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Abstract. The estimation of the spectral absorption coefficient of biological 
tissues provides valuable information that can be used in diagnostic procedures. 
Such estimation can be made using direct calculations from invasive spectral 
measurements or though machine learning algorithms based on noninvasive or 
minimally invasive spectral measurements. Since in a noninvasive approach, the 
number of measurements is limited, an exploratory study to investigate the use of 
artificial generated data in machine learning techniques was performed to 
evaluate the spectral absorption coefficient of the brain cortex. Considering the 
spectral absorption coefficient that was calculated directly from invasive 
measurements as reference, the similar spectra that were estimated through 
different machine learning approaches were able to provide comparable 
information in terms of pigment, DNA and blood contents in the cortex. The best 
estimated results were obtained based only on the experimental measurements, 
but it was also observed that artificially generated spectra can be used in the 
estimations to increase accuracy, provided that a significant number of 
experimental spectra are available both to generate the complementary artificial 
spectra and to estimate the resulting absorption spectrum of the tissue.  
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1 Introduction 
Biological tissues differ one from the other in various 
aspects, since they can have differentiated contents of 
biological components inside, a different state of health 
and a different age. The evaluation of such parameters 

from tissues is not always easy. An example is the 
evaluation of the tissue state of health in the initial stages 
of cancer development, since the early-stage formation of 
cancer cells and the small changes created by those cells 
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in the surrounding environment are not detected by visual 
inspection. 

Optical methods can help in such evaluations, since 
any small change in tissue physiology or morphology 
will translate in changes on the tissue’s optical properties 
[1, 2]. The measurement of the spectral optical properties 
from similar tissues, such as the refractive index (RI) or 
the absorption coefficient (μa) in a wide spectral range [3] 
allows to acquire and compare information regarding the 
contents of proteins, blood and lipids. Detected 
differences of these contents can be used as bio-optical 
markers to identify and discriminate pathologies such as 
cancer [1] or diabetes [4, 5]. Such spectral evaluation 
also allows to detect the presence of pigments, such as 
melanin or lipofuscin, whose accumulation in tissues has 
been reported to be related to the ageing process [6] or to 
the development of cancer [7, 8]. The evaluation of the 
scattering coefficient (μs), or the reduced scattering 
coefficient (μʹs) in a wide spectral range may also be 
useful to discriminate pathological from healthy tissues. 
Studies have showed that pathology-induced changes in 
tissue structure translate in a change of form and 
magnitude of the μs and μʹs spectra [1, 9]. 

Considering the potential of the optical methods to 
acquire diagnostic information, both the RI and the μa 
spectra are sensitive to the absorption bands of tissue 
chromophores and can be used in the detection of 
pathology-discriminating information with higher 
accuracy [10–12]. Considering the identification, 
quantification and content discrimination of 
chromophores and pigments between healthy and 
pathological tissues, the analysis of the spectral μa (μa(λ)) 
has proven to be more useful [1, 2, 13–15].  

The evaluation of μa(λ) has been traditionally made 
through the use of inverse simulations, whose 
computational codes are based on the Monte Carlo or the 
Adding-Doubling algorithms [16–18]. These simulation 
codes require some optical measurements as input, such 
as the total transmittance (Tt), the total reflectance (Rt), 
the collimated transmittance (Tc) and the RI of the tissue 
[16–18]. All these measurements must be acquired from 
the tissue under study, and although the Rt and RI data 
can be measured with a noninvasive or minimally 
invasive procedure from in vivo tissues, the Tt and Tc 
measurements require a more invasive approach and are 
more commonly made from ex vivo tissue samples [19]. 
Another disadvantage of the traditional simulation 
methods is that the available codes perform a simulation 
at a time for individual wavelengths. This means that to 
acquire the necessary data to reconstruct the μa(λ) of a 
particular tissue for a broad spectral range, one needs to 
perform a large number of simulations. As recently 
reported [1, 2, 11, 13–15], such time and computer 
demanding approach can be replaced by a faster method 
to calculate the μa(λ) of the tissue in a few seconds. This 
calculation method still needs the Tt and Rt spectra from 
ex vivo tissues, but if those spectra are available, the 
entire μa(λ) can be obtained immediately [1, 13].   

To explain this new calculation approach we consider 
a hypothetical biological tissue sample with slab-form 

and fixed thickness, d, that consists of a medium where 
light absorption dominates over light scattering. If this 
sample is excited by a collimated light beam with 
intensity I0(λ), then the Bouguer-Beer-Lambert law can 
be used to calculate the transmitted light intensity, I(λ) 
[13, 20]: 

!(#) = !!(#)&"#!(%), (1)  

where Ab(λ) represents the absorbance spectrum of the 
tissue sample that is defined as [13, 20]: 

''(#) = −)* + ((%)("(%)
, = -) × /. (2)  

Eq. (2) can be used to calculate the μa(λ) of the tissue 
under study from the measured transmitted spectrum. In 
reality, biological tissues also have significant scattering 
properties, meaning that a light beam of intensity I0(λ) 
that irradiates a slab-form tissue sample will be 
fractioned into three distinct forms, which correspond to 
the three optical phenomena that occur [19]: light 
absorption, light transmission and light reflection. 
Provided that the transmitted light and the reflected light 
spectral fraction ratios (Tt(λ) and Rt(λ), respectively) can 
be measured from the sample, the Ab(λ) of the sample can 
be calculated using the following relation [1, 12]: 

0*(#) + 2*(#) + ''(#) = 1. (3)  

The calculation with Eq. (3) is possible for any tissue 
with dominating absorption, with dominating scattering 
or with a combination of absorption and scattering 
properties. The combination of Eqs. (2) and (3) allows to 
calculate the μa(λ) of the tissue from the Tt(λ) and Rt(λ) 
that were measured from the slab sample [1]: 

-)(#) = +"[-#(%)./#(%)]
1 . (4)  

The measuring setups used to acquire the Tt and Rt 
spectra use integrating spheres and these ratios are 
represented in arbitrary units. Consequently, from 
Eq. (4), μa(λ) will be represented in cm-1 (or mm-1), 
depending on the units that d was measured (cm or mm). 
Although this is a fast procedure to obtain μa(λ) of a 
tissue, it still depends on measurements from excised 
tissue samples.  

Since the main objective of applying optical 
technologies to clinical practice is to provide efficient 
diagnostic or treatment approaches that can be made 
in vivo, without excising tissues from the patient, other 
ways to obtain μa(λ) must be searched. One possible 
approach relies on the acquisition of diffuse reflectance 
(Rd) spectra, a measurement procedure which can be 
applied with noninvasive or minimally invasive 
approaches to in vivo tissues [2]. In opposition to the 
calculations made with Eq. (4), there is no direct relation 
between the Rd and μa spectra. A possible estimation 
method to reconstruct the μa(λ) from spectral Rd 
measurements relies on the use of machine learning (ML) 
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techniques and its viability was demonstrated in a recent 
study with human healthy and pathological colorectal 
mucosa tissues [2]. Although one of the challenges in the 
application of ML algorithms in the field of biophotonics 
is the reduced number of datasets to build the ML 
models [21], the estimations of the mean μa spectra of the 
colorectal mucosa tissues reported in Ref. [2] were made 
with acceptable accuracy using only 10 Rd spectra from 
each tissue. The reconstructed μa spectra of both 
colorectal mucosa tissues were averaged and allowed to 
obtain discriminated lipofuscin contents in healthy and 
pathological tissues, showing similar contents to the ones 
obtained with direct calculations as described by Eq. (4). 

The results presented in Ref. [2], although obtained 
with a small number of datasets to train the algorithms, 
open the way to apply ML methods to noninvasive tissue 
spectroscopy measurements for the development of new 
noninvasive diagnostic procedures. To increase the 
accuracy of the training process in the development of 
ML algorithms, a large number of spectra is necessary, 
but sometimes that is not possible in biophotonics. In 
some cases, it is not possible to get a large number of 
tissue samples from different patients or animals to 
perform the necessary spectral measurements. Another 
drawback is that for some tissues, no matter how many 
spectra are measured, they will all be very similar and 
data variability will be small. New spectra that provide 
repeated information will be superfluous in the training 
of ML algorithms and will imply a longer time in the 
training process. Another option to improve the accuracy 
of the ML algorithms is to increase the number of 
available training data by generating new datasets 
digitally when they are not available experimentally. 
Such option can be done, but some attention must be 
made to avoid changing the spectral features, and ensure 
that the generated spectra are characteristic of the tissue 
under study. Such artificial generation of spectra can be 
done using Generative Adversarial Networks (GANs), 
which is a recent class of ML models that are commonly 
used to generate new artificial samples of data from a 
random input [22]. Such procedure is possible since 
GANs are composed by two distinct ML models, the 
generator and the discriminator, and they cooperate in a 
zero-sum game to learn how to generate new synthetic 
data [23]. The generator model learns how to create new 
data from random noise and its goal is to fool the 
discriminator. In contrast, the discriminator will try to 
differentiate between the generated data and the real 
experimental data. By the end of the learning process, the 
generator should be able to artificially create new data 
that is similar to the already pre-existing experimental 
data [24]. GANs can be used to generate both new Rd and 
new μa spectra to increase the number of available 
samples to train and validate other ML models that 
estimate the μa spectra from noninvasive-type Rd spectral 
measurements. By increasing the available dataset in the 
algorithms that recreate the μa spectra, it is expected that 
the ML models will become more robust to input 
variance and avoid overfitting. The use of GANs to 
increase the number of datasets opens other possibilities, 

and such method was used in the present work, as 
described in Subsection 2.4. 

The optical study of brain tissues is of great interest, 
since the brain is the most complex organ in the body and 
few studies regarding the spectral optical properties of its 
tissues have been performed so far. Such interest in the 
optical studies of brain tissues regards also the high 
incidence of brain diseases, such as stroke, Parkinson or 
Alzheimer, in the past 30 years [25]. The ageing process 
of the brain tissues is directly related to the occurrence of 
these diseases, since as tissues become older neuron 
degeneration and death occurs more rapidly [26–28]. To 
prevent the occurrence of these diseases, a monitoring 
procedure to evaluate neuron ageing, degeneration and 
death is most desirable. Optical methods can be used in 
the development of such procedures, but to do so, the 
knowledge of the spectral optical properties of the brain 
tissues in a wide spectral range is necessary. With such 
knowledge, the development of optical procedures to 
perform superficial or in-depth monitoring assisted by 
optical clearing treatments of the health of brain tissues 
can be possible [19, 29, 30]. Considering such goals to 
develop new optical methods to monitor tissue’s health 
and ageing in the brain, we performed a study to 
discriminate and identify the pigment contents in the 
brain cortex. This study was made using tissue samples 
from the brain of adult rabbits and consisted on 
performing spectral measurements to be used both in the 
direct calculation of the spectral μa and in its estimation 
through ML algorithms. The methodology used in the 
present study is described in Section 2 and the results are 
presented in Section 3.  

2 Materials and methods   
Since the objective of the present study was to obtain and 
analyze the μa(λ) of the brain cortex through different 
methods, ex vivo samples were collected from the brain 
of rabbits. The selection of the rabbit brain to collect the 
samples to use in our study was based on that the rabbit 
and the human brains are very similar, since both have 
the same three divisions with a fore brain, a mid brain and 
a hind brain, and also because both contain the 
cerebellum, the medulla, the corpus callosum, the 
hypothalamus and the pituitary gland [31].  

The research here described is accordingly with the 
Declaration of Helsinki and was approved by the research 
review board in biomedical engineering of the Center of 
Innovation in Engineering and Industrial Technology 
(CIETI), in Porto, Portugal. Such approval has the 
number CIETI/Biomed_Research_2021_01. Due to the 
fact that this study consisted only on the evaluation of the 
μa(λ), both by direct calculation from experimental 
measurements and by estimation through ML, the 
following subsections describe the experimental, 
calculation and estimation procedures adopted. 

2.1 Tissue collection and preparation 
Ten adult grey rabbits, having a similar age near 
36 months, were acquired from a breeder near our lab in 
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Porto (Portugal), who sells the animals for consumption. 
The measurements were made with two cortex brain 
samples from each animal in different days.  

For each study with samples from a particular animal, 
the rabbit was sacrificed in the previous day and the brain 
was removed from the skull and frozen for 12 h. After 
this period, tissue samples were sliced from the cortex 
using a cryostat (LeicaTM, Wetzler, Germany, model 
CM1860 UV). Twenty samples were prepared in total, 
having an approximated circular form (f ~ 1 cm) and a 
fixed thickness of 0.5 mm. All these samples were 
submitted to spectral measurements, which are described 
in Subsection 2.2. 

2.2 Spectral measurements   
To obtain the μa(λ) of the brain cortex by direct 
calculation, two types of spectral measurements were 
made, using the Tt and Rt setups represented in Fig. 1(a) 
and in Fig. 1(b). A total number of 10 cortex samples, 
collected from five adult rabbits, was used to acquire both 
the Tt and Rt spectra with these setups. These 
measurements were made in an earlier stage of the 
research and the corresponding results were already 
published [13]. 

At a later stage of the research, other 10 cortex 
samples were collected from other five adult rabbits and 
prepared in the same manner to be used in the acquisition 
of the Rd spectra, which was necessary for the ML 
estimations. Such measurements were made using the 
setup presented in Fig. 1(c). 

	
Fig. 1 Experimental setups to measure: Tt(λ) (a), Rt(λ) (b) 
and Rd(λ) (c). 

Considering the measurements with the Tt setup, a 
broadband pulsed Xenon lamp emits a beam that is 
delivered below the sample through an optical fiber cable 
(core diameter of 600 μm). A collimating lens located at 
the tip of the cable below the sample collimates the beam 
with a 6 mm diameter. Such beam is transmitted by the 
tissue sample and then is submitted to several reflections 
inside the integrating sphere (integration), before being 
delivered to the spectrometer through a similar optical 
fiber cable.  

Considering the Rt setup presented in Fig. 1(b), the 
exciting beam that is also emitted by the pulsed Xenon 
lamp is delivered to an upper entrance of the integrating 
sphere through an optical fiber cable (core diameter of 
600 μm) and collimating lens. The collimated beam with 
6 mm in diameter is directed to an exciting direction that 
makes 8° with the vertical axis of the integrating sphere 
to guarantee that both specular and diffuse reflectance 
occur at the tissue surface. After the reflection occurs at 
the tissue surface, the reflected beam is directed into the 
inside of the sphere where it is reflected several times at 
its internal surface (integration), before exiting to be 
delivered to the spectrometer through a similar optical 
fiber cable.  

In the case of the Rd setup presented in Fig. 1(c), the 
sample was excited with a broadband deuterium-halogen 
lamp. An Rd optical fiber sensor, which was kindly 
supplied by ArtPhotonicsTM (Berlin, Germany) for our 
research, was used both to irradiate the sample and to 
collect the diffuse reflected light from it. This sensor 
contained a detection fiber at the center, which was 
surrounded by seven irradiation fibers, all made of silica 
with a core diameter of 400 μm and a cladding thickness 
of 20 μm. The numerical aperture of these fibers was 
0.22. The detection fiber at the center was covered with 
aluminum, having a total diameter of 560 μm. The 
exciting fibers were covered by polyamide and their total 
diameter was 465 μm. Such fibers were packed around 
the detection fiber, without any spacing, having a source-
detector separation of 512.5 μm. The tip of the Rd sensor 
was kept fixed at 2 mm distance above the tissue sample 
surface during measurements. Apart from the Rd sensor, 
all the equipment used in the setups presented in Fig. 1 
were acquired from AvantesTM (Apeldoorn, The 
Netherlands). 

The reason for using two different lamps in the 
different measurement setups is that for the case of 
integrated measurements (Tt and Rt), a high intensity 
signal is needed for the integration process inside the 
integrating sphere, and a small intensity signal for the Rd 
measurements to avoid saturation of the spectrometer. 
Although two different lamps were used in the Tt / Rt and 
Rd setups, the spectral measurements in all cases were not 
influenced by the spectral characteristics of the lamps. 
For each particular set of measurements, the setup of the 
spectrometer was made to measure the Tt, Rt or Rd spectra 
directly. The calculations of these spectra are made by 
the software of the spectrometer, based on the transmitted 
or reflected spectra that are measured from the sample 
and the reference spectra of the lamp used in each setup. 
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The reflectance reference used both in the Rt and Rd 
setups was the RS-2 reflectance reference from Avantes, 
with a reflectance above 92% in the entire spectral range 
considered in this study. 

As referred above, 10 spectra were acquired with each 
of the setups presented in Fig. 1. These spectra were 
measured between 200 and 1000 nm. The spectra 
acquired with the Tt and Rt setups were used in a direct 
calculation of the μa(λ) of the brain cortex, while the 
spectra acquired with the Rd setup were used as input to 
the ML algorithms to estimate μa(λ) of the brain cortex 
and compare with the one that results from direct 
calculations. Subsection 2.3 describes the direct 
calculations from the experimental measurements, while 
Subsection 2.4 describes the procedure used in the ML 
approach. 

2.3 Calculations   
After performing all spectral measurements with the 
setups presented in Fig. 1(a) and Fig. 1(b), calculations 
were made to obtain the μa(λ) of the brain cortex. Since 
10 spectra were obtained with each measurement setup, 
10 μa spectra were calculated using Eq. (4). In each of 
these calculations, a pair of Tt and Rt spectra were used 
along with the sample thickness, d. Considering the 10 μa 
spectra that resulted from these calculations, the mean 
μa(λ) and corresponding standard deviation (SD) were 
calculated. 

A further analysis of the mean μa(λ) showed evidence 
of pigment content in the brain cortex, meaning that 
additional calculations were necessary to identify those 
pigments and discriminate their content. According to 
literature [32], the brain is known to accumulate mainly 
melanin and lipofuscin. These pigments originate from 
their precursors, such as L-tyrosine, L-cysteine, and 
dopamine (in the case of melanin) [6] and from cell 
organelles, such as mitochondria, Golgi apparatus, and 
lysosomes (in the case of lipofuscin) [33–35]. These 
precursors can easily associate with metals, specially 
iron, to form melanin and lipofuscin [36]. 

Considering that the resulting mean μa(λ) that was 
calculated directly from the experimental measurements 
represents the mean absorption coefficient of the cortex 
between 200 and 1000 nm, we looked for the absorption 
spectra of these pigments on literature. Ref. [37] presents 
the absorption spectrum of melanin and Ref. [38] 
presents the absorption spectrum for lipofuscin in the 
same wavelength range that we considered in our study. 
We retrieved numerical data from the graphs in these two 
references and reconstructed the absorption spectra for 
melanin and for lipofuscin. A graph containing both 
spectra is presented in Section 3. After obtaining these 
absorption spectra for the pigments, an optimized 
combination of both was calculated to subtract to the 
mean μa(λ) of the brain cortex, in a way that such 
reconstructed absorption presents a horizontal baseline. 
The results of this calculation and an equation that 
describes the pigment combination that was used are 
presented in Section 3.   

2.4 Machine Learning estimations   
After calculating the μa(λ) of the brain cortex directly 
from the experimental measurements and making an 
analysis to discriminate the melanin and lipofuscin 
content in this tissue, another study was made to check if 
the same results were reachable from a minimally 
invasive approach. 

To proceed with a measuring technique that 
approaches noninvasive or minimal invasive 
measurements that can be done in vivo, Rd spectra were 
also acquired from similar tissue samples for the same 
wavelength range (200–1000 nm). These 10 spectra 
consist on a reduced number of samples to train the ML 
algorithms in the reconstruction of the μa spectra, but to 
increase the number of samples to train the algorithms, 
we first used GANs to artificially generate new Rd and 
new μa spectra from the experimental ones. The objective 
of this initial process was to turn the ML models that 
estimate μa more robust and decrease their overfitting 
tendency.  

The process of data augmentation with the GANs 
models consists on the following steps: 
a) generate a new artificial spectrum from random noise 

using the generator, 
b) train the discriminator using the both the 

experimental and the generated spectrum,  
c) update the parameters of the generator using the 

discriminator loss (error metric). 
Due to the dynamics between the generator and the 

discriminator, the GANs model convergence is not a 
stable state. This happens because there is a certain point 
in the training process where the generator is so good that 
the discriminator starts to guess if the new data is real or 
artificial, which in turn gives the generator deceitful 
feedback. To prevent this from happening, the training 
process was stopped when the average of the generated 
spectra was the closest to the mean experimental data. 
Another important factor when training GANs models is 
the learning rate of the generator and the discriminator. 
As an example, if the discriminator converges earlier 
than the generator, it increases the chances of model 
collapse, where the generator only produces one type of 
sample in an attempt to fool the discriminator. The 
learning rate was sweep between the 0.001–0.000001 
values and then fixed at 0.0001 due to the fact that further 
decreases did not contribute to a better performance of 
the GANs model. Additionally, the neural networks that 
compose the GANs model were defined with different 
architectures. The discriminator had five layers, being the 
first two composed with 801 nodes, the third with 
600 nodes, the fourth with 400 nodes, and the fifth with 
1 node. The generator had five layers, with all the layers 
having 801 nodes, with the exception of the third, which 
has only 600 nodes.  

During the training process, one of the GANs model 
was trained to generate new Rd spectra and the other was 
trained to generate new μa spectra. Since these two GANs 
models converge at different times, the number of epochs 
for the GANs model that generated new Rd spectra was 
set to 7901, while the number of epochs for the GANs 
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model that generated new μa spectra was set to 1301. 
After training and fine tuning of the GANs models, the 
new generated data was plotted and compared to the 
experimental data, showing good agreement (presented 
in Section 3). 

After training the GANs models, they were used to 
generate new spectra in groups of 10, 50 and 100 to train 
the other ML models in solving the regression problem 
of recreating the μa spectra from the measured Rd spectra. 
To improve the overall spectral shape of the generated 
spectra, a Savitzky-Golay filter was applied to smooth 
the spectra. For each group of generated spectra, three 
experiments were conducted: 
a) in the first experiment, the ML models were trained 

with the generated spectra and tested with the 
experimental spectra (G/E),  

b) in the second experiment, the ML models were 
trained with the experimental spectra and tested with 
the generated spectra (E/G),  

c) in the third experiment, both the generated and 
experimental spectra were combined altogether (AT) 
to be used in the training and testing of the ML model. 
In this last experiment, the generated and 

experimental spectra were split in an 80/20 proportion to 
be used in the training and testing procedures to evaluate 
the performance of the ML model. As an example, for the 
group of 10 generated spectra, we assured that the test 
dataset consisted on 8 experimental and 2 generated 
spectra. A separate experiment was made for the ML 
model, where no generated spectra were used both in the 
training and testing process. In this case, the Leave One 
Out (LOO) method was used to obtain a performance 
reference point, as we did in our previous work with data 
from the human colorectal tissues [2].  

Similarly to what has been done during the generation 
of spectra with the GANs models, the Single Layer 
Perceptron (SLP), the K-Nearest Neighbor (KNN) and 
the Random Forest Regressor (RFR) algorithms were 
fine tuned to achieve the best performance possible. 
These algorithms were the ones with the best 
performance in our previous study [2]. For this reason, 
we selected them to use in the present study. The SLP 
was set with two layers, the first one having 10 nodes and 
the second having 801 nodes. The learning process was 
set at 0.001 and the number of epochs was set at 50 during 
the three experiments that were described above. For the 
KNN and the RFR algorithms, the number of neighbors 
and the number of trees where set to 3 and 4, respectively. 
Further increments in these hyper parameters increase the 
computational cost of the ML models with no apparent 
increase in performance. 

To quantify the performance of the ML models in the 
estimation of the μa spectra, the Euclidean Distance (ED) 
between the mean estimated spectrum (MES) and the 
mean reference spectrum (MRS) was calculated using 
Eq. (5) [21]: 

45 = |7 − 8|, (5)  

where a is the μa value of the mean estimated spectrum 
(MES) and b is the μa value of the mean reference 
spectrum (MRS), with the MES calculated from the 
individual generated spectra and the MRS calculated 
from the individual experimental spectra. 

The results obtained from the GANs and ML 
estimations and ED comparative graphs to select the best 
ML algorithm for μa generation from the Rd spectra are 
presented in Section 3. The calculations to retrieve the 
pigment combination from the μa(λ) generated by the best 
method are also presented to show that pigment content 
evaluation is possible with a minimally invasive 
approach. 

3 Results   
Since the present study was conducted with experimental 
measurements to obtain the μa(λ) of the brain cortex, both 
by direct calculation and through ML estimations, the 
presentation of results is divided in various subsections. 
Subsection 3.1 presents the mean experimental spectra 
that were used in the various stages of this study. 
Subsection 3.2 presents the results obtained with the 
direct calculation approach and Subsection 3.3 presents 
the results estimated through ML. Subsection 3.4 
presents the evaluation of the pigment content, both from 
the direct calculation and from the ML estimation 
approaches. 

3.1 Spectral measurements 
The first step of the present study consisted on acquiring 
spectral measurements with all the setups in Fig. 1. As 
indicated in Subsection 2.2, 10 Tt and 10 Rt spectra were 
acquired from 10 cortex samples at an initial stage. At a 
later stage 10 Rd spectra were acquired from 10 similar 
cortex samples. The samples used in these measurements 
were all collected from adult rabbits acquired from the 
same supplier. The mean and SD of the Tt, Rt and Rd 
spectra that resulted from these measurements are 
presented in Fig. 2. 

The wavelength dependencies for all mean spectra 
presented in Fig. 2 are accordingly to others previously 
obtained from other biological tissues [1, 2, 12, 14, 15]: 
Tt increases with the wavelength and both Rt and Rd 
decrease with the wavelength. All mean spectra in Fig. 2 
present good sensitivity to the absorption bands of 
DNA/RNA (260 nm) and hemoglobin/myoglobin (274, 
415, 540 and 570 nm). The mean Tt spectrum also shows 
evidence of water in the tissues – absorption band 
centered at 980 nm.  

Regarding the SD, the Rd spectrum presented in 
Fig. 2(c) shows small magnitude (less spreading between 
samples in these measurements) for the entire spectral 
range. In the case of the Tt spectrum, SD is very low for 
shorter wavelengths due to the strong absorption between 
200 and 300 nm, while for longer wavelengths it 
increases with the wavelength. The Rt spectrum presents 
a more or less constant SD in the entire spectral range. 
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(a) 

 
(b) 

 
(c) 

Fig. 2 Mean measured spectra and SD of the rabbit brain 
cortex: (a) Tt(λ), (b) Rt(λ), and (c) Rd(λ). 

3.2 Direct calculation of μa(λ) 
Using the Tt and Rt spectra two by two in Eq. (4),  
the 10 μa spectra were calculated. The mean μa(λ) and SD 
that resulted from these direct calculations are presented 
in Fig. 3. 

Due to the contributions of Tt and Rt in the calculation 
of the μa(λ) through Eq. (4), there are several absorption 
bands visible in Fig. 3. The first absorption band occurs 
at 230 nm, showing the amino acid connections of 
tyrosine and tryptophan in proteins [39, 40]. The 
occurrence of this band is not surprising, since it is 
known that the brain tissues, especially the cortex contain 
several types of proteins, such as actin, albumin, α-
tubulin, β-tubulin, neuron specific enolase (NSE), and 

vimentin [41]. The second absorption band seen in Fig. 3 
occurs at 267 nm, showing a combination of the 
absorption band of DNA/RNA at 260 nm with the one of 
hemoglobin at 274 nm [42]. The absorption bands of 
oxygenated hemoglobin in the visible range are also 
visible at 411 nm (Soret band) and 540 and 570 nm 
(Q bands) [42], as well as the absorption band of water at 
980 nm [42]. 
 

	
Fig. 3 Mean μa spectrum and SD of the rabbit brain cortex. 

Additional information can be retrieved from the 
mean μa(λ) represented in Fig. 3, since such spectrum 
presents a decreasing baseline with increasing 
wavelength. Such behavior for the baseline suggests the 
presence of pigments in the cortex brain tissues that were 
used in the present study. A further analysis of this 
spectrum will be made in Subsection 3.4 to identify the 
pigments and quantify their content. First, we need to 
check if the ML estimations are capable of generating 
similar μa(λ) from the Rd spectra as the ones obtained with 
direct calculation from invasive measurements. Such part 
of the study is presented in Subsection 3.3.   

3.3 Machine Learning estimation of μa(λ) 
Once the μa(λ) of the brain cortex was calculated directly 
from the experimental spectra of Tt and Rt, we initiated 
the estimation of the absorption spectrum through ML 
algorithms. According to the description presented in 
Subsection 2.4, this part of the study was initiated by 
training and fine-tuning the GANs models to generate 
both new Rd and μa spectra to be used for the training and 
validation of the ML algorithms. After fine-tuning the 
GANs, the new generated spectra were represented along 
with the experimental spectra in Fig. 4 for comparison. 

As we can see from graphs in Fig. 4, some low-
magnitude discrepancies are seen between the ME and 
the MG spectra at some wavelengths. Regardless of these 
discrepancies, the overall wavelength-dependence and 
the magnitude of the generated spectra are very similar to 
the ones that result from direct calculations with the 
experimental measurements. After this initial training 
and tuning of the GANs, they were used to generate new 
groups of 10, 50 and 100 spectra. Such groups of spectra 
were used in the training process of the ML algorithms to 
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recreate μa(λ) from Rd(λ), as described in Subsection 2.4. 
Such training process was made in four ways – using only 
the 10 experimental spectra with the LOO method, using 
10 experimental and 10 generated spectra, using 
10 experimental and 50 generated spectra, and using 
10 experimental and 100 generated spectra. By doing 
these different trials, we expect to identify both the 
overfitting and the underfitting characteristics of the ML 
algorithms and also to see if the increase of the generated 
spectra prevents the occurrence of the overfitting. Such 
four tests were made with all ML algorithms. 

	
(a) 

	
(b) 

Fig. 4 Mean experimental (ME) and mean generated (MG) 
spectra for Rd (a) and μa (b) of the rabbit brain cortex. 

The first ML algorithm that was used to recreate μa(λ) 
from the Rd(λ) was the SLP. The second was the KNN 
and the third was the RFR. Following the estimation 
procedure described in Subsection 2.4, in all AT 
estimations with each algorithm, the spectra generated 
with the GANs were combined with the experimental 
spectra, having 80% of the total spectra been used in the 
training process and the remaining 20% been used in the 
validation process of the algorithm. Experimental spectra 
were included both in the training and in the validation 
process of the three AT algorithms. 

To evaluate which algorithm generated the better μa 
spectra, Eq. (5) was used to calculate the ED as a 
measurement of the algorithm performance. Fig. 5 
presents the results of these calculations for four cases, 

according to the number of generated spectra used in the 
estimations: none, 10, 50 and 100. 
 

	
(a) 

	
(b) 

	
(c) 

Fig. 5 Calculated ED for the SLP (a), the KNN (b) and the 
RFR (c) models. 

Analyzing the graphs in Fig. 5, we see various 
information. First, the ED obtained for the LOO method 
presents a high value for all algorithms, indicating that by 
using only 10 experimental spectra, the estimations are 
deceiving. Considering the SLP algorithm, we see that 
the G/E method shows similar ED for 10 generated 
samples to the one observed for the LOO method. By 
increasing to 50 generated samples, a decrease of the 
mean ED is observed, but no improvement is seen when 
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the number of generated samples increases to 100. 
Considering the E/G method, when 10 generated samples 
are used in the training process, we see a significant 
decrease of ED from the one obtained for the LOO 
method. When 50 generated samples are used, a further 
decrease is observed, but increasing the number of 
samples to 100, no improvement is observed, once again. 
The AT method is the one that presents a continuous 
decrease of ED in the SLP algorithm, but comparing with 
the other algorithms, the SLP is the one that presents the 
highest SD values. 

In the case of the KNN the ED value obtained for the 
G/E method remains almost equal to the one obtained 
with the LOO method in all cases tested. This means that 
such method does not show any improvement in the 
recreation of μa. The E/G method presents similar 
variations to the ones observed with the SLP algorithm, 
but with a higher SD. Once again no improvement is seen 
when passing from 50 to 100 generated samples. The AT 
method is the one that presents higher decreases of ED in 
all cases studied with the KNN algorithm. In this study, 
very low mean ED and SD values are seen for the cases 
of 50 and 100 generated samples. Although these values 
are low, the mean ED for the study with 10 generated 
samples is still comparably high. 

Finally, when using the RFR algorithm, we see 
variations for the mean ED that are similar to the ones 
obtained for the KNN algorithm. Considering the 
magnitude of the SD, and with the exception of the G/E 
estimation with 100 generated samples, we see smaller 
values than in the other algorithms. In the case of the G/E, 
once again the mean ED remains almost unchanged and 
similar to the value obtained for the LOO method. The 
ED for the E/G method decreases to about one-half of the 
value seen for the LOO method, but no improvement is 
seen when the number of generated samples is increased. 
In the case of the AT method, we see the best results, 
since in all cases tested with this algorithm, a significant 
decrease is observed, obtaining ED values always 
below 0.1. 

	
Fig. 6 Comparison between the MES and the MRS of μa 
that result from the estimation with the LOO method. 

An overall evaluation of the results presented in Fig. 
5 shows that the RFR algorithm is the one with the best 
performance. Not also it presents the highest decrease in 

ED for the AT method, but all estimation methods tested 
with this algorithm present the lowest SD. Considering 
these facts, we represented in the following four figures 
all the MES obtained with the RFR algorithms to 
compare with the MRS that resulted from the direct 
calculations, as presented in Fig. 3. Such comparison is 
made in Fig. 6 for the MES obtained with the LOO 
method, in Fig. 7 for the MES obtained with 10 generated 
spectra, in Fig. 8 for the MES obtained with 50 generated 
spectra and in Fig. 9 for the MES obtained with 
100 generated spectra. 

	
(a) 

	
(b) 

	
(c) 

Fig. 7 Comparison between the MES and the MRS of μa 
that result from the estimations with 10 generated samples: 
10–G/E (a), 10–E/G (b) and 10–AT (c). 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Comparison between the MES and the MRS of μa 
that result from the estimations with 50 generated samples: 
50–G/E (a), 50–E/G (b) and 50–AT (c). 

Considering the matching of the MES to the MRS in 
the various panels presented in the above Figs., we see 
that in general they are all good, presenting the same 
levels of μa at all wavelengths, similar wavelength 
dependencies and showing the same absorption bands. 
The best matching is obtained for the LOO method 
(Fig. 6), but such good matching is deceiving, since only 
a small number of experimental spectra were used both 
in the training and in the validation of the RFR model to 
obtain such mean estimation. Other good estimations that 
apart from the previously mentioned characteristics show 
good spectral smoothing are the ones obtained with the 
E/G method (see Figs. 7(b), 8(b) and 9(b)). Although 

these estimations are only second-best to the one 
obtained with the LOO method, once again these results 
are also deceiving. By using the experimental spectra in 
the training process and the generated spectra in the 
validation is not a reliable approach in the ML point-of-
view. Nevertheless, the analysis of the corresponding 
graphs in the above Figures shows that this method also 
improves with the increase of the generated spectra that 
are used in the validation. When we analyze the mean 
estimations produced by the G/E method (see Figs. 7(a), 
8(a) and 9(a)), we see that the mean estimations lose the 
smoothing characteristic. Regardless of the lack of 
spectral smoothing, these estimations also show good 
agreement with the MRS in terms of wavelength 
dependence, μa levels and absorption bands. Comparing 
between the three estimations with the G/E method, we 
see that the worst case occurs for the estimation with 
50 generated spectra. Such result shows that if a large 
number of experimental spectra were available in the 
GANs generation process, a better performance could be 
obtained with this method. Finally, the MES obtained 
with the AT method also shows lack of spectral 
smoothing (see Figs. 7(c), 8(c) and 9(c)), but the μa 
spectra obtained with this method are more approximated 
to the MRS, as indicated by the lowest ED values in the 
graph in Fig. 5(c). Once again, the results obtained with 
the AT method show that more experimental spectra are 
necessary to improve both the generation of new spectra 
with the GANs models and the estimation of the μa(λ) 
from the measured Rd(λ). 

The data in the graphs of Figs. 6, 7, 8 and 9 show the 
necessity of increasing the number of samples to use in 
the training and validation of the ML algorithms to 
improve the quality of the estimations. Such increase in 
the number of experimental spectra would also improve 
the efficiency of the GANs to generate new spectra. By 
doing that, the various estimations presented in the 
previous Figures could have higher spectral smoothness, 
which is the most evident flaw in the estimations made 
with the G/E and AT methods. Nevertheless, if we 
disregard the lack of smoothness in the estimated spectra, 
we see from the previous Figures that all cases studied 
present acceptable results. We will now present the final 
stage of this research – the evaluation of pigment content 
in the brain cortex. 

3.4 Pigment content evaluation from the 
calculated and estimated μa(λ) 

After performing an evaluation on the quality of the μa(λ) 
that were estimated with the various methods within the 
RFR algorithm, we will now consider the ones that 
presented the best performance for the further 
calculations to obtain the pigment content in the brain 
cortex. At this last stage of the research it will be 
interesting to check if the estimated μa spectra have 
similar contents of melanin and lipofuscin, and if by 
retrieving the absorption of those pigments we can find 
similar absorption ratios for DNA/RNA and hemoglobin 
as the ones previously obtained for the μa(λ) that was 
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obtained from direct calculation [13]. Although the tissue 
samples used to acquire the spectral measurements for 
the direct calculation and for the ML estimations of μa(λ) 
were collected from different animals, those animals 
were obtained from the same source and were all adults 
with approximately the same age. 

 
(a) 

 
(b) 

 
(c)	

Fig. 9 Comparison between the MES and the MRS of μa 
that result from the estimations with 100 generated 
samples: 100–G/E (a), 100–E/G (b) and 100–AT (c). 

In the same way as we did with the μa(λ) obtained 
with direct calculations [13], we started by reconstructing 
the absorption spectra of melanin and lipofuscin from 

graphical data published in literature [37, 38]. These 
spectra are presented in Fig. 10. 

	
Fig. 10 The absorption spectra (μa) for melanin and 
lipofuscin. 

The absorption spectrum of melanin presented in 
Fig. 10 was reconstructed from graphical data presented 
in Ref. [37] and it correspond to eumelanin, the most 
common type of the melanin pigments, and the one that 
can be observed in the skin. The authors of Ref. [37] 
constructed such graph based on diffuse reflectance 
measurements made from human skin in vivo, but in that 
paper it is also indicated that such data does not differ 
much from the one collected from ex vivo samples. In the 
case of the melanin found in brain tissues, which is 
commonly designated as neuromelanin, it is a mixture of 
eumelanin and pheomelanin [43]. With the objective of 
reconstructing the absorption spectrum of neuromelanin 
with the highest precision, we searched for the absorption 
spectrum of pheomelanin to see if it differs from the one 
of eumelanin that is reported in Ref. [37]. A discussion 
of the extinction coefficient both of eumelanin and 
pheomelanin is available on the website of the Oregon 
Medical Laser Center [44], where both types of melanin 
present a very similar extinction spectrum between 200 
and 900 nm. Since these spectra are very similar, by 
considering in our study the spectrum of eumelanin, as 
represented in Fig. 10, we can consider that it is a good 
approximation to the mixture of eumelanin and 
pheomelanin that composes the neuromelanin in the 
brain tissues. 

Since the absorption spectra presented in Fig. 10 were 
reconstructed from published graphical data, no 
mathematical equation is available to describe them. This 
means that to combine these spectra with the objective of 
subtracting such combination from the μa(λ) of the brain 
cortex, numerical data for each of the curves in Fig. 10 
needs to be considered. In the case of the μa(λ) that was 
obtained through direct calculations [13], and after some 
trials to combine the two spectra in Fig. 10 to characterize 
the pigment content in the cortex, we found that such 
content is characterized by the following combination: 

-)"234567*(#) = 3.5 ×<(#) + 1.9 × >(#), (6)  
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with M(λ) and L(λ) representing the wavelength 
dependencies of the absorption coefficient of melanin 
and lipofuscin, respectively, as represented in Fig. 10. 

As referred in Ref. [13], Eq. (6) provides a good 
description of the decreasing baseline that is seen in 
Fig. 3, but such baseline may not be only due to the 
presence of these pigments in the cortex. The precursors 
of these pigments or other pigments may also be included 
in the cortex and contribute to the absorption baseline. 
An example is hemosiderin, which has an absorption 
spectrum similar to the one of melanin [45]. Since the 
cortex tissues used in the present study presented no 
evidence of rapid hemoglobin destruction or fast and 
excessive iron deposition, we neglected the absorption of 
hemosiderin in the calculation of μa-pigment(λ) with Eq. (6). 
Considering carotenoid-type pigments, such as lutein,  
β-cryptoxanthin, and zeaxanthin, all have a similar 
absorption spectrum, with null absorption for 
wavelengths above ~500 nm and low absorption in the 
UV range. Between 400 and 500 nm, these carotenoid-
type pigments have three absorption peaks, being the 
higher magnitude of these peaks observed for  
β-cryptoxanthin [46]. Due to the fact that these 
absorption bands occur between 420 and 476 nm [46], 
they seem to have no influence in the resulting μa(λ) of 
the cortex. As seen in Fig. 3 for this wavelength range, 
the mean μa spectrum of the cortex only shows a well-
defined Soret band, with center wavelength at 411 nm. 

Considering the melanin precursors, they show an 
absorption spectrum mainly characterized by UV-bands, 
with null values above 300 nm. L-cysteine, has an 
absorption spectrum which consists on the combination 
of two overlapping bands, the one with higher magnitude 
centered near 230 nm and the other centered near 
280 nm [47]. This means that L-cysteine might also be 
present in the brain cortex tissues and that its absorption 
may contribute to the absorption band that we see at 
230 nm in Fig. 3. The absorption spectrum presented in 
Fig. 3 shows no evidence of the 280 nm band, but the 
strong band at 267 nm that results from the combination 
of the DNA/RNA band at 260 nm and the hemoglobin 
band at 274 nm, might be masking the 280 nm band. 
Considering L-tyrosine, its absorption spectrum is the 
combination of two bands with a small overlapping, with 
the higher-magnitude band being centered at a 
wavelength smaller than 240 nm and the other centered 
near to 285 nm [48]. Considering dopamine, its 
absorption spectrum contains only a single band, with a 
central peak near 280 nm [49]. As in the case of  
L-cysteine, and for the same reasons presented above, the 
absorption bands of L-tyrosine and dopamine may be 
masked by the strong absorption bands of the amino acid 
connections in proteins and the one that results from the 
combination of DNA/RNA and hemoglobin. Such fact 
suggests that melanin precursors may also be present in 
the cortex samples used in the present study. 

Considering now the lipofuscin precursors, we found 
only the absorption spectrum for mitochondria, which is 
also limited to the UV range. Such spectrum contains a 
single band between 300 and 400 nm, with the peak near 

360 nm [50]. Considering the absorption spectrum that 
we calculated for the brain cortex (Fig. 3), the absorption 
band of mitochondria may be masked by the Soret band, 
which extends to a lower wavelength close to 320 nm. 

Considering the above discussion about the 
absorption spectra of pigments and their precursors, and 
assuming that only melanin and lipofuscin contribute to 
the decaying baseline presented in Fig. 3 for the brain 
cortex, we will now present a comparative evaluation of 
the pigment contents in the various μa(λ) that were 
estimated by the different RFR methods used in the 
present study. The first step of this final comparative 
study consisted on subtracting the combination of 
melanin and lipofuscin absorption, as described by 
Eq. (6), from the mean μa spectrum presented in Fig. 3. 
The corrected μa(λ) obtained with this calculation is 
considered as a reference for the similar calculations to 
be made with the different μa spectra that were generated 
with the best performance methods with the RFR model. 
Such methods are the AT with 10, 50 and 100 digitally 
generated spectra, as presented in Fig. 5. We also 
considered the spectrum generated with the LOO method 
to evaluate its capability with a low number of 
experimental spectra to reproduce the pigment content 
and evaluate the DNA and hemoglobin ratios. In these 
calculations, the combination of pigments to subtract to 
each mean μa spectrum was recalculated as in Eq. 6, but 
using different numbers as multiplication factors to M(λ) 
and L(λ), so that the corrected μa(λ) could have similar 
baseline values to the ones that were obtained from the 
corrected μa(λ) that results from direct calculations. The 
results from these calculations are presented in Fig. 11 
for the cases of direct calculations from experimental 
measurements and the LOO method. 

Comparing between the two graphs of Fig. 11, it is 
seen that the μa spectra that result from direct calculations 
and from the LOO method (blue curves) are very similar. 
The corresponding μa spectra that were obtained using the 
AT method with 10, 50, and 100 digitally generated 
spectra are also similar to these, but some small 
differences exist. As an example, comparing between the 
two graphs of Fig. 11, it is seen that the absorption peaks 
at 267 and 411 nm are a little higher in the case of the 
LOO method than in the case of direct calculations. 

The double-arrow lines presented in both graphs of 
Fig. 11 refer to the calculated ratios at the main 
absorption bands, with center wavelengths at 267 nm, 
411 nm and 550 nm. Before subtracting the pigments, 
those ratios were calculated as the value of μa in the blue 
curve divided by the value of μa of the pigment in the pink 
curve. After subtracting the pigment absorption (pink 
curve) to the μa of the brain cortex (blue curve), the 
corrected μa spectrum of the brain cortex (green curve) 
was obtained in all cases studied. Considering such 
corrected spectra, the new ratios were calculated as the 
value of μa at the above wavelengths in the green curve 
divided by the minimum value in that same curve, which 
occurs at 801 nm and is represented by the black 
horizontal line in both graphs of Fig. 11. 
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(a) 

	
(b) 

Fig. 11 Wavelength dependencies of μa for the 
combination of melanin and lipofuscin and for the rabbit 
brain cortex, before and after subtracting the absorption of 
the pigments that resulted from direct calculations (a), and 
RFR-LOO estimation (b). 

To summarize the calculations performed to obtain 
the pigment contents and the results presented in Fig. 11, 
Table 1 contains the melanin and lipofuscin 
combinations used in each case.  

Table 1 Pigment combinations used in the various 
methods to obtain the corrected μa(λ) of the brain cortex.  

Method Pigment content 

Direct calculation 3.50´M+1.90´L 
RFR – LOO 4.04´M+1.70´L 
RFR – 10AT 4.84´M+0.40´L 
RFR – 50AT 4.68´M+1.00´L 
RFR – 100AT 4.85´M+0.60´L 

 
Considering the multiplication factors for M and L in 

Table 1, we see that all methods studied show a higher 
content of melanin than the one of lipofuscin in the brain 
cortex. Although the ML models used in the present 
study showed some drawbacks, they were all able to 

reach the same result that differentiates the melanin and 
lipofuscin contents in the brain cortex. Comparing 
between methods, the multiplication factors in Table 1 
show that both the LOO and the AT methods originate a 
higher content of melanin and a lower lipofuscin content 
than the ones obtained through the direct calculation 
method.  

To evaluate the DNA and hemoglobin contents in the 
brain cortex, the absorption ratios at the main absorption 
bands were calculated for all methods, before and after 
subtracting the pigments absorption from the μa spectra. 
Table 2 presents those results at the wavelengths 267 nm, 
411 nm and 550 nm for comparison. 

Table 2 Absorption ratios for the main absorption bands 
of DNA and hemoglobin for the various methods used to 
obtain μa(λ) of the brain cortex.  

 Absorption ratios at central wavelengths 
 267 nm 411 nm 555 nm 
Method before after before after before after 
Direct 
calculation 2.19 26.42 3.55 25.80 2.73 9.26 

RFR – LOO 2.12 26.23 3.25 25.64 2.50 9.10 
RFR – 10AT 2.22 27.11 2.92 24.18 2.11 8.07 
RFR – 50AT 2.15 27.12 3.04 25.61 2.25 8.81 
RFR – 100AT 2.21 27.92 2.99 25.39 2.17 8.62 

 
Considering the data presented in Table 2, we see that 

the LOO method produces very close ratios to the ones 
obtained with the direct calculation method for the 
considered absorption bands. In order to reach these 
values, a higher melanin content and a lower lipofuscin 
content needed to be considered to reproduce the 
corrected μa(λ) that results from the ML-LOO method. 
By reaching these results with a limited number of 
experimental spectra, the LOO method can be considered 
a good option to recreated the μa spectrum, but with 
limited statistics, as explained in our previous study [2].   

When introducing artificially generated spectra with 
the objective of obtaining higher performance for the 
RFR algorithm, we see that by increasing the number of 
digital spectra from 10 to 50 and then to 100, all studies 
show absorption ratios in the same order of magnitude of 
the ones obtained in the direct calculation procedure. As 
the number of digital spectra increases from 10 to 50, we 
see that the absorption ratios become more approximated 
to the ones obtained through the direct calculation 
approach, but when considering 100 digital spectra, such 
approximation becomes worse. Such variation indicates 
that the GANs models used to generate digital spectra 
work to a certain point, and if the number of generated 
spectra increases above some limiting value, the 
generated spectra present features that differ from the real 
tissue under study. This occurs due to the fact that the 
GANs models learn the normal distribution of the 
experimental spectra. Consequently, when the number of 
artificially generated spectra is increased above a certain 
limit, the GANs models are more likely to generate low-
quality spectra that are located at the extremes of the 
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normal distribution. Considering the GANs models used 
in this study to generate both the Rd and μa spectra, the 
generated data seems to maintain the spectral quality up 
to a number of 50 digitally generated spectra. Such 
spectral quality is not maintained for a higher number of 
artificially generated spectra, as we observed in some 
trials that were performed. In future applications we plan 
to use different GANs models to generate spectra 
artificially and fine-tuning will be performed to obtain a 
significant number of artificial data. 

4 Conclusions  
The present study shows the possibility of using ML 
estimations to reconstruct the μa(λ) of a tissue from 
noninvasive or minimally invasive spectral 
measurements, but to obtain high accuracy in the 
estimated spectra, a large number of experimental spectra 
is necessary. When a large number of measured spectra 
is not available, which is the most common case in 
spectral biophotonics, and if the LOO approach is 
acceptable for a particular study, it can be used to recreate 
μa(λ) and obtain diagnostic information with good 
accuracy. In cases when the LOO method is not an 
option, and the artificial generation of spectra is a 
possibility, the RFR or other algorithms can be used to 
recreate μa(λ). In that case, the digital generation of 
spectra can be made using GANs, but this study shows 
that a small number of experimental spectra will not be 
sufficient to generate a large number of artificial spectra 
with good quality. To obtain such high numbers of good 
artificial spectra, a considerable number of experimental 
measurements must be provided. 

To evaluate the precision of the algorithms and 
models used in our study, the mean ED between the MES 
and MRS was calculated. Since the LOO method uses 
only experimental spectra, we considered its mean ED as 
a reference in the evaluation of the other methods 
accuracy. As reported in the graphs of Fig. 5, the LOO 
method had a mean ED of 0.628. 

Considering the different methods used with the SLP 
algorithm, and retrieving data from Fig. 5(a), for the 
studies, where 10, 50 and 100 digitally generated spectra 
were used, the mean ED values obtained were: 0.817, 
0.652 and 0.658 with the G/E method; 0.527, 0.404, and 
0.418 with the E/G method; and 0.474, 0.341, and 0.241 
with the AT method.  

In the studies performed with the KNN algorithm, the 
mean ED values obtained with 10, 50 and 100 digitally 
generated spectra were: 0.638, 0.647, and 0.625 with the 
G/E method; 0.352, 0.343, and 0.360 with the E/G 
method; and 0.206, 0.048, and 0.067 with the AT 
method.  

The last algorithm used in our study was the RFR. For 
the studies with this algorithm with 10, 50, and 100 
digitally generated spectra, the mean ED values obtained 
were: 0.701, 0.616, and 0.684 with the G/E method; 
0.357, 0.367, and 0.381 with the E/G method; and 0.092, 
0.052, and 0.066 with the AT method.  

Analyzing all these accuracy values, we see that the 
G/E method provides the worst results, always above the 
one obtained with the LOO method. Both the E/G and the 
AT methods provide better results than the LOO method 
in all algorithms, but considering all the studies 
performed, the AT method is the best. Considering this 
method, the mean ED values obtained both with the KNN 
and with the RFR algorithms can be considered the best 
of the whole study. 

After evaluating the limitations on the application of 
ML methods in spectral biophotonics to estimate tissue 
absorption, we intend to perform other studies in the 
future with a biological tissue where a large number of 
measurements is possible. We expect that by performing 
such studies and obtaining a significant number of Rd and 
μa spectra for a particular tissue, we can use GANs 
models to generate a high number of artificial spectra that 
will be added to the experimental data as input to the ML 
algorithms to recreate μa(λ) and obtain precise diagnostic 
information. We also plan to test different algorithms in 
the GANs models to check if they bring better accuracy 
in the generated spectra than the ones used in the present 
study. After performing such tests and if diseased brain 
tissues become available for study, we plan to perform 
similar studies with those tissues to retrieve the pigments, 
DNA and hemoglobin contents. By comparing those 
contents between healthy and diseased brain tissues, we 
can provide precise diagnostic information or even 
establish a relation between those contents and the 
progression of the disease for early detection procedures 
to be developed. 
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