

Asian Research Journal of Mathematics

16(10): 72-78, 2020; Article no.ARJOM.62477 *ISSN: 2456-477X*

Existence of Nonoscillation Solutions of Higher-Order Nonlinear Neutral Differential Equations

Zhao Yu-Ping^{1^*} and Fu Hua²

¹ College of Mathematics and Statistics, Qinghai Nationalities University, xining, Qinghai 810007, People's Republic of China.
² Fujian Police College, Fuzhou Fujian, 350007, People's Republic of China.

Authors' contributions

 $\label{eq:constraint} This work \ was \ carried \ out \ in \ collaboration \ between \ both l \ authors. \ Both \ authors \ read \ and \ approved \ the \ final \ manuscript.$

Article Information

DOI: 10.9734/ARJOM/2020/v16i1030231 <u>Editor(s):</u> (1) Dr. Krasimir Yankov Yordzhev, South-West University, Bulgaria. (1) S. N. Kumar, APJKTU, India. (2) Fawziah Mohammad Mohammad Al-saar, Amran University, Yemen. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/62477</u>

Short Research Article

Received: 24 August 2020 Accepted: 29 October 2020 Published: 11 November 2020

Abstract

In this paper, we consider the following higher-order nonlinear neutral differential equations:

$$\frac{d^n}{dt^n}[x(t) + cx(t-\tau)] + (-1)^{n+1}[P(t)f_1(x(t-\sigma)) - Q(t)f_2(x(t-\delta))] = 0, \quad t \ge t_0$$

where $\tau, \sigma, \delta \in \mathbb{R}^+$, $c \in \mathbb{R}, c \neq \pm 1$, and $P(t), Q(t) \in C([t_0, \infty), \mathbb{R}^+)$, $f_i(u) \in C(\mathbb{R}, \mathbb{R})$, $uf_i(u) > 0$. we obtain the results which are some sufficient conditions for existence of nonoscillation solutions, special case of the equation has also been studied.

Keywords: Higher-order; differential equation; nonoscillation solutions; existence.

2010 Mathematics Subject Classification: 34K10, 34K11.

^{*}Corresponding author: E-mail: 234880202@qq.com;

1 Introduction

In this paper, we shall consider existence of nonoscillation solution of higher-order nonlinear neutral differential equations

$$\frac{d^n}{dt^n}[x(t) + cx(t-\tau)] + (-1)^{n+1}[P(t)f_1(x(t-\sigma)) - Q(t)f_2(x(t-\delta))] = 0, \quad t \ge t_0$$
(1.1)

where $\tau, \sigma, \delta \in \mathbb{R}^+$, $c \in \mathbb{R}, c \neq \pm 1$, and $P(t), Q(t) \in C([t_0, \infty), \mathbb{R}^+)$, $\mathbb{R}^+ = (0, +\infty)$. $f_i(u) \in C(\mathbb{R}, \mathbb{R}), uf_i(u) > 0$. If u > 0, then $\exists N_i$, st. $0 < N_i \leq f_i(u) \leq u$, $|f_i(u) - f_i(v)| \leq L_i |u - v|, i = 1, 2$, Let $\mu = \{\tau, \sigma, \delta\}$. By a solution of equation (1.1), we mean a continuously function $x(t) \in C([t_0 - \mu, \infty), \mathbb{R})$ for some $t_1 \geq t_0$, such that $x(t) + cx(t - \tau)$ is continuously differentiable on $[t_1, \infty)$ and such that equation (1.1) is satisfied for $t \geq t_1$.

Recently, more and more people are interested in nonoscillatory criteria of differential equations, we refer the reader to [1 - 11], the differential equation in [1].

$$\frac{d^n}{dt^n}[x(t) + cx(t-\tau)] + (-1)^{n+1}[P(t)x(t-\sigma) - Q(t)x(t-\delta)] = 0, \quad t \ge t_0$$

studied nonoscillation solution for a family of higher-order linear neutral differential equations with positive and negative coefficients, Our principal goal in this paper is to derive existence of nonoscillation solutions for nonlinear equation (1.1).

2 Existence Theorems

Theorem 1. Assume that 0 < c < 1 and

$$\int_{t_0}^{\infty} s^{n-1} P(s) ds < \infty, \quad \int_{t_0}^{\infty} s^{n-1} Q(s) ds < \infty.$$

$$(2.1)$$

Further, assume that there exists a constant $\alpha > \frac{1}{1-c}$ and a sufficiently large $t_1 \ge t_0$ such that

$$P(t) \ge \alpha Q(t), \quad for \quad t \ge t_1$$
 (2.2)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2), there exists a t_1 sufficiently large such that

$$c + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (L_1 P(s) + L_2 Q(s)) ds \le \theta_1 < 1, \quad for \quad t \ge t_1$$
(2.3)

where θ_1 is a constant, and

0

$$\leq \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (\alpha M P(s) - L_2 Q(s)) ds \leq c - 1 - \alpha M, \quad for \quad t \geq t_1$$
(2.4)

$$0 \le \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} Q(s) ds \le \frac{1-c-c\alpha M - cM}{\alpha M}, \quad for \ t \ge t_1$$
(2.5)

hold, where M is positive constant such that

$$\frac{1-c}{\alpha} \le M \le \frac{1-c}{c(1+\alpha)} \tag{2.6}$$

holds.

Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $|| x || = \sup_{t \ge t_0} |x(t)|$, we define a closed bounded subset Ω of X as follows:

$$\Omega = \{ x \in X : cM \le x(t) \le \alpha M, t \ge t_0 \}$$

Define an operator $S: \Omega \to X$ as follows:

$$Sx(t) = \begin{cases} 1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} (P(s)f_1(x(s - \delta)) - Q(s)f_2(x(s - \sigma))) ds & t \ge t_1, \\ Sx(t_1) & t_0 \le t \le t_1 \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \ge t_1$, using (2.4) and (2.6) we get

$$Sx(t) = 1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))) ds$$

$$\leq 1 - c + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (\alpha M P(s) - L_2 Q(s)) ds$$

$$\leq \alpha M$$

Furthermore, in view of (2.5) and (2.6) we have

$$Sx(t) = 1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))) ds$$

$$\geq 1 - c - c\alpha M - \frac{M\alpha}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} Q(s) ds$$

$$\geq cM$$

Thus, we proved that $S\Omega \subset \Omega$.

Now we shall show that operator S is a contraction operator on Ω .

In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$\begin{aligned} |Sx(t) - Sy(t)| &\leq c|x(t-\tau) - y(t-\tau)| + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} P(s) |f_{1}(x(s-\sigma)) - f_{1}(y(s-\sigma))| ds \\ &+ \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} Q(s) |f_{2}(x(s-\delta)) - f_{2}(y(s-\delta))| ds \\ &\leq [c + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (L_{1}P(s) + L_{2}Q(s)) ds] \parallel x - y \parallel \\ &\leq \theta_{1} \parallel x - y \parallel \end{aligned}$$

This implies that

$$\parallel Sx - Sy \parallel \le \theta_1 \parallel x - y \parallel$$

where in view of (2.3), $\theta_1 < 1$, which proves that S is a contraction operator on Ω . Therefore S has a unique fixed point x in Ω , which is obviously a bounded positive solution of equation (1.1). This completes the proof of Theorem 1.

Theorem 2. Assume that $1 < c < +\infty$ and that (2.1) holds. Further, assume that there exists a constant $\gamma > \frac{c}{c-1}$ and a sufficiently large $t_1 \ge t_0$ such that

$$P(t) \ge \gamma Q(t), \quad for \ t \ge t_1$$
 (2.7)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.7), there exists a t_1 , sufficiently large such that

$$\frac{1}{c}\left[1 + \frac{1}{(n-1)!}\int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (L_1p(s) + L_2Q(s))ds\right] \le \theta_2 < 1, \quad for \ t \ge t_1$$
(2.8)

where θ_2 is a constant, and

$$0 \le \frac{1}{(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (\gamma M_1 P(s) - L_2 Q(s)) ds \le 1 - c + c\gamma M_1, \quad for \ t \ge t_1$$
(2.9)

$$\frac{1}{(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} Q(s) ds < \frac{c-1}{\gamma M_1} - \frac{1}{\gamma} - 1$$
(2.10)

holds, where M_1 is positive constant such that

$$\frac{c-1}{\gamma c} < M_1 < \frac{c-1}{1+\gamma} \tag{2.11}$$

holds. Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $|| x || = \sup_{t \ge t_0} |x(t)|$, we define a closed bounded subset Ω of X as follows

$$\Omega = \left\{ x \in X : \frac{M_1}{c} \le x(t) \le \gamma M_1, t \ge t_0 \right\}$$

Define an operator $S: \Omega \to X$ as follows

$$Sx(t) = \begin{cases} 1 - \frac{1}{c} - \frac{1}{c}x(t+\tau) + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))ds & t \ge t_1, \\ Sx(t_1) & t_0 \le t \le t_1. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \ge t_1$, using (2.9) and (2.11) we get

$$Sx(t) = 1 - \frac{1}{c} - \frac{1}{c}x(t+\tau) + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))) ds$$

$$\leq 1 - \frac{1}{c} + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (\gamma M_1 P(s) - L_2 Q(s)) ds$$

$$\leq \gamma M_1$$

Furthermore, in view of (2.10) and (2.11) we have

$$\begin{aligned} Sx(t) =& 1 - \frac{1}{c} - \frac{1}{c}x(t+\tau) + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))) ds \\ \geq & 1 - \frac{1}{c} - \frac{\gamma M_1}{c} - \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} \gamma M_1 Q(s) ds \\ \geq & \frac{M_1}{c} \end{aligned}$$

Thus, we proved that $S\Omega \subset \Omega$. Now we shall show that operator S is a contraction operator on Ω . In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$\begin{aligned} |Sx(t) - Sy(t)| &\leq \frac{1}{c} |x(t+\tau) - y(t+\tau)| + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} p(s) |f_1(x(s-\sigma)) - f_1(y(s-\sigma))| ds \\ &+ \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} Q(s) |f_2(x(s-\delta)) - f_2(y(s-\delta))| ds \\ &\leq \frac{1}{c} [1 + \frac{1}{(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-1} (L_1 p(s) + L_2 Q(s)) ds] \parallel x - y \parallel \\ &\leq \theta_2 \parallel x - y \parallel \end{aligned}$$

This implies that

$$\parallel Sx - Sy \parallel \le \theta_2 \parallel x - y \parallel$$

where in view of (2.8), $\theta_2 < 1$, which proves that S is a contraction operator on Ω . Therefore S has a unique fixed point x in Ω , which is obviously a bounded positive solution of equation (1.1). This completes the proof of Theorem 2.

Theorem 3. Assume that -1 < c < 0 and that (2.1) holds. Further, assume that there exists a constant $\beta > 1$ and a sufficiently large $t_1 \ge t_0$ such that

$$P(t) \ge \beta Q(t), \quad for \ t \ge t_1 \tag{2.12}$$

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.12), there exists a t_1 sufficiently large such that

$$-c + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (L_1 p(s) + L_2 Q(s)) ds du \le \theta_3 < 1, \quad for \ t \ge t_1$$
(2.13)

where θ_3 is a constant, and

$$0 \le \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (\beta M_2 P(s) - L_2 Q(s)) ds du \le (c+1)(\beta M_2 - 1), \quad for \quad t \ge t_1 \quad (2.14)$$

hold, and

$$\frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} Q(s) ds < \frac{(1+c)(1-M_2)}{\beta M_2}$$
(2.15)

where M_2 is positive constant such that

$$\frac{1}{\beta} < M_2 < 1 \tag{2.16}$$

holds. Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $|| x || = \sup_{t \ge t_0} |x(t)|$, we define a closed bounded subset Ω of X as follows

$$\Omega = \{ x \in X : M_2 \le x(t) \le \beta M_2, t \ge t_0 \}$$

Define an operator $S:\Omega\to X$ as follows

$$Sx(t) = \begin{cases} 1 + c - cx(t - \tau) + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} (P(s)f_1(x(s - \delta)) - Q(s)f_2(x(s - \sigma))) ds & t \ge t_1, \\ Sx(t_1) & t_0 \le t \le t_1. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \ge t_1$, using (2.12) and (2.14) we get

$$\begin{aligned} Sx(t) =& 1 + c - cx(t - \tau) + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))) ds \\ \leq& 1 + c - c\beta M_2 + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (\beta M_2 P(s) - L_2 Q(s)) ds \\ \leq& 1 + c - c\beta M_2 + (c+1)(\beta M_2 - 1) \\ =& \beta M_2 \end{aligned}$$

Furthermore, in view of (2.15) we have

$$Sx(t) = 1 + c - cx(t - \tau) + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma))) ds$$

$$\geq 1 + c - cM_2 - \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} \beta M_2 Q(s) ds$$

$$\geq 1 + c - cM_2 - (1+c)(1-M_2)$$

$$= M_2$$

Thus, we proved that $S\Omega \subset \Omega$. Now we shall show that operator S is a contraction operator on Ω . In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$\begin{aligned} |Sx(t) - Sy(t)| &\leq -c|x(t-\tau) - y(t-\tau)| + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} p(s) |f_{1}(x(s-\sigma)) - f_{1}(y(s-\sigma))| ds \\ &+ \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} Q(s) |f_{2}(x(s-\delta)) - f_{2}(y(s-\delta))| ds \\ &\leq [-c + \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} (L_{1}p(s) + L_{2}Q(s)) ds] \parallel x - y \parallel \\ &\leq \theta_{3} \parallel x - y \parallel \end{aligned}$$

76

This implies that

$$\parallel Sx - Sy \parallel \leq \theta_3 \parallel x - y \parallel$$

where in view of (2.13), $\theta_3 < 1$, which proves that S is a contraction operator on Ω . Therefore S has a unique fixed point x in Ω , which is obviously a bounded positive solution of equation (1.1). This completes the proof of Theorem 3.

Theorem 4. Assume that $-\infty < c < -1$ and that (2.1) holds. Further, assume that there exists a constant h > 1 and a sufficiently large $t_1 \ge t_0$ such that

$$P(t) \ge hQ(t), \quad for \ t \ge t_1 \tag{2.17}$$

Then (1.1) has a bounded nonoscillatory solution.

Proof : The proof is similar to Theorem 2, we omitted.

By Theorems 1-4, we have the following result

Corollary 1 . Assume that $c \in R, c \neq \pm 1$ and

$$\int_{t_0}^{\infty} s^{n-1} P(s) ds < \infty.$$

then the neutral differential equation

$$\frac{d^n}{dt^n}[x(t) + cx(t-\tau)] + (-1)^{n+1}[P(t)f_1(x(t-\sigma))] = 0, \quad t \ge t_0$$
(2.18)

has a bounded nonoscillatory solution.

3 Conclusion

In this paper, we have introduced existence of nonoscillatory solutions of differential equations of (1.1), the obtained results are easily applicable. If c = 1 or c = -1, we can study existence of nonoscillatory solutions of differential equations of (1.1) in the future work.

Acknowledgments

This work was supported social science planning support project of Qinghai Province (Nos. 16021).

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Yong Zhou. Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients [J]. Appl. Math. Lett. 2002;15:867-874.
- [2] Zhao Yu-Ping, Fu Hua. Existence of nonoscillatory solutions of second-order neutral differential equations [J]. Ascian Research Journal of Mathematics. 2020;16(7):1-7.
- [3] Tian Y, Meng F. Existence for nonoscillatory solutions of higher-order nonlinear differential equations [J]. Isrn Mathematical Analysis. 2014;2011(3):63-76.

- [4] Tian Y, Cai Y, Li T. Existence of nonoscillatory solutions to higher-order nonlinear neutral difference equations [J]. Journal of Nonlinear Science and Applications. 2015;8(5):12-20.
- Ye H, Yin J, Jin C. Non-oscillatory solutions for a nonlinear neutral delay differential equation [J]. Applied Mathematics Computation. 2014;235:283-291.
- [6] Guo Z, Zhao X, Liu M. Nonoscillatory solutions of a higher-order nonlinear neutral delay differential equation [J]. Electronic Journal of Differential Equations. 2011;2010(94):2011-2024.
- [7] Zhou Y. Nonoscillatory solutions of higher order nonlinear neutral functional differential equations [J]. Rocky Mountain Journal of Mathematics. 2007;37(3):1059-1083.
- [8] Youjun Liu, Huanhuan Zhao, Jurang Yan. Existence of nonoscillatory solutions for system of higher-order neutral differential equations with distributed delays [J]. Applied Mathematics Letters. 2017;67(5):67-74.
- [9] Omar Bazighifan, Higinio Ramos. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term [J]. Applied Mathematics Letters. 2020;34(56):56-61.
- [10] Fei Xu, Xue Yang. Affine-periodic solutions for higher order differential equations [J]. Applied Mathematics Letters. 2020;105(6):106-112.
- [11] Youjun Liu Huanhuan, Zhao Jurang Yan. Existence of nonoscillatory solutions for system of higher-order neutral differential equations with distributed delays [J]. Applied Mathematics Letters. 2017;18(14):202-212.

C 2020 Yu-Ping and Hua; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://www.sdiarticle4.com/review-history/62477