 ≤  2222222 121012 aCrrmkCrCmaamC  ≤1                                     (45) 

 
On the boundary r=R, the solution must match the Reissner–Nordström exterior space–time  
and therefore for the matching conditions, we obtain: 
 

 
2

842634222

1

24222

aCR

RCkaRkaCRCakaCR

R

M




                                            (46) 

 
In Table 1 presents the values of the parameters chosen a, K, m and n for the linear and quadratic 
equation of state. The mass and stellar radius obtained are also shown  
 

Table 1. Parameters m, a, k, stellar radii and masses for linear and quadratic regime 
 

n Equation of State m a k M(Mʘ) R(Km) 

1   linear 1/3    0.003 0.00022  0.12Mʘ      5.1 
2  quadratic 1    0.060 0.00022  2.05Mʘ      4.1 

 
 Where, Mʘ is the mass of the sun.  
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The Figs. 1, 2, 3, 4, 5,  6, 7, 8, 9 and 10 present the dependence of   , 
d

dr


 ,

2e , 
2e , 

2

srv , rp , 

rdp

dr
, ,M 2 and  Δ with the radial coordinate for linear and quadratic equation of state ,  

respectively.  In all cases we have considered C=1. 
 

 
 

Fig. 1. Energy density against radial coordinate for n=1 (solid line) and n=2 (long-dash line) 
 

 
 

Fig. 2. Density gradient against radial coordinate for n=1 (solid line) and n=2 (long-dash line) 
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Fig. 3. Metric potential
2e against radial coordinate for n=1 (solid line) and n=2 (long-dash 

line) 
 

 
 

Fig. 4. Metric potential 
2e against radial coordinate for n=1 (solid line) and n=2 (long-dash 

line) 
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Fig. 5. Radial speed sound
2

srv against radial coordinate for n=1 (solid line) and n=2 (long-dash 

line) 
 

 
 

Fig. 6. Radial pressure against radial coordinate for n=1 (solid line) and n=2 (long-dash line) 
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Fig. 7. Radial pressure gradient against radial coordinate for n=1 (solid line) and n=2 (long-
dash line) 

 

 
 

Fig. 8. Mass function gradient against radial coordinate for n=1 (solid line) and n=2 (long-dash 
line) 
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Fig. 9. Charge density against radial coordinate for n=1 (solid line) and n=2 (long-dash line) 
 

 
 

Fig. 10.  Anisotropy against radial coordinate for n=1 (solid line) and n=2 (long-dash line) 
 

In the Fig. 1 is shown that the energy density 
remains positive, continuous and is 
monotonically decreasing function throughout the 
stellar interior for linear and quadratic equation of 
state. For n=2, the energy density takes higher 
values with the radial coordinate. In the Fig. 2 it 
is noted that for the radial variation of energy 

density gradient  
dr

d ˂ 0 for the two cases 

studied, which is a condition for the physical 
acceptability of the model. In Fig. 3   the metric 

potential 
2e in is continuously growing inside 

the star for n=2 but for n=1  not vary appreciably 
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with the radial coordinate. In Fig. 4 the metric 

potential 
2e is continuous well behaved  and 

shows an increase with the radial coordinate and 
then a decrease in the interior of the star for n=2  
but when n=1 with linear equation of state   
remains constant within the star. In Fig. 5 the 
profile of radial speed sound is plotted for the 
linear and quadratic equation of state and is 

noted that  
2

srv is always less that the unity and 

the causality condition is maintained in the stellar 
interior and it is important physical requirement 
as indicated Delgaty and Lake [85]. The radial 
pressure showed the same behaviour as energy 
density, shows the same behaviour as energy 
density, that is, growing within the star and 
vanishes at a greater radial distance, but takes 
higher values for n=2 as shown in Fig. 6. Again, 

according to Fig. 7, the profile of   
dr

dpr shows 

that radial pressure is negative with the radial 
distance in linear and quadratic regime . In Fig. 
8, the mass function is regular, well behaved and 
strictly increasing from the centre to the surface 
of the star for n=1 and n=2. In Fig. 9, that 
represent the variation of the charge density it is 
noted that is continuous, finite and is 
monotonically decreasing function for linear and 
quadratic equation of state.  The anisotropy is 
plotted in Fig. 10 and it shows that vanishes at 
the centre of the star, i.e. Δ(r=0) =0. We can also 
that Δ admits higher values in quadratic regime 
for large values of radial distance.  
 
We can compare the values calculated for the 
mass function with observational data. For n=2 
the values of m, k and a allow to obtain a mass 
of 2.05Mʘ which can correspond to astronomic 
object PSRJ1614-2230 [86] or it could also be 
associated to Cyg X-2 with a stellar mass of 
1.78Mʘ [87]. For the case n=1 we obtained 
comparable masses with the small star OGLE-
TR-122b [88] with a mass of 0.09Mʘ or the red 
dwarf Proxima Centauri whose mass is 0.123Mʘ 

[89]. The values of the masses for these compact 
stars are tabulated is Table 2. 
 

Table 2. The approximate values of the 
masses for the compact stars 

 

Compact Star  Masses M(Mʘ) 

PSRJ1614-2230   1.908Mʘ 
Cyg X-2   1.78Mʘ 
OGLE-TR-122b   0.123Mʘ 

 
As stated earlier, we would point out that recent 
findings of the James Webb telescope 

discovered six galaxies that appeared between 
500 and 700 million years after the Big Bang that 
contradicts the current understanding of how the 
first galaxies were formed [77]. Quantum picture 
with current modelling of astrophysics will 
provide a valuable tool in deeper knowledge of 
what is going on within these stellar objects, for 
example charge and energy densities, 
anisotropy, mass functions, and time transforms 
[71-74, 76]. Advantage of these theoretical to 
experimental design observables general 
conjectural modeling transforms will be its 
exceptional ability towards measurements by 
Instrumented PHYSICS techniques having 
algorithm that gives point-to-point parameters 
multiplicatively relating to signal to noise matrix 
measurable profile density. Point-to-point matrix 
intensity detection as well as measurement 
strategy provides a viable means of capturing 
observable measurable astrophysical 
signal/noise matrix of vibrational or sound and 
photonic or light gauge fields, equipped to detect 
point to point astrophysical light intensity 
signal/noise and spectra density matrices of light 
signals [76]. 
 

6. CONCLUSION  
 

In this paper we generated new exact models 
with the Thirukanesh-Ragel-Malaver ansatz for 
the metric potential considering linear and 
quadratic equation of state in presence of electric 
field. These models may be used in the 
description of compact objects charged and in 
the study of internal structure of strange star. We 
show that the new solutions are expressed in 
terms of polynomial and elementary functions 
which allow a physical study. A graphical 
analysis shows that the metric coefficients, radial 
pressure, energy density, charge density, mass 
function and anisotropy are regular at the origin 
and well behaved in the stellar interior. The new 
obtained models match smoothly with the 
Schwarzschild exterior metric across the 
boundary r=R because matter variables and the 
gravitational potentials of this research are 
consistent with the physical analysis of these 
stars. 
 

The new solutions can be related to stellar 
objects such asPSR J1614-2230, Cyg X-2 and 
OGLE-TR-122b. Physical features associated 
with the matter, radial pressure, density, 
anisotropy, charge density and metric potential 
and the plots generated suggests suggest that 
the model with n=1 similar to the red dwarf 
Proxima Centauri is well behaved [89].It is 
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expected that the results of this work can 
contribute to modeling of relativistic compact 
objects and configurations with anisotropic 
matter distribution. We have ansatz formalisms 
that connect astrophysics with the quantum 
nature of these anisotropic matter in stellar 
compact objects, with observable parameters 
derived from theoretical modeling to 
experimental measurements. These have all 
been necessitated by especially current findings 
of the James Webb Telescope of six earlier 
formed massive galaxies to peek into quantum 
nature with our newly developed point-to-point 
signal/noise matrix measurements of vibrational 
or sound and photonic or light gauge fields. 
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