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Abstract

We characterize the fuzzy T0 - Alexandrov topologies on a crisp set X, which are associated to
fuzzy interval orders R on X. In this way, we generalize a well known result by Rabinovitch
(1978), according to which a crisp partial order is a crisp interval order if and only if the family
of all the strict upper sections of the partial order is nested.
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1 Introduction

Separation axioms in fuzzy topological spaces were first introduced by [1], and then studied by [2].
In this paper, we are based on the definition of fuzzy Alexandrov topological space, which may be
viewed as a generalization of the corresponding property concerning topological spaces (see [3]).
According to such property, a topology τ on a set X is said to be Alexandrov if it is closed under
arbitrary intersections.

We show that there is a one-to-one correspondence between fuzzy interval orders on a nonempty
set X and fuzzy T0 - Alexandrov topologies on X, with minimal bases {Ux}x∈X such that the
corresponding family {U∗

x}x∈X of partial fuzzy subsets of X is nested. Here, for every x ∈ X, U∗
x is

the restriction of Ux to X \{x}. In our characterization, the concept of a partial fuzzy set is crucial,
in order to exactly recover the notion of strict upper sections of partial orders in the crisp case.

In this way, we generalize a well known result by [4], according to which a crisp partial order is a
crisp interval order if and only if the family of all the strict upper sections of the partial order is
nested (i.e., linearly ordered by set inclusion).

We recall that the concept of Alexandrov topology has been recently considered by [5] in connection
to fuzzy approximation spaces (i.e., fuzzy related spaces) and rough sets, as well as by [6], who
considered suitable topologies in order to recover upper semicontinuous Richter-Peleg multi-utility
representation of nontotal preorders. Fuzzy approximating spaces (i.e., fuzzy related spaces) have
been studied by [7].

2 Notation and Preliminaries

A fuzzy topology on a nonempty crisp set X is a collection of fuzzy subsets ofX (i.e. functions from X
into the unit interval [0, 1]), which is closed under finite intersections (infima) and arbitrary unions
(suprema) and which contains both X (i.e., the constant equal to one) and ∅ (i.e., the constant
equal to zero).

For later use, we recall that for two fuzzy subsets A,B : X → [0, 1] of X, A ⊂ B if and only if
A(x) ≤ B(x) for all x ∈ X.

Let us now introduce the definitions of a partial fuzzy subset of X, and inclusion of a partial fuzzy
set into another. These concepts will be used in the fundamental Theorem 3.1 below.

Definition 2.1. A partial fuzzy subset of X is a partial mapping A : (X ⊃)X ′ → [0, 1], i.e., A is
restricted to a set X ′ ⊂ X. In this case, if x ∈ X \X ′, then we shall write A(x) = ∅.

For two partial fuzzy sets A,B : X → [0, 1],

A ⊂ B ⇔ A(x) ≤ B(x) for every x ∈ X such that A(x) ̸= ∅ and B(x) ̸= ∅.

Therefore, when A,B are partial fuzzy subsets of X, A is contained in B whenever A(x) ≤ B(x)
for every point x belonging to both the domains of A and B.

Definition 2.2 ([8]). A family {Ai}i∈I of (partial) fuzzy subsets of X is said to be nested (or
equivalently, linearly ordered by set inclusion) if, for all i, j ∈ I, either A1 ⊂ Aj or Aj ⊂ Ai.

Definition 2.3 ([9]). Let X be a nonempty set. A fuzzy point xα (x ∈ X and α ∈]0, 1[) is a fuzzy
subset of X such that xα(x) = α, and xα(z) = 0 for every z ∈ X, z ̸= x. x and α are respectively
called the support and value of the fuzzy point xα. A fuzzy point xα is said to belong to a fuzzy
subset A of X (xα ∈ A) if α < A(x).
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Definition 2.4 ([9]). Let (X, τ) be a fuzzy topological space. A subfamily Bxα of τ is a local base
of xα if xα ∈ B for every B ∈ Bxα and if, whenever xα ∈ U , U ∈ τ , then there exists B ∈ Bxα such
that xα ∈ B ⊆ U . A subfamily B of τ is a base for τ if, for every U ∈ τ and for every xα ∈ U , there
exists B ∈ B such that xα ∈ B ⊆ U .

Definition 2.5 ([2]). A fuzzy topological space (X, τ) is said to be fuzzy T0 if, whenever x, y ∈ X,
x ̸= y, then there exists U ∈ τ such that either U(x) = 1, U(y) = 0 or U(x) = 0, U(y) = 1.

Now let us introduce the definition of fuzzy Alexandrov topology, which is analogous to the corresponding
notion concerning topological spaces.

Definition 2.6. [[5]] A fuzzy topological space (X, τ) is said to be fuzzy Alexandrov if τ is closed
under arbitrary intersections (infima).

We recall that the concept of Alexandrov topological space was introduced and studied by [3].

Proposition 2.1. If (X, τ) is a fuzzy Alexandrov topological space, then there exists a unique
minimal base B of τ .

Proof. Define, for every x ∈ X and for every α ∈]0, 1[,

Bα
x = inf

{Ai∈τ :xα∈Ai}
Ai.

It is easily seen that B = {Bα
x : x ∈ X,α ∈]0, 1[} is a base of τ . If xα ∈ U , U ∈ τ , then consider

any real number α′ such that α < α′ < U(x). Hence xα ∈ Bα′
x ⊆ U . It is straightforward to prove

that B is the unique minimal base of τ . So the proof is complete.

3 Fuzzy Partial Orders and Fuzzy Interval Orders

The fundamental concept of a fuzzy binary relation was introduced and studied by Zadeh (see e.g.
[10]). In this section we first recall the definition of a fuzzy partial order, and then investigate the
relationship between fuzzy partial orders (in particular, interval orders) and fuzzy T0 - Alexandrov
topologies.

Definition 3.1 ([10]). Let R be a fuzzy binary relation on a nonempty set X (i.e.
R : X × X → [0, 1]). R is said to be a fuzzy partial order if it is irreflexive (i.e. R(x, x) = 0
for every x ∈ X) and min-transitive (i.e. R(x, z) ≥ min{R(x, y), R(y, z)} for every x, y, z ∈ X).

Remark 3.1. If R : X ×X → [0, 1] is an irreflexive binary relation on a crisp set X, then, for every
pair (x, y) ∈ X ×X, R(x, y) is interpreted as the “degree up to which x is less preferred than y”.

It is easily seen that a fuzzy partial order is perfectly antisymmetric, in the sense that

R(x, y) > 0 ⇒ R(y, x) = 0 for every x, y ∈ X.

We recall that there is a one-to-one correspondence between T0 - Alexandrov topologies on a
nonempty set X and crisp partial orders on X (see e.g. [11]). If R is a crisp partial order on
X (i.e. R : X ×X → {0, 1}), then define, for every x ∈ X,

Ux = {x} ∪ {z ∈ X : R(x, z) = 1}.

We can associate to R the T0 - Alexandrov topology τR with minimal base (Ux)x∈X . For a fixed
nonempty set X, the function ϕ : R → ϕ(R) = τR is a bijection from the set of all the crisp partial
orders on X into the set of all the T0 - Alexandrov topologies on X.
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Proposition 3.1. There is a one-to-one correspondence between fuzzy partial orders on a nonempty
set X and fuzzy T0 - Alexandrov topologies on X.

Proof. Let X be a nonempty set, and consider a fuzzy T0 - Alexandrov topology τ on X. For every
x ∈ X, let

Ux = inf
{Ai∈τ :Ai(x)>0}

Ai.

Then consider the fuzzy binary relation R on X defined as follows:

R(x, y) =

{
Ux(y) if x ̸= y
0 if x = y.

Let us prove that R is a fuzzy partial order on X. It is clear that R is irreflexive. To prove that R
is min-transitive, consider x, y, z ∈ X, and assume that R(x, y) is positive. Hence R(x, y) = Ux(y),
and therefore Ux ⊃ Uy from the definition above. Since Ux(z) ≥ Uy(z), it is clear that R(x, z) ≥
min{R(x, y), R(y, z)}.

Conversely, let R be a fuzzy partial order on X, and define, for every x ∈ X, the following fuzzy
subset Ux of X:

Ux(y) =

{
R(x, y) if x ̸= y
1 if x = y.

(3.1)

Denote by τR the fuzzy Alexandrov topology on X with (Ux)x∈X as a minimal base. Using the fact
that R is perfectly antisymmetric, it is easy to check that (X, τR) is a fuzzy T0 topological space.
If x ̸= y, then either Ux(y) = 0 or Ux(y) > 0. In the first case there is nothing to prove since we
have Ux(x) = 1. In the second case it is Uy(x) = 0 since R is perfectly antisymmetric. Moreover,
Uy(y) = 1 from the definition above. Finally, if R1 and R2 are two different partial orders on X,
then the T0 Alexandrov topologies τR1 and τR2 associated with R1 and R2, respectively, are also
different. So the proof is complete.

In the sequel, we shall denote by τR the fuzzy T0 - Alexandrov topology on a crisp set X, with a
minimal base {Ux}x∈X (as defined in equation (3.1)), characterizing a fuzzy partial order R on X.

Definition 3.2 ([12]). A fuzzy binary relation R on a crisp set X is said to be a fuzzy interval
order, if the following conditions are verified:

(i) R is irreflexive;

(ii) for every x, y, z, w ∈ X,

max(R(x,w), R(y, z)) ≥ min(R(x, z), R(y, w)).

Theorem 3.1. Let R be a fuzzy partial order on a set X. Then the following conditions are
equivalent:

(i) R is a fuzzy interval order;

(ii) the fuzzy T0 - Alexandrov topology τR on X characterizing R has a unique minimal base
{Ux}x∈X such that the family {U∗

x}x∈X of partial fuzzy subsets of X is nested, where, for
every x ∈ X,

U∗
x (y) =

{
R(x, y) if x ̸= y
∅ if x = y.

(3.2)

Proof. (i) ⇒ (ii). First observe that, from the proof of Proposition 3.1, the family {Ux}x∈X defined
by equation (3.1) is the unique minimal base of the fuzzy T0 - Alexandrov topology τR on X
characterizing R. By contraposition, assume that the family {U∗

x}x∈X (x ∈ X) is not nested. This
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is equivalent to the assertion that there exist two points x, y ∈ X such that (U∗
x ̸⊂ U∗

y ) and((U
∗
y ̸⊂

U∗
x )). Therefore, there exist z, w ∈ X such that z, w ̸= x, z, w ̸= y,

(U∗
x (z) = R(x, z) > R(y, z) = U∗

y (z)) and (U∗
y (w) = R(y, w) > R(x,w) = U∗

x (w)).

Hence, max(R(x,w), R(y, z)) < min(R(x, z), R(y, w)), and R is not an interval order.
(ii) ⇒ (i). We have to show that, for every x, y, z, w ∈ X,

max(R(x,w), R(y, z)) ≥ min(R(x, z), R(y, w)).

Without loss of generality, we can assume that z, w ̸= x, z, w ̸= y. Consider that

max(R(x,w), R(y, z)) = max(U∗
x (w), U∗

y (z)).

Since the family {U∗
x}x∈X (x ∈ X) of partial fuzzy subsets of X is nested, two cases may occur:

1. U∗
x ⊂ U∗

y : in this case, we have that U∗
y (z) ≥ U∗

x (z);

2. U∗
y ⊂ U∗

x : in this case, we have that U∗
x (w) ≥ U∗

y (w).

Therefore, in both cases it happens that

max(R(x,w), R(y, z)) = max(U∗
x (w), U∗

y (z)) ≥ min(U∗
x (z), U

∗
y (w)) = min(R(x, z), R(y, w)).

Hence, R is an interval order. This consideration completes the proof.

Remark 3.2. The previous Theorem 3.1 generalizes to the fuzzy case Theorem 2 in [4], according
to which a crisp partial R =≺ on a set X is an interval order (i.e., ≺ is irreflexive and, for all
x, y, z, w ∈ X, (x ≺ z) and(y ≺ w) ⇒ (x ≺ w) or (y ≺ z)) if and only if the family {Ux = {z ∈ X :
x ≺ z}}x∈X of all the upper sections of the partial order is nested.

Example 3.2. If X is a finite set, X = {x1, ..., xn}, and R is a fuzzy binary relation on X, then
R can be described by a matrix in the following way:

x1 x2 x3 ... xn

x1 R(x1, x1) R(x1, x2) R(x1, x3) ... R(x1, xn)
x2 R(x2, x1) R(x2, x2) R(x2, x3) ... R(x2, xn)
x3 R(x3, x1) R(x3, x2) R(x3, x3) ... R(x3, xn)
... · · · · · · · · · · · · · · ·
xn R(xn, x1) R(xn, x2) R(xn, x3) ... R(xn, xn)

.

Consider the fuzzy binary relation R on a five elements set X = {x1, x2, ..., x5} described by the
matrix

x1 x2 x3 x4 x5

x1 0 1
3

0 1
2

1
6

x2 0 0 0 1
6

0
x3

1
5

1 0 3
4

1
3

x4
1
5

1 0 3
4

2
3

x5 0 1
7

0 1
4

0

.

Define U∗
i = U∗

xi
for i ∈ {1, ..., 5}, where we refer to the general definition of the partial fuzzy subsets

U∗
x contained in equation (3.1) of Theorem 3.1. Then we have that U∗

2 ⊂ U∗
5 ⊂ U∗

1 ⊂ U∗
3 ⊂ U∗

4 .
Since the family {U∗

i }i∈{1,...,5} is nested, we have that R is a fuzzy interval order on X.
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4 Conclusions

In this paper we have presented a simple axiomatization of a fuzzy interval order R on a crisp set
X in terms of a property of the characterizing fuzzy T0 - Alexandrov topology, according to which
the family of all the partial fuzzy subsets of X representing the strict upper sections of R is nested.
Our intention is to apply in the future this sort of arguments to fuzzy partial semiorders and fuzzy
semiorders, in order to obtain characterizations extending the corresponding ones concerning the
crisp cases, as appearing in [11].
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