
_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: arushdi@kau.edu.sa, arushdi@ieee.org; 
 
 
 
 

Journal of Engineering Research and Reports 

 
15(3): 17-36, 2020; Article no.JERR.59033 
ISSN: 2582-2926 

 
 

 

 

Investigation of the Corona Discharge Problem 
Based on Different Computational Approaches of 

Dimensional Analysis 
 

Jamiu Omotayo Oladigbolu1 and Ali Muhammad Ali Rushdi1* 
 

1
Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz 

University, Jeddah, 21589, Saudi Arabia. 
 

Authors’ contributions 
 

This work was carried out in collaboration between the two authors. Author JOO performed the 
analysis, solved the detailed example, prepared the tables, wrote the first draft of the manuscript and 

initiated the literature search. Author AMAR envisioned and designed the study, contributed to the 
symbolic and numerical analysis, checked the solution of the detailed example, enhanced and 

clarified the tables, managed and finalized the literature search and substantially edited and improved 
the entire manuscript. Both authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/JERR/2020/v15i317146 

Editor(s): 
(1) Dr. Guang Yih Sheu, Chang-Jung Christian University, Taiwan. 

(2) Dr. Raad Yahya Qassim, Federal University of Rio de Janeiro, Brazil. 
Reviewers: 

(1) Jesudas Thagaraju, India. 
(2) Mohamed Meziane, Hassan II University of Casablanca, Morocco. 

Complete Peer review History: http://www.sdiarticle4.com/review-history/59033 

 
 
 

Received 25 May 2020 
Accepted 31 July 2020 

Published 10 August 2020 

 
 

ABSTRACT 
 

Although corona discharge is notorious for its detrimental effects, it is also used in many beneficial 
practical applications. Despite the existence of a variety of sophisticated theoretical and 
experimental methods for investigating corona discharge, we explore yet a much simpler method 
that relies on the use of Dimensional Analysis (DA). The DA method does not demand profound 
knowledge of the underlying phenomenon or its governing equations, as it only needs the correct 
identification of the variables influencing the phenomenon, and the specification of their physical 
dimensions. The classical and well-known Gauss-Jordan elimination method is compared with 
other matrix-oriented computational approaches in analyzing the pertinent dimensional system. 
This method relies upon solution-preserving elementary row operations, i.e., operations that one 
can use on a matrix without spoiling the solution set for an associated matrix equation. A distinct 
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advantage of this method is that it does not pre-suppose a particular value of the matrix rank but 
tackles the task of determining this rank while proceeding towards its ultimate result. Moreover, this 
method can also be used to find the inverse of a regular (invertible) matrix or to determine the 
solution (if any) of a system of linear equations. As a bonus, novel results of numerical 
investigations of bases, regimes, and dimensionless products are extensively presented in this 
paper. A remarkable observation made herein is that the set of variables pertinent for a particular 
phenomenon cannot be arbitrarily partitioned into basis (input) variables and regime (output or 
isolated) variables. The paper running example deals with expressing a specific variable, viz. 
ozone generation rate per unit length of wire (r

0
) through dimensionless products in terms of a set 

of determining or influencing variables. 
 

 
Keywords: Corona discharge; dimensionless products; dimensional analysis; Gauss-Jordan method. 
 
1. INTRODUCTION 
 

A corona discharge might be viewed as a stable 
electric discharge that emerges in a non-uniform 
geometry involving two (or more) electrodes 
when a sharp electrode is connected to a high 
voltage source, while the other, much flatter, 
electrode is (typically) connected to the ground. 
A region of high electric field is formed near the 
sharp electrode, as a result of the disparity in the 
lengths of the radii of curvature of the two 
electrodes A free electron that happens to be in 
this region is accelerated and might eventually 
acquire kinetic energy that is sufficiently high to 
enable it to collide with a neutral atom or 
molecule and to detach another electron from 
that molecule, Therefore, the number of free 
electrons within the region (those detached from 
neutral atoms) grows steadily, and gas ionization 
takes place [1]. Corona discharge has many 
noticeable effects (typically detrimental). It 
usually coincides with a sharp hissing or 
crackling audible noise, visual violet glow 
(associated with invisible ultra-violet radiation), 
harmful ozone gas generation, power loss, and 
interference with radio communications. 
 
Corona discharges occur in the gas between two 
electrodes, which have radii of curvature that are 
significantly different. Specifically, they occur on 
the electrode with a smaller radius of curvature, 
which might be a wire, a needle tip, or a blade 
edge, wherein the electric field strength 
increases significantly [2]. Both positive ions and 
electrons are generated under such conditions, 
and they move in opposite directions along and 
against the direction of the electric field (from the 
positive electrode to the negative one). When an 
electron leaves the region of the high field, it 
ceases to possess enough energy to further 
ionize more neutral particles, and hence the 
spread of the discharge is spatially limited. 
Electrons might attach to neutral molecules to 

form negative ions, a phenomenon usually 
referred to as one of the electronegative gases. 
Corona discharges are classified as positive or 
negative coronas, according to the polarity of the 
voltage on the sharper electrode. If the sharper 
electrode is positive with respect to the flatter 
one, the corona is positive, and otherwise, it is 
negative. 
 
Two regions can be identified in the air gap 
between the two electrodes: a lower field drifts 
region and a high field ionization region [3]. The 
corona voltage ranges from 6 to 19 kV, 
depending on the inter-electrode gaps [4]. The 
atmosphere, conductor size, and the spacing 
between the conductors are among the factors 
that affect corona discharge. The gas motion 
driven by the corona discharge recently drew 
much attention in scientific research circles. 
Besides, the use of bundled conductors and 
corona rings can effectively mitigate corona 
discharge, thereby reducing its inadvertent 
effects. Dimensional Analysis (DA) and other 
methods of partial analysis are techniques used 
to obtain partial solutions to problems that are 
too complex to be solved by complete 
mathematical analysis. For instance, DA was 
used to identify fundamental masses in terms of 
four fundamental constants that describe, 
respectively, the relativistic, quantum, 
gravitational, and cosmological aspects of the 
Universe in [5]. Typically, these methods have 
been found useful in many engineering 
applications, in general, and in power systems, in 
particular [6]. We strive herein to utilize classical 
DA, augmented by matrix-theoretical background 
and techniques, in the notable area of power 
systems concerning corona discharges. We 
observe that mathematicians, who are naturally 
knowledgeable about matrix theory, are not 
always knowledgeable regarding the use of this 
theory in DA. In the meanwhile, experimental 
researchers, who are expected to use DA, are 
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often neither deeply knowledgeable about nor 
highly experienced in applications of matrix 
theory. Therefore, we stress matrix theory 
application to DA in our presentation in this 
paper. The prominent problem of corona 
discharge will serve as a vehicle for 
demonstrating our matrix-enhanced DA 
paradigm. 
 
Furthermore, the early major published works on 
corona discharge have been surveyed in [7]. 
Though corona discharge was known before the 
end of the third decade of the twentieth century, 
it took almost two decades for pioneering work 
on it as a mature subject to appear.  This work 
may be credited to Loeb [7], who was the first to 
study corona in air subject to standard 
atmospheric pressure. He analyzed the 
mechanism of the pulses of negative corona and 
investigated the differences between positive and 
negative coronas. Robinson [8] was the first to 
report the existence of a phenomenon named 
ionic wind (coronal wind or ionic wind), which is 
the airflow caused by electric forces linked to 
corona discharge. However, Chattok [9] was the 
first to analyze this phenomenon quantitatively. 
Corona discharges from the surface of a 
conducting liquid, which might comprise liquid 
jets from electrospray nozzles or charged 
droplets, were also explored a variety of 
perspectives, including those of current-voltage 
characteristics, recording of current waveforms, 
steady or streak photography, mass 
spectrometry, light intensity measurements, and 
optical emission spectroscopy [10]. 
 
Investigations of various corona discharge 
phenomena are still of contemporary paramount 
importance due to two reasons: (a) that our 
understanding of the physical processes present 
in corona discharges is still far from being 
complete, and (b) the growing number of 
important practical applications of this 
phenomenon both in industry and research. 
These applications include the charging of thin 
insulating films, electrophotography, and 
electrostatic precipitation. On the negative side, 
corona discharges are generally detrimental and 
deleterious in electrical power systems, and they 
should be avoided or mitigated since they result 
in power loss,  generate audible noise, and 
cause radio interferences [11]. 
 
This paper aims to investigate quantitatively the 
effect and theory of corona discharge in various 
mechanisms in addition to solving corona 
discharge related problems using three 

computational approaches for dimensional 
analysis. To this goal, various articles focusing 
on corona discharge have been reviewed and 
the different areas where corona discharge is 
produced have been extensively evaluated. Our 
DA results cannot be considered as conclusive 
or complete ones as they need other methods 
(outside DA scope) to supplement the knowledge 
obtained about dimensionless products and 
establish a form of mathematical inter-
dependence among these products.  However, 
our DA results certainly provide a clear view of 
how the pertinent variables are inter-related.  
They also allow useful qualitative reasoning 
about the explored phenomenon without 
demanding any deep theorization or 
sophisticated computation. 
 
The remainder of this paper is organized as 
follows. Section 2 presents a detailed literature 
review of corona discharge. Section 3 formulates 
and analyzes in detail a typical problem of 
corona discharge. Finally, conclusions are given 
in section 4. 
 

2. LITERATURE REVIEW 
 

In this section, a detailed literature review is 
presented regarding the theory and numerical 
simulation of corona discharge. This review is 
deemed useful for a full appreciation of the DA 
results obtained later. It also guides our selection 
of the physical variables to be included in any 
particular DA problem. 
 

2.1 Early Discovery of Corona Discharge 
 

Peek is believed to be the first scholar to mention 
the existence of corona in his 1929 book [12]. He 
noted that this phenomenon is initiated when the 
voltage between two smooth conductors exceeds 
a certain critical threshold and that it is 
manifested as an audible hissing noise, a violet 
light that is observable in a dark medium, and a 
noticeable reading on a wattmeter. Also, he 
noted that when the air is electrically 
overstressed, the air two main constituents, 
oxygen O2 and nitrogen N2 react chemically to 
form various nitrogen oxides, which are notorious 
for being undesirable pollutants. Consequently, 
the corona discharge is accompanied by power 
loss, which can be attributed to one of several 
reasons: chemical reactions, noise, light, and 
heat. Peek [12] also reported that the power loss 
recorded by a wattmeter increases significantly 
with the increase of the voltage level. He also 
observed the existence of several differences 
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between AC and DC corona discharges. The 
appearance of the AC corona for the 
positive/negative half-cycle of the supplied 
voltage is the same as that of the 
positive/negative DC corona.  Moreover, Peek 
utilized a stroboscope (an instrument through 
which a rotating object appears stationary), to 
explore the difference in the discharge patterns 
for the positive and negative coronas. He 
observed that some reddish beads are formed on 
the wire in the case of a negative applied 
voltage, while a smoother bluish-white glow is 
visible in the case of a positive applied voltage. 
 
In addition, Peek derived an analytical formula 
for the electric field intensity E on the active 
corona electrode at the point of corona onset.  In 
his analysis, he considered both influences of the 
mass volumetric density of air and the corona 
electrode radius of curvature. It should be noted 
that any configuration that has a non-uniform gap 
can be used for the generation of the corona 
discharge current. However, in practical 
situations, geometries that possess electrodes 
differing significantly in sharpness (as measured 
inversely by the radii of curvature) are more 
effective for such a generation. The most 
prominent systems that have been explored in 
the open literature are the point-to-plane system 
(where the point can be a tip of a sharp needle), 
and the coaxial wire-cylinder system. In 1965, 
Loeb [13] explained the difference in the corona 
patterns arising in these two systems. While the 
point-plane geometry has a confined discharge 
region, the discharge in the coaxial geometry can 
be initiated at different points on the corona wire. 
 
2.2 Simulation of Corona Discharge 
 
Diverse electrical, mechanical, and chemical 
processes are related to the phenomenon of 
corona discharge. Significant simplifications are 
usually needed to analyze these processes. 
Notwithstanding such simplifications, desirable 
analytical solutions are not obtainable for 
geometries other than the one-dimensional one. 
Consequently,  numerical simulation of corona 
discharges has become the main tool of scholars 
to enhance their understanding of these 
discharges [14]. The two major parameters 
involved in such numerical simulation are the 
electric field intensity and the space charge 
density. These two quantities enable the 
calculation of the electric current, which, in turn, 
is the main parameter required for the 
computation of the power and energy loss. The 
electric field intensity is affected by the space 

charge magnitude and distribution and the space 
charge depends on the distribution of the 
electric-field intensity. Therefore, both quantities 
are mutually inter-related. 
 
Furthermore, the heat transfer resulting from 
corona discharge was examined in [4] using a 
thin plate as the corona electrode, while the 
collecting electrode is formed by grounding the 
heated plate. The experiments conducted in [4] 
reveal that the heat transfer coefficient at the 
center of the heated plate is increased by a 
factor in the range 2.6 - 4.8 times as compared to 
that of natural convection. In comparison, forced 
convection heat transfer enhancement using a 
coaxial wire-tube corona system was numerically 
analyzed in [15], where the proposed corona 
system could change the flow pattern pushing 
the central high-velocity flow towards the hot 
surface. Mehalaine et al. [16] evaluated the 
effects of corona discharges on a wing and flap 
system via numerical simulation. They indicated 
that the numerical outcomes of the high lift 
system show a remarkable increase of the lift 
coefficients between the angles of attack of 1.8

o
 

and 6
o
 and a delay of the boundary layer 

separation. Grosu et al. [17] simulated corona 
discharge by the similarity theory methods where 
a general system of equations for a corona 
discharge was derived and reduced to a 
dimensionless form. Their outcome reveals that 
the quadratic pattern of the current-voltage 
characteristics of the corona discharge results 
from the linear dependence of the electric field 
intensity and the linear threshold dependence of 
the density of free space carriers on the voltage. 
 
2.3 Investigation of Corona Discharge 
 
Morrow [18] reported some pioneering work in 
1985 on simulating corona discharge in several 
gases including oxygen, wherein he considered a 
few chemical reactions. He determined the 
electric field intensity by using a hybrid 
technique, which combined (a) the Flux-
Corrected Transport method that solves the three 
drift-diffusion equations for ionic species, and (b) 
the finite difference method (FDM) that solves 
Poisson’s equation. 
 
However, the first published work, devoted 
entirely to using the finite element method (FEM) 
to simulate corona discharge was co-authored by 
Janischewskyj and Gela [19], who simulated 
corona in a wire-cylinder configuration assuming 
a one-dimensional unipolar corona model. A 
useful (albeit controversial) assumption called 
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the Deutsch Hypothesis (DH) is extensively 
adopted for simplifying the calculation of the 
ionized electric fields surrounding electrodes in 
corona [20–23]. Jones and Davies [24] asserted 
that the Deutsch assumption was satisfied in the 
simulation in [19] since the electric field was 
always radial in the used configuration. Abdel-
Salam et al. [25] used a hybrid  FEM-charge 
simulation method (CSM) technique, for 
simulating corona discharge in a wire-to-ground 
configuration. Chen and Davidson simulated 
positive and negative corona discharges in a 
wire-cylinder configuration [26]. 
 
Also, Yanallah and Pontiga [27] introduced a 
semi-analytical stationary discharge model in a 
point plane configuration for both positive and 
negative corona discharges in oxygen. The 
approximate analytical expressions for the 
electric field and the ionic densities were found 
by solving the Gauss and the continuity 
equations [27]. A semi-empirical equation was 
derived in [28] to provide a correlation between 
the ozone generation rate of a negative wire-to-
plate corona discharge in both dry and humid air. 
Adamiak et al. [29] innovated an approach based 
on a direct ionization criterion and applied it for a 
two-dimensional hyperbolic needle-ground 
configuration. This new approach was compared 
with two others: one based on Kaptzov’s 
hypothesis [30–33] and another based on the 
analytical Peek formula with an equivalent 
electrode radius [25]. The discharge current was 
practically the same for the three approaches 
utilized. However, the electric field distributions 
on the corona electrode surface were slightly 
different. The current-voltage and light emission 
characteristics of electrospraying of various 
liquids in standard atmospheric air were 
investigated in [10]. The spectroscopic 
measurements reveal that the onset of corona 
discharge coincides with the beginning of 
electrospraying where the dependence of the 
amplitude of selected spectral lines on capillary-
nozzle voltage was determined from the 
measured light emission spectra of discharges 
from the capillary nozzle and liquid jet. A novel 
dimensionless approach to analyzing the 
capability of a solar-based power supply system 
with seasonal hydrogen storage to supply a 
constant load demand all year round was studied 
in [34]. 
 
The dimensionless model is applied to a set of 
78 cities with varying latitudes, which are 
selected to be lying across the five major 
continents. For a round-trip storage efficiency of 

around 45% and an assumption of the base-case 
unit costs of components, solar-hydrogen 
systems were found to be economic in a majority 
(55%) of the cities considered. Carsimamovic et 
al. [35] examined the AC corona discharge 
parameters of atmospheric air using a calculation 
model. They concluded that the analyses of AC 
corona discharge parameters of atmospheric air 
over a long period (measured in hours, days, or 
even weeks) allow for the determination of the 
ionization and attachment coefficients as 
functions of the electric field intensity and inter-
electrode spacing. 
 

2.4 Corona Discharge in Various 
Applications/Mechanisms/Techniques 

 
Needle-mesh and needle-fin electrodes were 
utilized in the enhancement of heat transfer via 
corona discharge and a direct comparison of the 
ionic wind devices with the two electrodes is 
carried out experimentally [36]. The investigation 
of the heat transfer in [36] reveals that the 
needle-fin configuration has a superior 
performance making a fall in temperature from 
54.5°C to 39.1°C with a low power consumption 
of 0.85 W. The possibility and advantages of 
utilizing fins as collector electrodes were also 
confirmed in [36]. Lee et al. [37] analyzed the 
intermittent corona discharge plasma jet (ICDPJ) 
for improving the quality of tomato where the 
tomatoes were treated with corona                         
plasmas produced by using 8 kV DC electricity at 
2.0-4.0 ampere currents. It was indicated that the 
ICDPJ treatment decreased the contaminants 
loads by 0.68-1.02 log CFU/g at 2.0 A,                           
by 1.42-1.71 log CFU/g at 3.0 A, and by 2.00 log 
CFU/g to a non-detectable level at 4.0 A.                  
Here, the symbol CFU stands for a colony-
forming unit, which is a unit used in microbiology 
to estimate the number of viable bacteria or 
fungal cells in a sample, where the term viable is 
defined as the ability to multiply via binary fission 
under specific controlled conditions. Usually, the 
unit CFU/g (colony-forming unit per gram) is 
given in association with logarithm (to base 10) 
notation.  
 

Also, the generalizations from the experimental 
current-voltage properties of a corona discharge 
for helium and synthetic air at the positive and 
negative polarities of a star-shaped discharge 
electrode at different gas pressures were studied 
by Grosu et al. [38], who confirmed Townsend’s 
structure of the characteristics and stated that 
this fact can serve as a basis for wide 
application. 
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3. FORMULATION AND ANALYSIS OF A 
CORONA DISCHARGE PROBLEM VIA 
DA 

 

3.1 Determination of Dimensionless 
Products Involving Seven Physical 
Variables  

 

The dimensional system to be studied herein is 
formulated using seven physical parameters, 
namely, the ozone generation rate per unit length 
of wire in dry air (r0, mg/(s·m)), the wire radius (b, 
mm), the inter-electrode gap (d, mm), the applied 
voltage (V, Volt), the excess voltage (Ve, Volt) 
which is referred to as the difference between the 
applied voltage (V, Volt) and the corona inception 
voltage (Vi, Volt), the permittivity for the inter-
electrode drift region (ε, F/m), and the ion 
mobility (μ,  m

2
/(V·s)). The analysis is based on 

the four fundamental dimensions for 
electromagnetic entities (mass (M), length (L), 
time (T), and current (I)) in the International 
System (SI) of Units [28]. 

In this section, DA will be used to obtain the 
dimensionless products of the seven physical 
variables mentioned above as well as to show 
how these variables are interrelated. The above 
variables are a mixture of fundamental and 
derived quantities, and as such it is possible to 
mathematically derive/express their dimensions 
using the afore-mentioned four main fundamental 
dimensions, i.e., mass (M), length (L), time (T), 
and current (I). It is, however, worthy to note that 
the expressions to be derived are for general 
dimensionless products that relate the seven 
physical variables on equal footing without giving 
weight or priority to any of them. 

 
Also, three different computational 
techniques/methods/approaches will be utilized 
to broaden the scope of the DA approach and to 
know the benefit and complexity involved in each 
of the selected techniques. The list of variables 
involved is illustrated in Table 1. The units and 
dimensions of each variable are derived using 
basic knowledge of physics and mathematics. 

 
Table 1. Seven physical variables involved in the calculation of the dimensionless products for 

ozone generation using DA 
 

Variable Symbol Unit Dimensions 

Ozone generation rate per unit length of 
wire in dry air 

r
0 

mg/(s·m) M L
-1 

T
-1 

Wire radius a mm L 

The inter-electrode gap d mm L 

Applied voltage V V or m
2
kg/(s

3
.A) M L

2 
T

-3 
I
-1 

Excess voltage  Ve V or m
2
kg/(s

3
.A) M L

2 
T

-3 
I
-1 

permittivity for the inter-electrode drift 
region 

ε F/m or A
2
s

4
/(m

3
.kg) M

-1 
L

-3 
T

4 
I
2  

Ion mobility μ m
2
/(V·s) or s

2
A/kg M

-1
T

2 
I 

 

 
The derivation of the applied and excess voltage (V and Ve) units/dimensions: 
 
We start our derivation by the well-known result that 
 
Voltage or electric potential = electric field strength (E) × distance (d) 
 
i.e. 
 
� = � × �                         (1) 
 

� =
�����,�

������,�
                         (2) 

 
�ℎ����, � = �������, � × ����, �                                   (3) 
 
�����, � = ����, � × ������������, �                                  (4) 
 

������������, � =
��������

����
= �����������/(����)(����)                                (5) 
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Substituting equations (3), (4), and (5) into equation (2) gives  
 

� =
�×�

��×�
  (���/���)                                     (6) 

 
Substituting equation (6) in equation (1) results in: 
 

� =
�×�

��×�
× � =

�×��

��×�
 �

����

���
�                                       (7) 

 
The derivation of the permittivity for the inter-electrode drift region (ε) units/dimensions 
 

permittivity, ε =
�����������,�

��������,�
                        (8) 

 

� =
�

�
=

��

�
�×��

��×�
�

=
����

���
 �

����

����
�                                   (9) 

 
Putting equation (9) into equation (8) gives  
 

ε =
�

����

���
�

�
=

����

���
 �

����

����
�                                   (10) 

 
The derivation of the ion mobility (μ) units/dimensions 
 

 μ =
��

�×�
                                    (11) 

 
since 
 

 � =  
� × ��

�� × �
 

 

μ =
��

�
�×��

��×�
�

=
��×�

�
 (���/��)                     (12) 

 
According to the theorem presented in [5,39], each dimensionless product of the set of the seven 
physical variables in Table 1 above will be of the form: 
 

� = � ���
 �� �� �� ��

� ε� μ�                                   (13) 
 
Where k is a dimensionless constant, while b, e, f, g, h, k, and m are exponents yet to be (partially) 
determined or inter-related. 
 

If we denote by [y] the dimension of the parameter y we note that [�]= 1 , where 
[�]= (M  ������)�(�)�(�)�(���������)�(���������)�(����������)�(������)�                          (14a) 
 

or equivalently: 
 

�� �� �� �� = ���������������������������������������������������                                      (14b) 
 
The product π is dimensionless if 
 

� + � + ℎ − � − � = 0                                (15a) 
 

−� + � + � + 2� + 2ℎ − 3� = 0                               (15b) 
 
−� − 3� − 3ℎ + 4� + 2� = 0                               (15c) 
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−� − ℎ + 2� + � = 0                                (15d) 
 

There are seven unknowns (i.e., the b, e, f, g, h, k, and m exponents) in equations (15) with just four 
conditions (equations). It will be seen shortly that these equations are linearly independent i.e., the 
dimensional matrix derived from them has a full rank of four. Thus, we can determine only four of the 
seven unknowns in terms of the remaining three. This implies that only four of the seven unknown 
variables (to be termed basis variables) can be found in terms of the remaining three (to be termed 
regime variables). In the meantime, from our knowledge of combinatorial analysis, there are 35 ways 
for choosing 4 objects out of 7 (with neither order nor repetition). However, it might turn out that some 
of these 35 ways are not realizable. The dimensional-matrix form of the system is shown in Table 2. 
 

Table 2. The dimensional matrix 
 

 r
0 

a V d Ve �  �  
M 1 0 1 0 1 -1 -1 
L -1 1 2 1 2 -3 0 
T -1 0 -3 0 -3 4 2 
I 0 0 -1 0 -1 2 1 

 

3.1.1 Fundamental solutions method 
 

In this method, the dimensional matrix presented in Table 2 is utilized to obtain the dimensionless 
products. The original homogeneous matrix equation is replaced by a number of inhomogeneous 
equations equal to the number of regime variables (three in the present case). For each of these 
equations, we assign a value of a unit vector to the vector of regime indices. For the first equation of 
our present problem, we assign the unit-vector value [1  0  0]

T
 to a selected regime vector [b  e  g]

T
, 

thereby obtaining the inhomogeneous equation below for the corresponding vector of basis indices    
[f   h   k   m]T. Note that the matrix columns under the zero-valued indices e and g, are irrelevant or 
don’t-cares, and hence are not specified, so as to emphasize that they do not pertain to the new 
equation. The column beneath the index b has each of its entries negated, since it is assumed to have 
been moved to the other side of the equation, and it is the reason why the equation is now 
inhomogeneous. 
 

 r
0 

a V d Ve �  �  

 b=1 e=0 g=0 f h k m 
M -1 - - 0 1 -1 -1 
L 1 - - 1 2 -3 0 
T 1 - - 0 -3 4 2 
I 0 - - 0 -1 2 1 

 

The matrix equation above is a compact form of four scalar equations, namely 
 

ℎ − � − � = −1;       � + 2ℎ − +� = 1;   −3ℎ + 4� + 2� = 1;    −ℎ + 2� + � = 0 
 

We now solve the above matrix equation (or its equivalent set of four scalar equations) using 
Cramer’s rule to obtain: 
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∆ (���������� �� �) = −1 
 

 
 

∆� ������������ �� ������ ��� = 0, � =
∆�

∆
=

0

(−1)
= 0 

 

 
 

∆� (����������� �� ������ ��) = 1 
 

ℎ =
∆�

∆
=

1

(−1)
= −1 

 

 
 
∆� (����������� �� ������ ��) = 1 
 

� =
∆�

∆
=

1

(−1)
= −1 
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∆� (����������� �� ������ ��) = −1 
 

� =
∆�

∆
=

(−1)

(−1)
= 1 

 

The first fundamental solution is now completed as: 
 

 r
0 

a V d Ve �  �       

 b e g f h k m 
�� 1 0 0 0 -1 -1 1 

 
Therefore, the first regime or dimensionless product is 
 

�� = ((��)�(�)�(��)��(�)��) = �
���

���
�  

 
The matrix and scalar forms for the second fundamental solution ([b  e  g]

T
 = [0  1  0]

T
) are given by 

 
 r0 a V d Ve �  �  

 b=0 e=1 g=0 f h k m 
M - 0 - 0 1 -1 -1 
L - -1 - 1 2 -3 0 
T - 0 - 0 -3 4 2 
I - 0 - 0 -1 2 1 

 
ℎ − � − � = 0;      � + 2ℎ − 3� = −1;     −3ℎ + 4� + 2� = 0;    −ℎ + 2� + � = 0 
 
Solution of the above matrix equation (or of its equivalent set of four scalar equations)  via Cramer’s 
rule gives: 
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∆ (���������� �� �) = −1 
 

∆� ������������ �� ������ ��� = 1 
 

� =
∆�

∆
=

1

(−1)
= −1  

 

∆� (����������� �� ������ ��) = 0 
 

ℎ =
∆�

∆
=

0

(−1)
= 0 

 

∆� (����������� �� ������ ��) = 0 
 

� =
∆�

∆
=

�

(��)
= 0    

 

∆� (����������� �� ������ ��) = 0 
 

� =
∆�

∆
=

0

(−1)
= 0 

 

The second fundamental solution is now completed as: 
 

 r
0 

a V d Ve �  �  

 b e g f h k m 
�� 0 1 0 -1 0 0 0 

 

Therefore, the second regime or dimensionless product is 
 

�� = ((�)�(�)��)  = �
�

�
� 

 

The matrix and scalar forms for the third fundamental solution ([b  e  g]T = [0  0  1]T) are given by 
 

 r
0 

a V d Ve � � 

 b=0 e=0 g=1 f h k m 
M - - -1 0 1 -1 -1 
L - - -2 1 2 -3 0 
T - - 3 0 -3 4 2 
I - - 1 0 -1 2 1 

 
ℎ − � − � = −1 ;     � + 2ℎ − 3� = −2;   −3ℎ + 4� + 2� = 3;   −ℎ + 2� + � = 1 
 
Solving the above matrix equation (or its equivalent set of four scalar equations) using Cramer’s rule, 
we obtain: 
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∆ (���������� �� �) = −1 
 

∆� ������������ �� ������ ��� = 0 
 

� =
∆�

∆
=

�

(��)
= 0    

 

∆� (����������� �� ������ ��) = 1 
 

ℎ =
∆�

∆
=

1

(−1)
= −1 

 

∆� (����������� �� ������ ��) = 0 
 

� =
∆�

∆
=

�

(��)
= 0    

 

∆� (����������� �� ������ ��) = 0 
 

� =
∆�

∆
=

�

(��)
= 0  

 

The third fundamental solution is now stated as: 
 

 r0 a V d Ve �  �  

 b e g f h k m 
�� 0 0 1 0 -1 0 0 

 

Therefore, the d regime or dimensionless product is 
 

�� = ((�)�(��)��) =  �
�

��
�  

 

Hence, the three dimensionless products obtained are: 
 

�� = �
���

���
�;                 �� = �

�

�
�;                   �� = �

�

��
� 

 

and they constitute regimes for the three variables r
0
,  a, and V.  In fact, each of these variables 

appears only in one and only one of the three dimensionless products. 
 
3.1.2 Matrix analysis method 
 

� = � ���
 �� �� �� ��

� ε� μ� 
 
The dimensional matrix given in Table 2 is assumed to be column-wise partitioned into a unit matrix � 
sharing the same rows with another matrix � . The partitioned matrix is used to obtain the 
dimensionless products as follows. The operations applied to convert matrix � to unit matrix amount 
to left multiplying it by its inverse. Therefore, these operations are also applied � , thereby left 
multiplying it by the inverse of � 
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Therefore 
 

 
 
Hence 
 

 
 
Now, the matrix defined as � = −[����]� is computed and placed to the left of an appropriate unit 
matrix � of the same row dimension, thereby resulting in a matrix of the dimensional products, which is 
conveniently called the Szirtes matrix [40]. 
 

 
 

 r0 a V d Ve �  �  

 b e g f h k m 
�� 1 0 0 0 -1 -1 1 
�� 0 1 0 -1 0 0 0 
�� 0 0 1 0 -1 0 0 

 
According to the Szirtes matrix above, the problem has three regimes or dimensional products, which 
might be written in explicit algebraic form as  
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�� = ((��)�(�)�(��)��(�)��) = �
���

���
�                                (16) 

 

�� = ((�)�(�)��) = �
�

�
�                                  (17) 

 

�� = ((�)�(��)��) = �
�

��
�                                  (18) 

 
3.1.3 Gauss-Jordan elimination method 
 
The procedure of Gauss-Jordan elimination is applied to the matrix equation (15) in a step-by-step 
fashion to obtain the dimensionless products of our corona discharge problem. We do not write the 
vector of indices as a column vector to the right of the dimensional matrix but write it as a row vector 
on top of it. This is a well-known trick used frequently [5,41-45] to enhance the readability of matrix 
multiplication. We also omit the equality sign in the matrix equation and add the zero vector in the 
R.H.S. of this equation as an extra vector for the dimensional matrix resulting in what is called an 
augmented matrix [5]. Now, elementary row operations [5,46] are applied to the whole rows of the 
augmented matrix and are depicted by the labels to the left of the matrix. We follow the following 
steps to obtain the dimensionless products. 
 
Step 1: Finding a non-zero pivot in the first column in the first row, and making sure that this pivot is 
unity by keeping the first row (E1

(1)
) intact: 

 
 r0 a V d Ve �  �   

E1(1) 1 
 

0 1 0 1 -1 -1 0 

E2(1) -1 1 2 1 2 -3 0 0 
E3

(1)
 -1 0 -3 0 -3 4 2 0 

E4(1) 0 0 -1 0 -1 2 1 0 
 
Step 2: Adding the first row to each of the second row and the third row and locating the pivot in the 
second column in the second row and making sure that this pivot is assigned a value of unity: 
 
 r

0 
a V d Ve �  �   

E1
(2)

 ←  E1
(1)

 1 0 1 0 1 -1 -1 0 
E2

(2)
 ←E2

(1)
+E1

(1)
 0  

 

3 1 3 -4 -1 0 

E3
(2)

 ←E3
(1)

+E1
(1)

 0 0 -2 0 -2 3 1 0 
E4(2) ←E4(1) 0 0 -1 0 -1 2 1 0 

 
Step 3: Jumping to the third column (since the second column is already in the desired unit-vector 
form), and then locating a unit pivot in the third row and third column and swapping the third row and 
the fourth row, and then multiplying the new third row by −1: 
 
 r0 a V d Ve �  �   

E1(3) ←  E1(2) 1 0 1 0 1 -1 -1 0 
E2(3) ←  E2(2) 0 1 3 1 3 -4 -1 0 
E3

(3)
 ←  −E4

(2)
 0 0  

 

0 1 -2 -1 0 

E4
(3)

 ←E3
(2)

 0 0 -2 0 -2 3 1 0 
 
Step 4: Adding multiples of (−1), (−3), and (+2) of the third row to the first row, second row, and 
fourth row, respectively, and locating the next non-zero pivot in the fourth row(which is impossible for 
the fourth and fifth columns but possible for the sixth column, thereby changing the set of basis 
variables from r0, a, V, and d to r0, a, V, and �, and changing the set of regime variables from Ve, �, 
and � to d, Ve, and � ). 
 

1 

1 

1 
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 r
0 

a V d Ve �  �   

E1(4) ← E1(3) −  E3(3) 1 0 0 0 0 1 0 0 
E2

(4)
 ← E2

(3)
  −3  E3

(3)
 0 1 0 1 0 2 2 0 

E3(4) ← E3(3) 0 0 1 0 1 -2 
 

-1 0 

E4
(4)

 ←E4
(3)

 + 2 E3
(3)

 0 0 0 0 0 1 1 0 
 
Step 5: Adding multiples of (−1), (−2), and (+2) of the third row to the first row, second row and fourth 
row, respectively  
 
 r0 a V d Ve �  �   

b e g f h k m 
E1(5) ← E1(4) −  E4(4) 1 0 0 0 0 0 -1 0 
E2(5) ← E2(4)  −2  E4(4) 0 1 0 1 0 0 0 0 
E3

(5)
 ← E3

(4)
 + 2 E4

(4)
 0 0 1 0 1 0 1 0 

E4(5) ←E4(4)  0 0 0 0 0 1 1 0 
 
Therefore, we reproduce Equation (13) again herein for convenience 
 

� = � ���
 �� �� �� ��

� ε� μ�                                                                                                                                         (13) 
 
� = �                      (19a) 
 
� = −�                                  (19b) 
 
� = −ℎ − �                      (19c) 
 
� = −�                                  (19d) 
 
We can now substitute (19) in (13) to obtain regimes for d, Ve, and �, namely 
 

� = � ���
 ��� �� ����� ��

� ε�� μ�                                                                                                  (13a) 
 
= �   (�/�)�  (��/�)�  (��μ /Vε )�                                                                                                     (13b) 
 
We obtain three independent regimes (which appear in line 3 of the forthcoming Table 3) 
 
��� = (�/�),    ��� = (��/�),   ��� = (��μ /Vε ).                                                                                 (20) 
 
The regimes in (14) differ from those obtained earlier in the previous subsections. If we insist on 
obtaining those earlier regimes, we could proceed as follows. From equation (19d), substitute � = −� 
in equations (19a) and (19c) to obtain: 
 
� + � = 0 �� � = −�; � + � = 0 �� � = −�; � + ℎ − � = 0 �� ℎ = � − � 
 
Substituting the above equations into equation (13)  gives: 
 

� = � ���
 �� ��� �� ��

(���) ε�� μ��   
 

� = �  �
��μ

���
�

�

�
�

�
�

�

�
�

��

�
�

 

 
The three dimensionless products obtained are now those obtained earlier (and constitute line 1 in the 
forthcoming Table 3): 
 

1 
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��� = �
��μ

���
�, ��� = �

�

�
�,       ��� = �

�

��
�.                                                                                  (21) 

 
Each of the two sets of independent regimes in (20) and (21) can be directly obtained from the other. 
In fact 
 
��� = 1/���,              ��� = 1/���,                ��� = ���/���.                                                               (22) 
 
  
��� = ���/���,     ��� = 1/���,       ��� = 1/���.                                                                               (23) 
 
The Gauss-Jordan elimination method has been 
utilized to obtain the dimensionless products of 
the system while the process involved in the 
determination of dimensionless product using 
other techniques have been extensively shown in 
subsection 3.1.1 and 3.1.2 respectively.  
 
� is given by  
 

� = �  �
��μ

���
�

�

�
�

�
�

�

�
�

��
�

�

     

 
Rushdi and Rushdi [5] list several prominent 
advantages of the Gaussian or Gauss-Jordan 
elimination procedures. They point out that, in 
particular, these two variants of essentially the 
same procedure check for linear independence 
at no extra computational cost. In our present 
analysis, the Gauss-Jordan procedure does not 
produce an all-0 row, and hence it reveals that 
the dimensional matrix has a complete rank of 4, 
which implies that the equations in (15) are 
linearly independent. If the dimensional 
equations in (15) were linearly dependent, then 
an all-zero row would have been produced in the 
augmented matrix [46]. 
 
Each of the three independent dimensionless 
products can form an independent regime, which 
depends on the set of variables selected to form 
a basis (or equivalently, on the set of regimes 
(isolated) parameters. For instance, with our 
choice above of the four variables (d, Ve, ɛ, and 
µ) as input or basic variables, we are effectively 
making our first dimensionless product be 
identified by a single ‘variable’ r

0
, our second 

product is distinguished by a single ‘variable’ a 
with the third product being characterized by a 
single ‘variable’ V. 
 
It is possible to deduce certain qualitative facts 
within each of the three regimes obtained [5,47]. 
The dependence of each of the regime variables 
r0, a, and V on the input variables belonging to 
the same regime is such that. 

���

��
< 0,   

���

���
> 0,   

���

��
> 0          (24) 

 
��

��
> 0             (25) 

 
��

���
> 0                         (26) 

 
The seven physical variables involved in this 
analysis are not necessarily ‘variables,’ and 
some of them (such as ɛ and µ) might be 
assumed to be almost constant. The partial 
differential relations in (24)-(26) in this case help 
in the assessment of uncertainty rather than 
feasible actual changes.  
 

3.2 Regimes and Dimensionless Products 
 

There are at most  �
7
3

� = �
7
4

� = 35 selections for 

a set of four basis or input variables, associated 
with a complementary set of three isolated or 
output variables. We have already seen that not 
every such a selection corresponds to an actual 
triad of dimensional products.  Table 3 considers 
all 35 candidate triads of dimensionless products, 
attempting to compute each of them from 
Equation (21), i.e., by using the products 

��� = �
��μ

���
�,   ��� = �

�

�
�,  and ��� = �

�

��
�  as a 

starting point. According to Table 3, the attempt 
to compute triads of dimensionless products is 
successful in only 14 cases, whereas such triads 
do not exist in 21 cases of the 35 combinations 
explored in Table 3. 

 
Out of the 42 dimensionless products obtained 
and presented in Table 3, there are just 8 distinct 
products. In retrospect, we note that with our 
knowledge of the three initial products ��1 =

�
�0μ

���
�, ��2 = �

�

�
�,  and ��3 = �

�

��
�, we can reduce 

the original problem to a problem involving five 
variables only, two lengths �  and � , and three 

voltages � , �� , and �2 =
�0μ

�
. The eight distinct
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Table 3. Pairs of dimensionless products that form independent regimes 
 

Case j Set of basis 
(input) 
variables 

Set of 
isolated 
(output) 
variables 

��� ��� ��� 

1 {d, Ve, ɛ, µ} {r
0
, a, V} 

��� = �
��μ

���
� ��� = �

�

�
� ��� = �

�

��
� 

2 {µ, r
0
, a, V} {d, Ve, ɛ} ��� = ���

��

= �
�

�
� 

��� = ���
��

= �
��

�
� 

��� = �
��

���
� 

3 {ɛ, r
0
, a, V} {d, Ve, µ} ��� = ��� ��� = ��� ��� = ���

��

= �
���

��
� 

4 {ɛ, µ, a, V} {r
0
,
 
d, Ve} ��� = ��� ��� = ��� ��� =  ��� 

5 {ɛ, µ, r0, a} {d, V, Ve} ��� = ��� ��� = ��� ��� = ���
��

= �
���

���
� 

6 {ɛ, µ, r
0
, V} {a, d, Ve} − − − 

7 {V, µ, d, a} {r
0
, Ve, ɛ} − − − 

8 {V, µ, d, r0} {a, Ve, ɛ} ��� = ��� ��� = ��� ��� = ��� 
9 {d, µ, a, r0} {V, Ve, ɛ} − − − 
10 {d, V, a, r

0
} {Ve, ɛ, µ} − − − 

11 {a, d, V, Ve} {r0, ɛ, µ}  − −  − 
12 {r0, d, V, Ve} {a, ɛ, µ}  −  − − 
13 {r

0
, a, V, Ve} {d,

 
ɛ, µ} − − − 

14 {r
0
, a, d, Ve} {V,

 
ɛ, µ} − − − 

15 {r0, ɛ, d, Ve} {V, a , µ} ��15 = ��1 ��15 = ��1 ��15 = ��1 
16 {a, V, Ve, µ} {r

0
,
 
d, ɛ} − − − 

17 {r
0
, V, Ve, µ} {a,

 
d, ɛ} − − − 

18 {r0, a, Ve, µ} {d, V, ɛ} ��18 = ��2 ��18 = ��1 ��18 = ��5 
19 {a, V, Ve, ɛ} {r0, d, µ} − − − 
20 {r

0
, V, Ve, ɛ} {a, d, µ} − − − 

21 {r0, a, Ve, ɛ} {d, V, µ} ��21 = ��2 ��21 = ��1 ��21 = ��1 
22 {a, d, V, ɛ} {r0, Ve, µ} − − − 
23 {r

0
, d, V, ɛ} {a, Ve, µ} ��23 = ��1 ��23 = ��2 ��23 = ��3 

24 {r
0
, a, d, ɛ} {V, Ve, µ} − − − 

25 {V, Ve, ɛ, µ} {r0, a, d} − − − 
26 {V, d, ɛ, µ} {r

0
, a, Ve} ��26 = ��3 ��26 = ��1 ��26 = ��2 

27 {d, V, Ve, µ} {r
0
, a, ɛ} − − − 

28 {d, V, Ve, ɛ} {r0, a, µ} − − − 
29 {a, Ve, ɛ, µ} {r

0
, d, V} ��29 = ��1 ��29 = ��2 ��29 = ��1 

30 {a, d, ɛ, µ} {r
0
, V, Ve} − − − 

31 {a, d, Ve, µ} {r0, V, ɛ} − − − 
32 {a, d, Ve, ɛ} {r0, V, µ} − − − 
33 {r

0
, Ve, ɛ, µ} {a, d, V} − − − 

34 {r
0
, d, ɛ, µ} {a, V, Ve} ��34 = ��1 ��34 = ��2 ��34 = ��5 

35 {r0, d, Ve, µ} {a, V, ɛ} ��35 = ��1 ��35 = ��1 ��35 = ��5 
 
products are the four ratios (�/�),  (�/��), (�/�2), 
(�2/��), and their reciprocals. Therefore, four out 
of these eight distinct products involve five 
variables and have three missing variables each, 
while the remaining four products involve two 
variables only and have five missing variables 

each. Moreover, each of the 8 distinct products is 
seen to appear in different places in Table 3. 
Also, there are 4 lines (1, 4, 26, and 29) in Table 
3, in which the ozone generation rate per unit 
length of wire in dry air (r0) appears as a regime 
or output variable. Based on this, the next logical 
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step is to derive four values of r
0
 i.e. r

0
1, r

0
2, r

0
3

 

and r0
4, which might be obtained by writing the 

first regime in each of the aforementioned 4 lines 
as an arbitrary function of the other two regimes 
in the same line, namely 
 
��1 = �1(��1, ��1)                                          (27a) 
 
��4 = �4(��4, ��4)                                          (27b) 
 
��26 = �26(��26, ��26)                                    (27c) 
 
��29 = �29(��29, ��29)                                    (27d) 
 
These relations can yield the following four 
expressions for r0

1, r
0

4, r
0

26,
 and r0

29 

 

r
0

1 =  
���

�
  �1(�

�

�
�, �

�

��
�)                                   (28a) 

 

r
0

4 =  
��

�
  �4(�

�

�
�, �

��

�
�)                                    (28b) 

 

r
0

26 =  
��

�
  �26(�

�

�
�, �

��

�
�)                                  (28c) 

 

r0
29 =  

���

�
 �29(�

�

�
�,  �

�

��
�)                                (28d) 

 
The values obtained for r0 are just two rather 

than four. It is simply a product of (
���

�
) or (

��

�
) by 

an arbitrary function of the length ratio �
�

�
� and 

voltage ratio �
�

��
�. 

 

4. CONCLUSIONS 
 

Simplified calculation models to analyze corona 
discharge problems via DA are presented in this 
paper. The application of three different 
computational approaches via DA generated an 
infinite number of dimensionless products that 
relate the ozone generation rate per unit length 
of wire in dry air (r0) and six other parameters. It 
is possible to construct any of these 
dimensionless products using only any three 
independent products among them. Specifically, 
four dimensionless products only act as regimes 
for the ozone generation rate per unit length of 
wire in dry air (r

0
), i.e., as a way for explicitly 

expressing r0 in terms of its influencing variables. 
Eventually, the DA formula derived for r

0 
become 

two rather than four. The correlation equation as 
a tool for predicting the ozone generation by 
negative wire-to-plate corona discharges in both 
dry and humid air has been derived 
mathematically by other researchers and 
validated with previously developed numerical 

framework as well as experimental observations. 
Therefore, DA is only utilized in this article to find 
the dimensionless products that form 
independent regimes as well as variables 
derivable from those regimes. As a sequel of this 
work, we hope to explore DA utilization in the 
techno-economic assessment of power systems 
[48,49]. 
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