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Abstract

In this paper, we consider the following higher-order nonlinear neutral differential equations:

dn

dtn
[x(t) + cx(t− τ)] + (−1)n+1[P (t)f1 (x(t− σ))−Q(t)f2 (x(t− δ))] = 0, t ≥ t0

where τ, σ, δ ∈ R+, c ∈ R, c ̸= ±1, and P (t), Q(t) ∈ C([t0,∞), R+), fi(u) ∈ C(R,R), ufi(u) > 0.
we obtain the results which are some sufficient conditions for existence of nonoscillation solutions,
special case of the equation has also been studied.
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1 Introduction

In this paper, we shall consider existence of nonoscillation solution of higher-order nonlinear neutral
differential equations

dn

dtn
[x(t) + cx(t− τ)] + (−1)n+1[P (t)f1 (x(t− σ))−Q(t)f2 (x(t− δ))] = 0, t ≥ t0 (1.1)

where τ, σ, δ ∈ R+, c ∈ R, c ̸= ±1, and P (t), Q(t) ∈ C([t0,∞), R+), R+ = (0,+∞). fi(u) ∈
C(R,R), ufi(u) > 0. If u > 0, then ∃Ni, st. 0 < Ni ≤ fi(u) ≤ u, |fi(u)−fi(v)| ≤ Li|u−v|, i = 1, 2,
Let µ = {τ, σ, δ}. By a solution of equation (1.1), we mean a continuously function x(t) ∈ C([t0 −
µ,∞), R) for some t1 ≥ t0, such that x(t) + cx(t − τ) is continuously differentiable on [t1,∞) and
such that equation (1.1) is satisfied for t ≥ t1.

Recently, more and more people are interested in nonoscillatory criteria of differential equations,
we refer the reader to [1− 11], the differential equation in [1].

dn

dtn
[x(t) + cx(t− τ)] + (−1)n+1[P (t)x(t− σ)−Q(t)x(t− δ)] = 0, t ≥ t0

studied nonoscillation solution for a family of higher-order linear neutral differential equations
with positive and negative coefficients, Our principal goal in this paper is to derive existence of
nonoscillation solutions for nonlinear equation (1.1).

2 Existence Theorems

Theorem 1. Assume that 0 < c < 1 and∫ ∞

t0

sn−1P (s)ds < ∞,

∫ ∞

t0

sn−1Q(s)ds < ∞. (2.1)

Further, assume that there exists a constant α > 1
1−c

and a sufficiently large t1 ≥ t0 such that

P (t) ≥ αQ(t), for t ≥ t1 (2.2)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2), there exists a t1 sufficiently large such that

c+
1

(n− 1)!

∫ ∞

t

(s− t)n−1(L1P (s) + L2Q(s))ds ≤ θ1 < 1, for t ≥ t1 (2.3)

where θ1 is a constant, and

0 ≤ 1

(n− 1)!

∫ ∞

t

(s− t)n−1(αMP (s)− L2Q(s))ds ≤ c− 1− αM, for t ≥ t1 (2.4)

0 ≤ 1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s))ds ≤ 1− c− cαM − cM

αM
, for t ≥ t1 (2.5)

hold, where M is positive constant such that

1− c

α
≤ M ≤ 1− c

c(1 + α)
(2.6)

holds.

Let X be the set of all continuous and bounded functions on [t0,∞) with the norm ∥ x ∥=
supt≥t0 |x(t)|, we define a closed bounded subset Ω of X as follows:

Ω = {x ∈ X : cM ≤ x(t) ≤ αM, t ≥ t0}
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Define an operator S : Ω → X as follows:

Sx(t) =

{
1 − c − cx(t − τ) + 1

(n−1)!

∫∞
t (s − t)n−1(P (s)f1(x(s − δ)) − Q(s)f2(x(s − σ)))ds t ≥ t1,

Sx(t1) t0 ≤ t ≤ t1.

We shall show that SΩ ⊂ Ω. In fact, for every x ∈ Ω, and t ≥ t1, using (2.4) and (2.6) we get

Sx(t) =1− c− cx(t− τ) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1(P (s)f1(x(s− δ))−Q(s)f2(x(s− σ)))ds

≤1− c+
1

(n− 1)!

∫ ∞

t

(s− t)n−1(αMP (s)− L2Q(s))ds

≤αM

Furthermore, in view of (2.5) and (2.6) we have

Sx(t) =1− c− cx(t− τ) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1(P (s)f1(x(s− δ))−Q(s)f2(x(s− σ)))ds

≥1− c− cαM − Mα

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)ds

≥cM

Thus, we proved that SΩ ⊂ Ω.

Now we shall show that operator S is a contraction operator on Ω.

In fact, for x, y ∈ Ω and t > t1, we have

|Sx(t)− Sy(t)| ≤c|x(t− τ)− y(t− τ)|+ 1

(n− 1)!

∫ ∞

t

(s− t)n−1P (s)|f1(x(s− σ))− f1(y(s− σ))|ds

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)|f2(x(s− δ))− f2(y(s− δ))|ds

≤[c+
1

(n− 1)!

∫ ∞

t

(s− t)n−1(L1P (s) + L2Q(s))ds] ∥ x− y ∥

≤θ1 ∥ x− y ∥

This implies that
∥ Sx− Sy ∥≤ θ1 ∥ x− y ∥

where in view of (2.3), θ1 < 1, which proves that S is a contraction operator on Ω. Therefore S has
a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1). This
completes the proof of Theorem 1.

Theorem 2. Assume that 1 < c < +∞ and that (2.1) holds. Further, assume that there exists a
constant γ > c

c−1
and a sufficiently large t1 ≥ t0 such that

P (t) ≥ γQ(t), for t ≥ t1 (2.7)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.7), there exists a t1, sufficiently large such that

1

c
[1 +

1

(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1(L1p(s) + L2Q(s))ds] ≤ θ2 < 1, for t ≥ t1 (2.8)

where θ2 is a constant, and

0 ≤ 1

(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1(γM1P (s)− L2Q(s))ds ≤ 1− c+ cγM1, for t ≥ t1 (2.9)
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1

(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1Q(s)ds <
c− 1

γM1
− 1

γ
− 1 (2.10)

holds, where M1 is positive constant such that

c− 1

γc
< M1 <

c− 1

1 + γ
(2.11)

holds. Let X be the set of all continuous and bounded functions on [t0,∞) with the norm ∥ x ∥=
supt≥t0 |x(t)|, we define a closed bounded subset Ω of X as follows

Ω =

{
x ∈ X :

M1

c
≤ x(t) ≤ γM1, t ≥ t0

}
Define an operator S : Ω → X as follows

Sx(t) =

{
1 − 1

c
− 1

c
x(t + τ) + 1

c(n−1)!

∫∞
t+τ (s − t − τ)n−1(P (s)f1(x(s − δ)) − Q(s)f2(x(s − σ))ds t ≥ t1,

Sx(t1) t0 ≤ t ≤ t1.

We shall show that SΩ ⊂ Ω . In fact, for every x ∈ Ω, and t ≥ t1, using (2.9) and (2.11) we get

Sx(t) =1− 1

c
− 1

c
x(t+ τ) +

1

c(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1(P (s)f1(x(s− δ))−Q(s)f2(x(s− σ)))ds

≤1− 1

c
+

1

c(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1(γM1P (s)− L2Q(s))ds

≤γM1

Furthermore, in view of (2.10) and (2.11) we have

Sx(t) =1− 1

c
− 1

c
x(t+ τ) +

1

c(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1(P (s)f1(x(s− δ))−Q(s)f2(x(s− σ)))ds

≥1− 1

c
− γM1

c
− 1

c(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1γM1Q(s)ds

≥M1

c

Thus, we proved that SΩ ⊂ Ω. Now we shall show that operator S is a contraction operator on Ω.
In fact, for x, y ∈ Ω and t > t1, we have

|Sx(t)− Sy(t)| ≤1

c
|x(t+ τ)− y(t+ τ)|+ 1

c(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1p(s)|f1(x(s− σ))− f1(y(s− σ))|ds

+
1

c(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1Q(s)|f2(x(s− δ))− f2(y(s− δ))|ds

≤1

c
[1 +

1

(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1(L1p(s) + L2Q(s))ds] ∥ x− y ∥

≤θ2 ∥ x− y ∥

This implies that
∥ Sx− Sy ∥≤ θ2 ∥ x− y ∥

where in view of (2.8), θ2 < 1, which proves that S is a contraction operator on Ω. Therefore S has
a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1). This
completes the proof of Theorem 2.

Theorem 3. Assume that −1 < c < 0 and that (2.1) holds. Further, assume that there exists a
constant β > 1 and a sufficiently large t1 ≥ t0 such that

P (t) ≥ βQ(t), for t ≥ t1 (2.12)
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Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.12) , there exists a t1 sufficiently large such that

− c+
1

(n− 1)!

∫ ∞

t

(s− t)n−1(L1p(s) + L2Q(s))dsdu ≤ θ3 < 1, for t ≥ t1 (2.13)

where θ3 is a constant, and

0 ≤ 1

(n− 1)!

∫ ∞

t

(s− t)n−1(βM2P (s)− L2Q(s))dsdu ≤ (c+ 1)(βM2 − 1), for t ≥ t1 (2.14)

hold, and
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)ds <
(1 + c)(1−M2)

βM2
(2.15)

where M2 is positive constant such that

1

β
< M2 < 1 (2.16)

holds. Let X be the set of all continuous and bounded functions on [t0,∞) with the norm ∥ x ∥=
supt≥t0 |x(t)|, we define a closed bounded subset Ω of X as follows

Ω = {x ∈ X : M2 ≤ x(t) ≤ βM2, t ≥ t0}

Define an operator S : Ω → X as follows

Sx(t) =

{
1 + c − cx(t − τ) + 1

(n−1)!

∫∞
t (s − t)n−1(P (s)f1(x(s − δ)) − Q(s)f2(x(s − σ)))ds t ≥ t1,

Sx(t1) t0 ≤ t ≤ t1.

We shall show that SΩ ⊂ Ω . In fact, for every x ∈ Ω, and t ≥ t1, using (2.12) and (2.14) we get

Sx(t) =1 + c− cx(t− τ) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1(P (s)f1(x(s− δ))−Q(s)f2(x(s− σ)))ds

≤1 + c− cβM2 +
1

(n− 1)!

∫ ∞

t

(s− t)n−1(βM2P (s)− L2Q(s))ds

≤1 + c− cβM2 + (c+ 1)(βM2 − 1)

=βM2

Furthermore, in view of (2.15) we have

Sx(t) =1 + c− cx(t− τ) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1(P (s)f1(x(s− δ))−Q(s)f2(x(s− σ)))ds

≥1 + c− cM2 −
1

(n− 1)!

∫ ∞

t

(s− t)n−1βM2Q(s)ds

≥1 + c− cM2 − (1 + c)(1−M2)

=M2

Thus, we proved that SΩ ⊂ Ω. Now we shall show that operator S is a contraction operator on Ω.
In fact, for x, y ∈ Ω and t > t1, we have

|Sx(t)− Sy(t)| ≤ − c|x(t− τ)− y(t− τ)|+ 1

(n− 1)!

∫ ∞

t

(s− t)n−1p(s)|f1(x(s− σ))− f1(y(s− σ))|ds

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)|f2(x(s− δ))− f2(y(s− δ))|ds

≤[−c+
1

(n− 1)!

∫ ∞

t

(s− t)n−1(L1p(s) + L2Q(s))ds] ∥ x− y ∥

≤θ3 ∥ x− y ∥
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This implies that

∥ Sx− Sy ∥≤ θ3 ∥ x− y ∥

where in view of (2.13), θ3 < 1, which proves that S is a contraction operator on Ω. Therefore S
has a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1).
This completes the proof of Theorem 3.

Theorem 4. Assume that −∞ < c < −1 and that (2.1) holds. Further, assume that there exists
a constant h > 1 and a sufficiently large t1 ≥ t0 such that

P (t) ≥ hQ(t), for t ≥ t1 (2.17)

Then (1.1) has a bounded nonoscillatory solution.

Proof : The proof is similar to Theorem 2, we omitted.

By Theorems 1-4, we have the following result

Corollary 1 . Assume that c ∈ R, c ̸= ±1 and∫ ∞

t0

sn−1P (s)ds < ∞.

then the neutral differential equation

dn

dtn
[x(t) + cx(t− τ)] + (−1)n+1[P (t)f1 (x(t− σ))] = 0, t ≥ t0 (2.18)

has a bounded nonoscillatory solution.

3 Conclusion

In this paper, we have introuduced existence of nonoscillatory solutions of differential equations of
(1.1), the obtained results are easily applicable. If c = 1 or c = −1, we can study existence of
nonoscillatory solutions of differential equations of (1.1) in the future work.
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