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Abstract

High throughput experimental approaches are increasingly allowing for the quantitative

description of cellular and organismal phenotypes. Distilling these large volumes of complex

data into meaningful measures that can drive biological insight remains a central challenge.

In the quantitative study of development, for instance, one can resolve phenotypic measures

for single cells onto their lineage history, enabling joint consideration of heritable signals and

cell fate decisions. Most attempts to analyze this type of data, however, discard much of the

information content contained within lineage trees. In this work we introduce a generalized

metric, which we term the branch edit distance, that allows us to compare any two embryos

based on phenotypic measurements in individual cells. This approach aligns those pheno-

typic measurements to the underlying lineage tree, providing a flexible and intuitive frame-

work for quantitative comparisons between, for instance, Wild-Type (WT) and mutant

developmental programs. We apply this novel metric to data on cell-cycle timing from over

1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed sur-

prising heterogeneity within this data set, including subtle batch effects in WT embryos and

dramatic variability in RNAi-induced developmental phenotypes, all of which had been

missed in previous analyses. Further investigation of these results suggests a novel, quanti-

tative link between pathways that govern cell fate decisions and pathways that pattern cell

cycle timing in the early embryo. Our work demonstrates that the branch edit distance we

propose, and similar metrics like it, have the potential to revolutionize our quantitative under-

standing of organismal phenotype.

Author summary

Lineage tracing has seen a renaissance as imaging and molecular technologies have made

it possible to perform increasingly rich quantitative experiments in developing systems.

Although the joint capture of cellular phenotypes and lineage history enables us to study

how important developmental events are regulated, the volume and complexity of the
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data produced make it difficult to systematically discover new patterns and relationships

from this data. We have developed a new way of measuring how cellular phenotypes, such

as the length of the cell cycle, differ between cell lineages and applied this approach to the

characterization of embryonic development in Caenorhabditis elegans, a microscopic

roundworm that has long been used as a model system for studying the regulation of cel-

lular differentiation during embryonic development. Our quantitative and unbiased

approach allowed us to describe previously unknown patterns of cell cycle timing between

the major lineages of the C. elegans embryo, discover surprising differences between pop-

ulations of wild type embryos and between embryos in which a panel of genes essential

for embryonic development had been perturbed, and provided a quantitative link between

cell fate and cell cycle timing patterns that have been widely observed in development but

not well understood. These findings highlight the power of our approach and motivate

continued investigation of the links between cell cycle timing and cell fate in developing

embryos and stem cells.

Introduction

The differentiation of cell types in the developing embryo depends on both cell autonomous

processes and signaling from neighbors, diffusible cues, and mechanical forces. In metazoa,

lineal history plays an important role in patterning many of these factors and thus in establish-

ing the basic animal body plan [1]. The study of cell lineages in eutelic organisms, which pos-

sess a fixed number of somatic cells and thus exhibit stereotypical cell lineages, has been a

powerful driving force in our understanding of fundamental developmental and biological

processes [2,3]. Cell lineages in these organisms represent valuable scientific resources, provid-

ing a spatial and temporal index of the animal onto which multimodal measurements can be

aligned [4]. Aligning measurements such as gene expression [5,6], chromatin accessibility [7],

cell size and shape [8], and the effects of genetic perturbations [9–12] onto the Caenorhabditis
elegans lineage has contributed to an increasingly holistic view of development. Advances in

light microscopy and computer vision have dramatically expanded the reach of these

approaches, and datasets are now available containing measurements aligned to thousands of

embryonic cell lineages [10,13]. The scale of these data poses interesting challenges for data

exploration and analysis.

Cell lineages map intuitively to mathematical graphs, and the alignment of cell divisions

along body axes in C. elegans allows for unambiguous names to be assigned to each cell pro-

duced from a division [3]. This allows C. elegans cell lineages, and those of any other eutelic

species, to be considered as ordered binary trees, a type of graph that allows straightforward

one-to-one alignments to be made between any pair of lineages within or between individual

embryos. This property dramatically simplifies the application of metrics computed on lineage

trees, since a single unique value can be calculated for each comparison. While the inference of

lineage relationships is common practice in the study of evolutionary relationships [14,15], the

distinct problem in comparing phenotypic measurements aligned to lineages has been less

extensively explored as relevant studies of developmental timing use summary statistics based

on linear regressions [11,12,16,17]. Comparisons of the topology of cell lineages has been pre-

viously performed using the Robinson-Foulds distance and triplet distance, which each rely on

the generation and comparison of sub-trees, accumulating a count of shared sub-trees between

lineages normalized against the total number of possible sub-trees to arrive at a metric [18].
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In this work, we developed several metrics that operate on the topology of lineages and

applied them to the analysis of the C. elegans embryonic cell lineage. The first of these is the

tree edit distance [19], which has previously been applied to the comparison of neuron mor-

phology [20] and RNA secondary structure [21]. The tree edit distance allows one to quantify

the topological changes in lineage between different embryos, different sublineages, or differ-

ent experimental conditions. For ordered binary trees, the tree edit distance can be computed

more efficiently and is more directly interpretable than previously used sub-tree-based metrics

[19]. The second metric that we developed is the “branch distance,” which measures the simi-

larity between lineages based on quantitative measurements of properties of either cells or

branches within the lineage. In this case, our particular focus was on the timing of cell division

events in the lineage.

Both metrics represent intuitive notions of distance, which greatly aids their use in down-

stream analyses such as unsupervised clustering and hypothesis testing. We benchmarked

these metrics using a published database of wild type and RNAi-perturbed C. elegans embry-

onic cell lineages [10]. We first demonstrate the statistical effects of using cell birth/division

timing as a measure of developmental time, motivating the use of cell cycle duration [11,12].

Our analysis also describes previously uncharacterized heterogeneity in wild type lineages and

in the phenotypic consequences of RNAi variability on developmental timing. Others have

previously demonstrated that sibling asynchrony in division timing reflects the signaling his-

tory of that lineage [11]. We apply the branch distance to measure lineage-wide patterns in cell

cycle timing and show that Notch signaling is responsible for producing a striking pattern of

similarity among the anterior cell lineages of the embryo. Finally, we apply this approach to a

systematic analysis of RNAi perturbations that result in cell fate transformations where we

find that, while developmental timing appears to be highly sensitive to genetic perturbation,

RNAi against genes in a subset of important developmental regulators generate transforma-

tions that preserve lineage-specific developmental clocks.

Results

Defining metrics on spaces of cell lineages

Multicellular organisms develop from a single cell through a sequence of divisions. The stereo-

typical nature of C. elegans development makes it possible to uniquely identify every cell in its

somatic lineage based on the orientation of the division of its predecessor relative to the

embryo’s body axes [3]. This feature of C. elegans development has been a major advantage of

its use as a model system, enabling systematic and quantitative studies of developmental pro-

cesses. Here, we take advantage of the structured nature of the C. elegans cell lineage to repre-

sent it digitally as an ordered binary tree, such that nodes and edges represent cells and

division events respectively. The cells in the embryo and the corresponding nodes in the tree

can be labeled using the convention based on the orientation of cell divisions along body axes

[3] and can be associated with quantitative measurements on a cell-by-cell basis. This natural

representation of the lineage as a binary tree suggests several straightforward metrics for com-

paring lineages to quantify how, say, a gene knockout impacts development (Fig 1A). The first

is the tree edit distance, which is derived from the graph edit distance in graph theory and is

based on counting the minimum number of operations (such as adding or removing a node or

edge) that is needed to convert one tree into another. Since C. elegans development is stereo-

typical, there is a natural alignment between any two trees based on the naming convention

described above [16]. This makes computing the tree edit distance very straightforward, essen-

tially reducing the calculation to determining the number of nodes that are different between

the two trees (Fig 1B), a notion similar to other measures, such as the Robinson Foulds metric
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(S1 Appendix). This metric captures how perturbations like gene knockouts influence the

topology of the lineage.

The second is a class of metrics that can be computed on any measurement associated with

individual cells within the tree, such as gene expression or time. Again, here we use the stereo-

typed nature of C. elegans development to directly align any two lineage trees on a cell-by-cell

basis, meaning that a single and unique distance can be calculated for any comparison between

lineages. Given this alignment, any numerical property of cells during development can be

unambiguously converted into a vector representation (Fig 1C). This allows us to use any met-

ric on such vectors to compare the trees. The most straightforward metric that might be used

is simply the Euclidean distance (i.e., the L2 norm). Here we focus on the application of the L2

norm to comparisons of cellular division timing between embryos, which has been shown to

vary under genetic perturbation [16], and is a measurement produced by every method for

lineage tracing by cell tracking. We call this metric the “branch distance” since these division

Fig 1. Defining Distance Metrics on Lineage Based Tree Structures. (A) Cell lineages can be expressed as binary trees, with parent, sibling, and child cells

relationship reflected in node topology. C. elegans has a naming convention that allows for direct comparisons between cells in distinct lineages. Here we show

schematics of two lineages with different topologies, corresponding to embryos “X” and “Y.” The canonical names of the cells are shown either next to or at the

end of the corresponding edges. Lineage tracing data also provides information about how long each cell persists between when it is “born” through division

and when it divides itself. The numerical values next to each edge indicate these cell cycle times in this schematic. (B) The tree edit distance describes the

topological differences between trees by counting the number of additive/subtractive operations required to transform one tree into another. In the case of C.

elegans lineage trees, this corresponds to the size of the symmetric difference between the set of nodes present in one embryo vs. another. (C) The intersection

branch distance is the Euclidean or L2 norm between measurements associated with shared nodes or edges of trees, disregarding topological differences

between trees by only considering nodes/edges present in both trees. (D) The union branch distance is the Euclidean or L2 norm between values on the union

set of nodes or edges between trees. Nodes or edges that are absent from one tree in any comparison are given a 0 value.

https://doi.org/10.1371/journal.pcbi.1011733.g001
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timings represent the length of the branches in the tree (Fig 1C). Of course, a gene knockout

or mutation might impact both the topology of the tree and the timing of cell divisions. To

account for this, we need to have a way for dealing with cases where a cell/node exists in one

tree, but not in the other (Fig 1C). Here, we define two different types of branch distance to

account for this problem. The first is the intersection branch distance, where the vector of divi-

sion timings is constructed only on the basis of cells that are shared between two lineages (i.e.,

they are in the intersection of the list of cells in the two) (Fig 1D). The second is the union
branch distance, where we simply set the cell cycle timing of any cell that is missing from any

embryo to 0 and calculate the distance in the normal way (Fig 1D). The union branch distance

thus captures differences in both timing and topology, as topological differences are reflected

in the absence of cells and thus cycle times. Unpaired cell cycle times are squared and added to

the branch distance, as the existence of a pair to that cell would only add the square of the dif-

ference of those values. This is functionally equivalent to imputing a zero for missing nodes.

As described below, these two metrics capture different aspects of variation between trees.

The branch distance reveals unexpected batch effects in WT embryos

The most straightforward method for cell lineage tracing is via direct observation and cell

tracking. Even in the absence of visible reporters, this approach inherently generates both spa-

tial (3D cell positions and cell trajectories) and temporal (the timing of cell divisions) measure-

ments of the embryo. The distribution of individual cell cycle times within lineages have been

deeply explored at a single cell resolution [11,12,22], making hierarchically structured lineage

data an attractive target for analysis via our branch metrics. During lineage tracing experi-

ments, every cell in developing embryos is tracked, and each cell division can be mapped to a

particular time t, with t = 0 corresponding to, say, the first division of the zygote. There are

thus two ways of thinking about the “branch length” value for each cell in the tree (Fig 1C). In

one scenario, we could label each cell with its “birth time,” which is just the time t at which the

cell was generated through a division event. Another alternative is to consider the “cycle time”

for that cell, which is just the length of time between when the cell is born through a division

event until it divides itself.

Prior work has claimed that developmental timing in C. elegans is highly coordinated,

drawn primarily on comparisons of cell birth times [16,17]. In particular, Bao et al. showed

that birth times for cognate cells from different embryos are highly correlated, with R2 values

that range between 0.995 and 0.997 (Fig 2A) [16]. While comparing birth times between

embryos seems natural, there is a potential issue with that approach. In particular, the birth

time of a given cell is the sum of the cell cycle times of all the previous division events (Fig 1C).

Since there is some randomness in these cycle times, we can think of those times as random

variables, noting that summing over random variables always reduces variation [23]. In other

words, the “birth time” is essentially equivalent to averaging the previous cycle times, and aver-

aging generally suppresses variation (i.e., the standard error of the mean is generally less than

the standard deviation). In addition, because the birth times are a sum of previous cycle times,

birth times for cells born later in development will always be larger than birth times for cells

born earlier. Both effects can spuriously increase the correlation in cell birth times between

embryos. To demonstrate this, we completely randomized the cell cycle times in the embryo,

intentionally destroying any correlation in the length of cell cycles for the same cells across

each randomized embryo (see Methods). After randomizing these cycle times, we found birth

time correlations with R2 values between 0.65 and 0.85 (Fig 2B), despite a complete absence of

correlation in the individual cell cycle times (Fig 2C). Thus, while the cycle times are still

highly correlated between WT embryos (R2 between 0.97 and 0.99, Fig 2D), the correlation is
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less than we observe with birth times. Since using the cycle time avoids spurious correlations

and reveals more variation and structure in the data (Fig 2D), we focused on using the cycle

time to calculate branch distances in this work.

Fig 2. Summation of Cycle Times into Birth Times Suppresses Variation. (A) A comparison between the birth time of each cell (calculated as the sum of cell

cycle times of each cell’s ancestors) in two wild type C. elegans embryos. (B) Comparison between birth times calculated from two randomly shuffled wild type

embryos, where each cell is assigned another random cell’s birth time from within the lineage of the same embryo. Note that a significant correlation in birth

times exists even in this shuffled data. (C) Comparison between shuffled cell cycle times rather than birth times. In this case, there is no correlation, as would be

expected. (D) Comparison between the cell cycle times of each cell in two wild type embryos. Note that the same two embryos were used for all comparisons in

panels A-D.

https://doi.org/10.1371/journal.pcbi.1011733.g002
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We used the cycle times to calculate the branch distance between each pair of 30 WT

embryos with cycle times taken from lineage tracing data from Du et al. [10] We then hierar-

chically clustered the embryos based on these distances. Surprisingly, clustering on the branch

distance revealed two distinct previously unknown populations of WT embryos in the pub-

lished dataset, representing differences in cell cycle timing between these two groups (Fig 3A).

If we calculate the R2 value between each pair of embryos, the two different clusters vanish (Fig

3B). To understand how these embryos could be highly correlated and still cluster into two

groups based on the branch distance, we considered not just the correlation of the birth time

relationship, but also its slope m (see Methods). Intuitively, this slope quantifies the systematic

variation in developmental timing between two embryos and can be thought of as the slope of

the best-fit line to the data in Fig 2D. When this slope “m = 1”, it means that on average, each

cell has similar cycle times between the two embryos; if the slope “m< 1”, that means that on

average, cells in the embryo on the x-axis have cycle times that are systematically longer than

cells in the embryo on the y-axis (Fig 3C). We can interpret changes in this slope as represent-

ing changes in the relative “global clock” that times cell divisions in the two embryos. We cal-

culated this slope for each pair of WT embryos in the data (Fig 3C). Note that here the embryo

on the x-axis of the heat map is also used for the x-axis of the slope calculation. In this case, we

used Principal Component Analysis (PCA) rather than linear regression to estimate the slope,

since in any given comparison between embryos the choice of dependent vs. independent vari-

able would be arbitrary (see Methods). These slope calculations, along with the high correla-

tions in Fig 3B, indicate that the primary difference between these two groups of embryos is

indeed the global rate of development. In particular, the larger group of “Cluster 1” embryos

develop systematically slower than the “Cluster 2” embryos. This effect is unlikely to be a result

of temperature differences as some embryos in Cluster 1 were imaged at the same time as

some embryos that were found to be a part of Cluster 2. Some other epigenetic factor, such as a

maternal effect, may have been responsible for this difference between the two populations

[24]. This analysis exemplifies how the branch distance can reveal systematic differences in the

data, such as this batch effect, that a focus on correlations alone cannot identify (Fig 3). As

such, the Branch Distance provides a new graph-based metric that can identify differences that

regression analysis alone cannot.

The branch distance reveals heterogeneity between RNAi replicates

We then computed the tree edit and branch distances between the 1352 embryos treated with

RNAi against 204 genes described by Du et al. [10] We hierarchically clustered these embryos

based on the union branch distance into 4 major groups (Fig 4A), where the number of parti-

tions was decided by analysis of the union branch distance dendrogram (S1 Fig). Of these, 2

clusters shown in the upper right corner and lower left corner of Fig 4A likely represent many

outliers, as these embryos are approximately as different from one another as they are from the

other 2 groups. Even among the remaining 2 clusters, we observe a significant degree of het-

erogeneity (S2 Fig). This heterogeneity exists not just between embryos treated with RNAi

against different gene targets, but also between embryos treated with RNAi against the same

gene (Fig 4B). The examples in Fig 4B highlight just two patterns that we observed. In the case

of embryos treated with RNAi against suf-1, three pairs of embryos exhibit distinct levels of

divergence from wild type lineage topologies (as indicated by the tree edit distance, Fig 4Bi) as

well as from wild type patterns of cell cycle timing (as indicated by the branch distance, Fig

4Bii). RNAi against skr-2, on the other hand, induces minor defects in lineage topology (Fig

4Biii) but a broad spectrum of defects in the distribution of cell cycle times (Fig 4Biv). Surpris-

ingly, this variability isn’t a simple manifestation of variable phenotypic severity, as these
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embryos often differ from one another as much as they differ from wild type, as embryos with

the same gene knocked down are not necessarily in the same cluster (S1, S2, and S3 Datasets

and S2 Fig). Prior work has demonstrated that some mutant phenotypes manifest variable

penetrance due to underlying variation in endogenous gene expression [25], which may con-

tribute to the variability we observe in combination with embryo-to-embryo variation in

RNAi penetrance. We note that the wide degree of heterogeneity shown illustrates that the

notion of “RNAi penetrance” as a continuous variation in the efficacy of gene knock-down

does not translate to a similar interpretation of phenotypic severity, as downstream effects can

be complex and heterogeneous.

Our findings in Fig 4A and 4B show that perturbations through RNAi can impact both line-

age topology and the timing of cell cycle events. To separate these effects, we chose a single rep-

resentative WT embryo from Cluster 1 (Fig 3A) and used this embryo to calculate both the

tree edit distance between each RNAi embryo and WT and the intersection branch distance

between each RNAi embryo and WT. We chose to focus here on the intersection branch dis-

tance because it focuses on just the duration of the cell cycle events among cells that are present

in both the WT and RNAi-treated embryos; the union branch distance reflects both changes

in timing and topology (Fig 1). In Fig 4C, we plot the tree edit distance to a WT reference

embryo for each RNAi-treated embryo on the x-axis, and the intersection branch distance to

WT on the y-axis. It is immediately clear that there is a bimodal distribution of tree edit dis-

tances, with a smaller subset of RNAi embryos having WT-like lineage topologies (with tree

edit distances near 0) and most RNAi perturbations having a large impact on the structure of

the lineage. Interestingly, we see that there is a general lack of correlation between tree edit dis-

tance and intersection branch distance, indicating that some RNAi perturbations have a large

impact on topology, but the duration of the cell cycle is similar to WT amongst lineages with

preserved topologies, while other perturbations leave the topology of the lineage almost intact

but have a relatively large impact on cycle duration (Fig 4C).

We then examined whether RNAi against genes with related functions generated similar

phenotypes based on our graph metrics. We grouped RNAi embryos together based on their

functions as annotated by Du et al. [10] and observed a weak correlation between tree edit dis-

tance and intersection branch distance relative to WT (S3 Fig) although for most groups of

Fig 3. The Branch Distance Reveals previously undetected Batch Effects in WT Embryo Cell Cycle Timing. (A) Heatmap showing the union branch

distance calculated between each pair of wild type embryos in the dataset. The ordering of embryos was sorted based on their assignment to two clusters

computed using hierarchical clustering. (B) Heatmap showing the R2 in cell cycle times between all pairs of WT embryos, sorted as in (A). (C) The slope

calculated between cell cycle times between all pairs of WT embryos, sorted as in (A).

https://doi.org/10.1371/journal.pcbi.1011733.g003
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Fig 4. The union branch distance reveals Heterogeneity in RNAi Cell Cycle Timing Coordination. (A) Heatmap showing the union branch distance

between all 30 WT embryos and 1322 RNAi Embryos in the dataset. Embryos were hierarchically clustered and sorted into 4 clusters shown along the axes of

the heatmap, with WT embryos visible as a “white block” in cluster 3. (B) i. Distribution of the tree edit distance between 6 SUF-1 embryos and 30 WT

embryos. ii. Distribution of the intersection branch distance between 6 SUF-1 embryos and 30 WT embryos. iii. Distribution of the tree edit distance between

10 SKR-2 embryos and 30 WT embryos. iv. Distribution of the intersection branch distance between 10 SKR-2 embryos and 30 WT embryos. (C) Comparison

between the tree edit distance and intersection branch distance for each of the 1322 RNAi embryos relative to a single WT reference embryo.

https://doi.org/10.1371/journal.pcbi.1011733.g004
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genes, intra-class variability is greater than inter-class. We then asked whether any genes or

functional classifications might be enriched in each cluster, finding that transcription factors,

kinase/phosphatase, signaling and polarity related genes are overrepresented in the cluster

nearest to the WT, while DNA replication/repair and mitochondria/stress genes are overrepre-

sented in a cluster of highly heterogeneous embryos that are also the most distant from the

WT embryos (S1 Fig). This is consistent with the findings of S3 Fig, which illustrates that

kinase/phosphatase, signaling and polarity related genes are topologically and temporally clos-

est to the WT, while DNA replication/repair and mitochondria/stress genes are furthest.

While we cannot rule out the possibility that a portion of the observed heterogeneity among

RNAi treated embryos may be a consequence of environmental or epigenetic factors as we

found among WT embryos in Fig 3, the differences between WT clusters are dramatically

smaller than the typical differences between RNAi treated embryos and at least a subset of

treatments appear to cluster together reliably.

Application of the branch distance to sublineages in WT and RNAi

embryos

In all the work above, we applied our metrics to the cell lineage of entire embryos. While infor-

mative, this approach ignores the fact that certain developmental processes are specific to cer-

tain sublineages and might be lost in a global analysis. For instance, previous work on

developmental timing in C. elegans focused on cell-by-cell comparisons and found that while

cell birth times were globally well correlated [16], the specific ordering of cell divisions within

the AB lineage was variable [26]. Given these observations, we wondered whether any struc-

ture existed in the distribution of cell cycle durations within the sublineages of each individual

embryo.

We computed the intersection branch distance, which does not reflect differences in lineage

topology, between each pair of canonical founder lineages in the early C. elegans embryo (Fig

5A). Cells in the C. elegans embryo are named based on their lineage history. A few founding

cells in the early embryo possess unique names, but all cells derived from these are incremen-

tally named according to the body axis it was born along. Cells with names containing the

same number of characters following the unique name of the originating cell in the early

embryo are thus born in the same generation of cell divisions and cells whose name only dif-

fers in the last character are siblings. The distribution of the intersection branch distance

between each of the major differentiated lineages of the embryo show consistent patterns

across the wild type samples that match the intuitive prediction that the posterior mesodermal

and endodermal lineages derived from P1 are quite different from each other and from the AB

lineage. We also found the same patterns reflected in the union branch distance which is sensi-

tive to differences in topology and statistically significant differences (S4 Fig) between every

pair of lineages derived from AB except for ABplp and ABprp. ABa and ABp derived lineages

show distinct patterns of similarity, with the two lineages rooted at ABpl and ABpr being closer

to one another than ABal and ABar, reflected in the left/right symmetric pattern of similarity

in the lineages rooted at ABpxx and the lack of any such symmetry in ABaxx lineages. What is

the origin of these patterns in cell cycle timing among the AB-derived sub-lineages?

Notch signaling modulates cell cycle duration in a lineage-specific manner

Since Notch is responsible for breaking fate symmetry between the ABa and ABp lineages in

the 4-cell embryo [27,28] and the pattern of branch distance distributions between the wild

type AB lineages align with known Notch signaling events in the early embryo [29] (Fig 5B

and 5C), we were interested in whether this pattern might be generated by Notch signaling.
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Fig 5. Branch Distance reveals structure in the AB lineage. A) Heatmap showing the intersection branch distance between every

pair of sublineages in every pair of 21 wild type embryos. B) Illustration of the first two Notch signaling events in the early AB

lineage. C) Heatmap showing a zoomed in view of the intersection branch distance between the 21 wild type embryos for each pair

of AB-derived sublineages. Colormap is scaled from 0 to the max intersection branch distances between same-generation AB

sublineages. D) Heatmap showing a zoomed in view of the intersection branch distance between AB-derived sublineages of 6
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The role of Notch in the patterning of C. elegans developmental timing has been studied in

respect to asynchrony in the timing of divisions of sister cells [11]. The patterns we observe in

the WT lineage based on the branch distance suggest that this may be a broader phenomenon

affecting timing patterns throughout entire lineages. In glp-1 RNAi embryos, the structure visi-

ble in the intersection branch distance between AB sublineages in wild embryos is clearly lost

(Fig 5D). At the AB4 stage, the two left/right symmetric lineages produced by ABp, which

received a Notch signal from P2, are closer to one another by the branch distance than the two

lineages produced by ABa are to each other (Fig 5E). Lineages derived from cells that indepen-

dently receive Notch induction (ABalp and ABara by MS) also have a smaller branch distance

between each other than between their direct siblings (Fig 5E). Embryos treated with RNAi

against glp-1 lose these differences and glp-1 RNAi produces a nearly uniform pattern of

branch distances among the AB lineages. Both ABp derived lineages in the wild type and all

AB derived lineages in glp-1 RNAi embryos exhibit a distinct pattern where left/right homolo-

gous lineages are closer to each other based on the branch distance than sibling lineages (Fig

5E). Perhaps Wnt signaling, which has been shown to incrementally accumulate in the poste-

rior child of each cell division [30], continues to act to break fate symmetries between sibling

cells in glp-1 depleted embryos. Does the decreased intersection branch distance between

Notch-stimulated sublineages represent a consistent effect on the duration of the cell cycle or

increased variability between cognate cells across sub-lineages? To answer this, we compared

the overall clock speeds of the AB8 lineages, indicating that Notch affected lineages were faster

compared to unstimulated lineages (S5 Fig) suggesting a consistent impact on cell cycle dura-

tions within sub-lineages, even when the stimulated sublineages are derived from separate

founder cells that independently receive Notch stimulation.

Preservation of cell cycle timing structure through lineage transformations

A key process in the early embryo is the differentiation of cell lineages needed for the forma-

tion of different organs and body parts. The large-scale RNAi screen performed by Du et al.
systematically explored these phenomena using genetic markers of tissue fate [10]. They char-

acterized diverse genes whose depletion results in homeotic transformations, where some cell

lineages adopt the pattern of tissue fates normally produced by another lineage, and genes

whose loss results in patterns of tissue fates not normally seen in any wild type lineage. Most of

the lineages in the wild type embryo have both qualitatively and, as we showed above in Fig 5,

quantitatively distinct patterns of cell cycle times.

We wondered whether patterns in cell cycle timing are a product of the same differentiation

processes that define the tissue fate of these lineages. In other words, in an embryo where one

lineage adopts the fate of another, does the pattern of cell cycle lengths in the transformed line-

age change to match the pattern of the newly acquired fate? This question builds on a prior

study which found that differences in cell cycle time between pairs of sibling cells indicated

perturbations to cell fate in specific lineages [11]. We wondered whether lineage-wide trans-

formations in fate might be detectable as a shift in cell cycle timing to match the pattern nor-

mally expressed by the acquired fate using the union branch distance. We designed a heuristic

based on the branch distance to search for cases where this is true. For each homeotically

transformed lineage identified by Du et al. [10] we refer to the transformed lineage as the

embryos treated with RNAi against glp-1 for each pair of AB-derived sublineages. Colormap is scaled from 0 to the max intersection

branch distances between same-generation AB sublineages. E) Distributions of intersection branch distances between subsets of AB-

derived sublineages in WT embryos and embryos treated with RNAi against glp-1. P-values calculated using 106 iterations of a

permutation test.

https://doi.org/10.1371/journal.pcbi.1011733.g005
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origin and the acquired lineage fate as the destination. To account for natural variation in each

of the wild type lineages, we first define a diameter D equal to the maximum pairwise branch

distance between wild type examples of the destination fate (Fig 6A). We then assigned a trans-

formation score to each origin lineage based on how many of the wild type destination lineages

lie within D D minutes of the origin sub-lineage in any particular RNAi embryo (Fig 6B) and

normalizing by dividing by the number of WT embryos (n = 21) used in the analysis. While

most lineage transformations do not adopt the pattern of cell cycle times normally expressed

by the acquired fate, we identified 95 cases where they do. Interestingly, cases where the trans-

formed lineage falls within the neighborhood of all 21 wild type examples of the destination

fate are more common than cases where the transformed lineage is proximal but not fully

overlapping the neighborhood of the destination fate.

One advantage of using cell cycle timing and the branch distance as a phenotypic marker of

lineage identity is that it can be assessed even in the absence of visible markers of cell fates, so

we generalized our approach to measure the frequency of transformations between all possible

pairs of lineages (Fig 6C). In this case, we find the nearest neighbor among possible destination
fates for each origin lineage and count the number of wild type examples of the destination that

fall within D minutes of the origin lineage in the RNAi treated embryo. For genes with or with-

out homeotic transformations identified on the basis of marker gene expression by Du et al.
[10], the majority of origin lineages fall outside the range of variation of all wild type destina-
tion lineages, suggesting that the patterns of cell cycle times in the wild type lineage are very

sensitive to genetic perturbation. In both figures, the two most populated bins are the bin with

0 WT neighbors followed by the bin with 21 WT neighbors (Fig 6B and 6C) noting that RNAi

lineages aggregate more closely region around WT neighborhoods than regions further away

(S6 Fig). Still, we identified 12 genes for which RNAi generates homeotic transformations

based on both marker expression by Du et al. [10] and our approach of using the branch dis-

tance. These genes belong to a small set of key pathways that have well-known roles in specify-

ing cell fate in the early embryo including Notch, Wnt, PAR polarity genes, and the maternally

derived transcription factors pie-1 and skn-1 (Fig 6D). These pathways operate to break sym-

metry in the early embryo. This set is likely an underestimate since we have not accounted for

two common types of perturbations to cell cycle timing and lineage structure: changes to the

“global clock” (since the branch distance is not scale invariant), and the partial transformation

of lineages since we examined only lineages rooted at the major founder cells in the early

embryo. The nature of these transformations is consistent with prior work analyzing the

change of cell cycle timing in the daughters of specific Notch receptors [11]. Specifically, each

Notch induced homeotic transformation produces downstream timing perturbations that shift

the entire transformed lineage to match the acquired fate.

Interestingly, examining each RNAi lineage on an embryo-by-embryo basis reveals striking

diversity in penetrance and phenotypic consistency in homeotic transformations detected by

Du et al. [10] (Fig 6D) and previously uninvestigated lineages (S4 Dataset), which list WT

neighbors for RNAi lineages without annotated marker-based transformations. Several genes,

such as wwp-1, pop-1, and skn-1, have sublineages that are within 1 diameter of their original

and acquired fates, suggesting a degree of mixture in the neighborhoods of the third-genera-

tion descendants of the AB lineage. Furthermore, the variance in the number of embryos

transformed and relative strength of each transformation suggests that RNAi penetrance and

phenotypic severity are separable phenomena. In our case, we use penetrance to refer to the

number of RNAi lineages that are transformed to the neighborhood of at least 1 WT reference

lineage, while severity correlates with our measure of the transformation efficiency for each

transformed lineage, a reflection of how close each transformed lineage is to the set of all WT

reference lineages. For example, Notch pathway components apx-1, glp-1, and lag-1 all have
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Fig 6. Evidence for cell fate control over cell cycle timing. A) Illustration of the transformation heuristic. For each WT destination lineage (black dots) a

diameter D is calculated as the maximum intragroup intersection branch distance. The transformation efficiency is then defined as the fraction of WT

destination lineages that fall within diameter D of each RNAi origin lineage (colored squares). In some cases, the transformation efficiency is 0 but the RNAi

lineage has WT origin neighbors (green square) suggesting that the RNAi perturbed lineage maintained its original fate in terms of cell cycle timing. In other

cases, this value is 0 and the RNAi origin lineage has no WT neighbors (orange square) suggesting that the RNAi perturbed lineage has both lost its original fate

and failed to acquire the pattern of cell cycle timing of the destination lineage. In a minority of cases the RNAi origin lineage is within D of 1 or more WT

destination sublineages and a transformation efficiency is reported (magenta square). B) Histogram of the number of WT destination neighbors that

homeotically transformed RNAi lineages have, using the heuristic defined in A. C) Histogram of the number of new WT neighbors that perturbed RNAi
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transformations from ABp to ABa, where the transformed lineage lies within 1 diameter of a

similar number of wild type examples. The more consistent presence of ABp to ABa transfor-

mations in apx-1 might imply more complete penetrance of apx-1 RNAi than that of glp-1,

and lag-1, or that the knockdown of apx-1 more consistently induces temporal transforma-

tions, suggesting a more central role for apx-1 in fate specification for first-generation AB line-

ages. In contrast, for the E3 ligase wwp-1, the penetrance of the ABa to ABp transformation is

both fairly high and occurs with a higher degree of transformation (as indicated by the fraction

of wild type ABp sublineages within 1 diameter of the transformed lineage), or the transforma-

tion from MS to E in pop-1 RNAi which is only observed in 1 embryo but is a perfect match

for the neighborhood of all wild type E lineages, suggesting an extremely precise transforma-

tion of identity.

Generalizing the branch distance to unlabeled binary trees reveals

robustness in WT lineages

The principal novelty of our work, the branch distance, operates on labeled binary trees which

allows one to trivially determine whether a node in one exists in another tree, and what the

corresponding weights are. Node labels allow for easy comparison of corresponding nodes

between trees, as without it, a space of alignments must be considered in order to calculate a

distance. In the case of the generalized tree edit distance, the minimum distance of all possible

alignments is considered [19]. Computing the branch distance between all possible alignments

of two binary trees, selecting the smallest distance computed yields a simple generalization of

the branch metric that preserves its desirable properties.

The value of a generalized branch distance would be its applicability to non-invariant line-

ages, yet few large scale datasets exist for species beyond C. elegans that include lineage topolo-

gies and phenotypic measurements for a large number of individuals. Thus, we benchmark

this generalized metric using the C. elegans AB lineage. We applied the generalized branch dis-

tance between WT C. elegans AB8 lineages, disregarding cell identity labels while iterating

through all possible alignments and reporting the minimum computed branch distance. In

comparing the pattern of distances produced by computing branch distances based on cell

identity alignments (Fig 7A) to the pattern produced by computing generalized branch dis-

tances (Fig 7B), we find a high degree of similarity, demonstrating that the generalized branch

distance is able to capture the same structure we found by computing the branch distance

based on alignments that follow the C. elegans lineage.

If the minimum distance between all possible alignments is similar to the lineage-based

alignment, we then asked whether the minimized alignment is itself the lineage-based align-

ment. To do this, we counted the percentage of cells in the embryo which have different

matches between the alignment that produces the minimum branch distance, and the lineage-

based alignment (Fig 7C). For pairwise alignments between lineages that have short branch

distances between them, we find that the minimized alignment matches the lineage alignment

very closely.

Methods

Wild type and RNAi treated embryonic lineage data was retrieved as text files with each row

corresponding to an individual cell in the lineage tree. Lineage relationships were

lineages have. D) Heatmaps representing the transformation heuristic in A. for homeotically transformed lineages with at least 1 WT destination neighbor. The

genes that induce these transformations and functions are listed alongside the corresponding heatmap of transformation.

https://doi.org/10.1371/journal.pcbi.1011733.g006
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reconstructed from the cell names, which are structured according to a common convention

where a unique root cell ID indicates the identity of the founder cell of the lineage and each

subsequent pair of cells is named according to the body axis along which its division was polar-

ized. Cell cycle duration was extracted based on the number of columns associated with each

cell from the data provided by Du et al. [10] used to report tissue specific transgenic reporter

signal intensity. Each column represents the intensity measure made for each timepoint of

imaging where the corresponding cell existed, thus we calculate the duration of each cell’s cell

cycle as 1.25 minutes per time point, based on the imaging frequency reported. A total of 30

wild type and 1322 RNAi treated embryos were retrieved and time-resolved lineage trees were

generated from these raw data.

While all wild type embryos covered a uniform set of cells, RNAi treated embryos were

only partially curated by Du et al. [10] to validate reporter expression. In order to address

these discrepancies, we truncated each of these lineage trees based on the time cutoffs provided

alongside the raw data and wild type embryos were pruned similarly for distance calculations.

Each WT lineage is truncated based on the annotations provided by Du et al. [10] with RNAi

lineages following gene and lineage specific cutoff instructions. The implementation of our

data import and pre-processing is available alongside a complete codebase implementing our

distance metrics and analysis routines at (https://github.com/shahlab-ucla/graph_distances))

Graph based distance metrics applied to C. elegans lineages

In order to store the lineage data for each embryo as a binary tree, we take advantage of the

naming convention for each cell using a standard hash table (or “dictionary” in python) data

structure. A cell would be stored in the dictionary with name/reference X (i.e. the cell’s name)

and an element value representing its cell cycle time. The children of X would have the name/

Fig 7. The Generalized Branch Distance recapitulates structure in lineage coordination. (A) Heatmap showing the intersection branch distance calculated

between pairs of wild type AB8 lineages (B) Heatmap showing the generalized branch distance calculated between pairs of wild type AB8 lineages (C) Heatmap

showing the percentage of cells in the lineage of one embryo that map to cells in a different position in the lineage of another embryo under the alignment

produced by the generalized branch distance in (B).

https://doi.org/10.1371/journal.pcbi.1011733.g007
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reference of X followed by suffix ‘a’, ‘l’, or ‘d’, representing anterior, left, and dorsal orienta-

tions of division respectively. This cell would have a corresponding sibling name/reference of

X with a suffix ‘p’, ‘r’, or ‘v’ representing a posterior, right, or ventral division relative to its sib-

ling. For instance, a cell in the data set might have the name “ABal.” This represents a cell

descended from the AB cell in the embryo, where it is the left daughter of the anterior cell of

the first AB division. With all cells in the embryo following this convention in the dictionary,

any cell and all of its ancestors can be referenced by looking at the cell name and truncating its

suffix one letter at a time.

The tree edit distance is a metric defined by counting “the minimum number of node dele-

tions, insertions, and replacements that are necessary to transform one tree into another” as a

measure of topological distance between trees (Fig 1A). This can be applied to the dictionaries

that we use as proxies for graph structures. If a tree has a specific node not in another embryo,

then a corresponding node must be inserted into the lacking embryo as a descendant of the

appropriate shared node to produce topologically identical trees. Thus, a single operation has

taken place to transform the structure of one tree into another. This approach can be general-

ized to describe any tree-based topological differences, as discussed in S1 Appendix. Using the

dictionary format allows us to take advantage of the naming convention. Any cell that is added

contains information pertaining to the connection to its parent nodes, allowing for trivial

checks of hierarchical and topological relationships. Indeed, this can be expressed further by

noting that addition/subtraction operations of nodes can be represented by the absence/pres-

ence of nodes in one embryo that is not in the other. Extending this concept allows us to calcu-

late the number of transformation operations as the number of nodes that are in one, but not

both, dictionary sets. This means that tree edit distance between two dictionaries with nodes

under the naming convention of Sulston et al [3]. is defined as the magnitude of the intersec-

tion set subtracted from the magnitude of the union set of the dictionaries (in other words, it is

size of the symmetric difference between the sets of nodes). In terms of the python implemen-

tation, this is calculated as the length of the XOR set of cells between the two embryos. It is uti-

lized in Fig 4B (Looking at SUF-1 and SKR-2 RNAi embryos tree edit distance to WT

stereotype) and in Fig 4C (Tree edit distance from each RNA embryo to WT stereotype Plotted

on x axis).

In order to compare the trees in terms of the division timings, we introduce the concept of

the branch distance. We define the branch distance as the Euclidean or L2 norm of a vectorized

representation of each lineage under comparison. To generate the vector, cells within each

lineage are aligned first on the basis of depth from the root cell of each lineage and then on the

lineage name derived from division orientation. In other words, we determine the components
of each vector in such a way that division times for one cell are always being compared to divi-

sion times for that same cell in a different embryo. When we calculate the L2 norm, the differ-

ence between the values ascribed to a cell in one embryo and the corresponding cell in another

embryo is taken and squared. Summing up these values and then taking the square root allows

for an extension of the Euclidean norm to these weighted graphs.

To compensate for alternate topologies, we computed one of two variants of the branch dis-

tance. The Intersection branch distance only computes the distance on the intersection set of

cells contained in both lineages (Fig 1B), treating values that are not shared as absent from the

comparison. It is used in Fig 3A to look at distances between all 30 WT embryos, and hierar-

chically cluster them into 2 groups, with the larger group of 21 embryos representing the Wild

Type in all future calculations (unless otherwise noted). It is also used in Fig 4B (Looking at

SUF-1 and SKR-2 RNAi embryos intersection branch distance to 21 WT embryos), Fig 4C

(Average branch distance from each RNAi embryos to 21 WT embryos Plotted on x axis), and

Fig 7A (computing intersection branch distance between AB8 sublineages).
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Meanwhile, the Union branch distance treats any missing cells as having a cell cycle dura-

tion of 0 (Fig 1C). Thus, the Union branch distance compensates for differences in topology

by directly adding the squares of values of cells without counterparts to the distance value,

increasing it depending on topological variance and the value of the missing node. It is used to

calculate the distance matrix between all WT and RNAi embryos (Fig 4A).

In comparing any two trees with any of these metrics, we note that the metric should work

on subtrees or trees with different root nodes. This necessitates a change to the naming con-

vention in cases where we compared different sublineages. This is done by finding the root

node of both subtrees and assigning them an arbitrary letter. In cases where descendants of a

root node are to be compared but have different orientations of division, we treat ‘a’, ‘l’, and ‘d’

suffix letters as equivalent as well as ‘p’, ‘r’, and ‘v’. For example, the values of subtree [‘A’, ‘Aa’,

‘Ap’] and the values of subtree [‘B’,’Bl’,’Br’], if roots were normalized, would both have the

naming convention [‘Q’,’Qa’,’Qp’]. Utilizing this convention allows us to apply the metrics

described above to compute the distances between distinct sublineages. In Fig 5, this is used to

compute the intersection branch distance between different sublineages in 21 selected embryos

WT and all 7 glp-1 knocked down embryos. In Fig 6, this is used to compute union branch dis-

tances between sublineages of 21 WT embryos and sublineages of RNAi embryos.

Our initial implementation of the branch distance assumes a unique alignment between the

trees under comparison, as is enabled by the invariant lineage of C. elegans. In order to gener-

alize this metric to cases where the optimal alignment is unknown, we adopt the approach uti-

lized by the generalized graph edit distance [19]. Simply put, we compute the branch distance

for all possible tree alignments and select the minimum computed value as the generalized dis-

tance. Note that there are several key constraints on this alignment. For one, we require that

nodes only be aligned to nodes of the same depth in the other tree; a leaf node of one tree can’t

be aligned with the root node of the other tree. Secondly, if a node in one tree is aligned to a

node in another, the child nodes must be aligned with one another as well. In other words, if

we align node X from tree T1 to node Y in tree T2, then the child nodes of X can only be

aligned to the child nodes of Y. This ensures that the alignments respect the topological struc-

ture of the tree. Proof of the generalizability of the branch distance is included in S1 Appendix.

We thus apply the generalized branch distance to exhaustively search through all alignments

of the WT AB8 in Fig 7B.

Calculating correlation of timing events between embryos

In previous work, some authors have used an alternative to the cell cycle time for comparing

the timing of division events between embryos. Specifically, Bao et al. [16] compared embryos

using the “cell birth time,” defined as the time from the fertilization of the embryo to the birth

time of a cell. It can be calculated as the sum of the cell cycle times of the ancestors of a cell.

Previous authors have found extremely high correlations between different embryos using this

birth time definition.

Since a cell’s birth time is the sum of all previous division timings, comparing embryos

using this parameter could suppress variation and introduce spurious correlations between

embryos. A sum of random variables will often show less variation than the underlying vari-

ables themselves–this is the reason the “standard error of the mean” is generally less than the

underlying standard deviation in the population. To test this, we shuffled all of the division

times in the embryos in question. Specifically, we randomly assigned each cell in an embryo to

the cell timing parameter of a different cell in the same embryo, effectively removing any cor-

relation between the division timing of cells in any embryo while still preserving the underly-

ing distribution of cell cycle times that can be produced.

PLOS COMPUTATIONAL BIOLOGY Graph metrics in cell lineages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011733 December 19, 2023 18 / 28

https://doi.org/10.1371/journal.pcbi.1011733


A simple method of comparing the differences in cell timing events (Fig 2) is by plotting

the times for each cell of one embryo against the times for each corresponding cell of another

embryo. We then calculated the linear correlation coefficient between the cell cycle times

between the cells of two embryos (Figs 2D and 3B) as well as the correlation coefficient

between shuffled cell cycle times (Fig 2C). Shuffled birth times are computed by calculating

the sum of the Shuffled cycle times of all ancestors of a particular cell and were also compared

using the correlation coefficient (Fig 2B). Our analysis clearly demonstrates a significant corre-

lation in cell birth times even in the shuffled data. As such, our subsequent analyses focused on

comparing embryos using the cell cycle times.

Computing the time between WT embryos

Our analysis in Figs 2 and 3A suggested that there are two distinct groups of WT embryos in

the Du et al. data [10]. While the correlation between cell cycle times is lower than cell birth

times (Fig 2), we nonetheless saw fairly high correlations between embryos of the two groups,

despite their distinct branch distances (Fig 3A and 3B). We thus hypothesized that the differ-

ence between the two groups was due to a uniform rescaling of time–in other words, all of the

division events in one group of embryos were likely slower than the events in the other group

of embryos by a constant factor.

The plots in Fig 2 suggest a straightforward way to quantify this difference in timing: the

slope of the timings in one embryo vs. another. If this slope is less than 1, this suggests that the

embryo whose times are plotted on the x-axis develops slower than the one plotted on the y-

axis; if the slope is greater than 1, that suggests the reverse. A natural way to estimate this slope

would be to simply perform a linear regression between the two data sets. Doing so, however,

involves selecting one set of timings as the “independent variable.” Since both sets of timings

in any comparison is subject to random variation, however, we chose a slightly different

approach to calculating the slope.

To do this, we employed simple Principal Component Analysis (PCA) on each pair of

embryos. The eigenvector corresponding to the largest eigenvalue corresponds to a line that

best fits the principal axis of variation in the data. In all the embryo comparisons, this axis of

variation corresponds naturally to the line that compares the cell cycle times between the two

embryos (e.g., Fig 2D). We thus performed PCA on each pair of embryos with cell cycle times

plotted against one another as in Fig 2D. The slope of this best fit line was then calculated by

comparing the resulting principal eigenvector to the standard basis (i.e., calculating the “rise

over run” for the eigenvector in the plane of Fig 2D). This method is used in Fig 3C to find the

cell cycle scaling by comparing the cell cycle times of all 30 WT embryos against each other

and partitioning the embryos into the clusters indicated in Fig 3A. These findings confirmed

our hypothesis, indicating that the “group 1” embryos develop about 20% slower than the

group 2 embryos.

Clustering wild type and mutant embryos

We generated a distance matrix consisting of all pairwise union branch distances between WT

and mutant embryos. We then performed single linkage hierarchical clustering on this dis-

tance matrix to generate a dendrogram between the embryos Since the number of clusters

must be selected before the clustering is performed in hierarchical clustering, we analyzed the

dendrogram to find a point with a large distance between generations [see S1 Fig for further

details]. In the case of Fig 3, this approach partitioned the WT embryos into two groups. In the

case of Fig 4, this approach resulted in 4 distinct clusters. Note that the distance matrices in Fig

5 were not clustered in order to show the pattern of variation between sublineages.
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Nonparametric permutation significance testing for distributions of

distances

We found that the intersection branch distances between certain sublineages of WT embryos

were generally smaller than the intersection branch distances between other sublineages. This

difference seemed to be related to Notch signaling events during development (Fig 5A, 5B, and

5C). We used a simple permutation test to evaluate the statistical significance of this observa-

tion. In this test, we had two sets of distances: for instance, we compared the distances between

ABal and ABar to the distances between ABpl and ABpr. This data corresponded to an

observed difference between the means of the distribution. We then pooled the datasets

together and generated randomized datasets of the same sizes by sampling without replace-

ment. We calculated the difference of means between these randomized datasets. The p-values

reported in Fig 5 represent the number of random cases where the absolute value of the differ-

ence in the means in these randomized datasets was greater than or equal to the observed

difference.

Detecting fate transformations for mutant embryos

Homeotic transformations that were identified by Du et al. [10] indicate cases where a subline-

age of a RNAi embryo combinations of marker genes present more consistent with a different
sublineage of the WT embryo. This transformation indicates that the RNAi treatment has

transformed the cell-fate pattern from that typical of one sublineage (the “origin”) into that of

a different sublineage (the “destination”). A list of the transformations that take place is avail-

able at digital-development.org/download.html under the name “Excel spreadsheet of all

homeotic transformation phenotypes”. In our work, we considered whether these cell fate

transformations also had an impact on cell cycle timing. To do this, we developed an approach

to see whether one sublineage in an RNAi embryo was “close” to a different lineage in the WT

embryos. Our approach represents the WT sublineage populations as point clouds in high

dimensional space. Each such point cloud has associated with it the maximum distance

between WT embryos in the population; we call this maximum distance the “diameter” of that

sublineage (Fig 6A). In this case, we chose the larger group of 21 embryos with similar develop-

mental timings that naturally cluster together in Fig 3A to avoid higher diameters that might

arise from systematic differences in experimental conditions.

For any given RNAi embryo, we then compute the distance between each of its sublineages

and each sublineage from each of the 21 WT embryos. Note that in this case we use the inter-

section branch distance. If the distance between an RNAi sublineage and a WT sublineage

from any embryo is less than the diameter of the WT sublineage, we say that the RNAi subline-

age is in the neighborhood of the WT sublineage from that embryo. If the RNAi sublineage is

in the neighborhood of that same lineage in the WT embryos, then we say that the sublineage

is “unperturbed.” In other words, the origin and destination lineage for that sublineage is the

same (in the sense of the neighborhood described above). If the RNAi lineage is in the neigh-

borhood of a different lineage in the WT embryo, we say that that sublineage has been trans-

formed (i.e., the origin and destination are different). If an RNAi sublineage is not in the

neighborhood of any WT sublineage, then we say the sublineage is “perturbed” (Fig 6A). The

degree of transformation/perturbation is quantified based on the number of origin/destination

WT sublineages that are neighbors of each RNAi sublineage (Fig 6D).

Using the transformation framework outlined in Fig 6A, we then used a bootstrapping

method to determine the significance of the distributions of Fig 6B and 6C. Specifically, we

tried to determine whether lineages with randomly chosen cell cycle times lengths contain a

number of WT neighbors comparable to homeotically transformed and other RNAi lineages.
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In other words, we iteratively created “Null embryos” with all cell cycle times randomly

assigned to a different cell (Fig 2) and computed the number of WT neighbors to the null

embryos to find the degree to which completely randomized embryo times correspond with

the Wild Type Embryo. In every homeotically transformed lineage, the length of every cell’s

cycle is shuffled among all cells of the same name across all embryos treated with RNAi against

genes that produce homeotic transformations. For each of these shuffled lineages, the number

of WT lineage neighbors (out of 21) is counted (S6B Fig). Along with homeotic transforma-

tions, we also shuffled all other RNAi lineages, where the length of every cell’s cycle is shuffled

among all cells of the same name across all embryos treated with RNAi, and counted the WT

neighbors for each lineage (S6F Fig). We then repeated these shuffling 10000 times and

counted the number of lineages with 21 WT neighbors (S6C and S6G Fig) along with the num-

ber of lineages with at least 1 WT neighbor (S6D and S6H Fig).

Discussion

Analyses of the structure of lineages in biology have focused principally on the construction of

phylogenies [14,15] and measurements of inter-node distances within individual trees [31].

This approach has been shaped by the requirements of taxonomic work, where no ground

truth topology exists, and multiple measures of distance might be employed. Cell lineages, on

the other hand, have clearly defined structure, and recent work has explored strategies for

measuring differences in tree topology [18]. Recently, techniques from spectral analysis were

applied to phenotypic measures aligned to cell lineages, including in C. elegans, but with an

emphasis on characterizing these phenotypes in the context of lineages with variable structure

[32]. Automated cell lineage tracing is an increasingly mature technology, having been applied

to C. elegans [12,32,33] Drosophila [34], zebrafish [35], and mouse [36] development as well as

to the study of lineage relationships in stem cell [37] and immune cell [38] culture systems. A

limited set of metrics have been applied to the comparison of cell lineages [18,32], in part driven

by the unordered nature of cell lineages reconstructed in most organisms. In the case of C. ele-
gans lineages, for which there are now public repositories containing measured lineages from

thousands of wild type and perturbed embryos [10,13,39], the ordered and stereotypical nature

of its somatic lineage removes the need to align the lineages, thus dramatically simplifying the

application of graph-based approaches to the problem of quantitatively comparing lineage trees.

We thus applied the intuitive graph-theoretic notion of the tree edit distance [19], and its exten-

sion in the branch distance, to dissect the structure of C. elegans embryonic lineage. We note

that the tree edit distance, when computed on labeled binary trees, is operationally identical to

the Robinson-Foulds metric, as each of these quantifies the magnitude of the exclusive disjunc-

tion between elements in two trees [40]. These metrics allowed us to uncover previously

unknown heterogeneity between populations of wild type embryos, to quantify the variability of

RNAi-induced lineage phenotypes, and to shed light on key mechanisms of patterning in early

embryogenesis, and expand on analyses of RNAi induced phenotypic changes [11,12]. Most

prior analyses of developmental timing in the C. elegans embryo used the time of a cell’s birth

relative to an early reference point (ex. the first division of the zygote) and correlation between

the birth time of the same cell across embryos as a measure of developmental similarity. We

showed here that these two choices mask heterogeneity present in previously published records

of wild type development. We wondered then whether these effects, combined with 1-to-1 com-

parisons of timing between the same cell across multiple embryos may have obscured patterns

in developmental timing across lineages within the embryo.

Using the tremendous volume of existing lineage data available from the work of Du et al
[10], we sought to benchmark our metrics on wild type and RNAi-perturbed embryos and

PLOS COMPUTATIONAL BIOLOGY Graph metrics in cell lineages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011733 December 19, 2023 21 / 28

https://doi.org/10.1371/journal.pcbi.1011733


explore whether a lineage-centric view of developmental timing may reveal previously unap-

preciated patterns. It is well known that RNAi, especially by feeding in C. elegans, induces phe-

notypes with variable penetrance [41]. It has been shown that variable penetrance in mutants

may occur due to underlying heterogeneity in gene expression [25]. Our graph metrics show

that phenotypic variability under RNAi can exhibit a wide range of patterns of severity. This

includes patterns that correspond to linear gradients of severity, multimodal distributions of

phenotypes, and apparently random variation between individual embryos (Fig 4B). These

measurements show that, for many genes, RNAi induces variability between individual

embryos that is often on par with the phenotypic distance between wild type and individual

RNAi embryos. Our approach expands on prior work which tracks changes through pheno-

types in individual cells [11,12] noting that our approach allows for multimodal measure-

ments, allows for rigorous distance-based bioinformatics analyses, and consolidates lineage

descent data.

Taking advantage of the ordered nature of cell divisions in the C. elegans embryo to align

arbitrary pairs lineages within the embryo, we sought to characterize the structure of cell cycle

duration in the wild type lineage. We were especially surprised to find reproducible patterns

within the lineages derived from AB, the larger of two cells born from the first asymmetric

division of the zygote. In C. elegans, the major patterns of cell fate that are established by inter-

cellular Notch signaling are well known, and the pattern of branch distances between the AB-

derived lineages we observed aligns perfectly to the first two Notch signaling events in the

early embryo. RNAi against Notch/glp-1 abolishes this structure, demonstrating that this

pattern of cell cycle timing in the AB lineage is a product of Notch signaling. Lineages that

receive Notch signals also exhibit on average shorter cell cycle lengths than lineages that do not

(S5 Fig).

Biophysical parameters such as cell volume affect cell cycle duration [42–46], but genetic

regulation of subtle differences in cell cycle timing may occur via many potential mechanisms.

Du et al. [9,10] demonstrated using transcriptional reporters of tissue fate that the loss of any

one of many genes essential for development can induce homeotic transformations between

the major founder lineages in the early embryo [9,10]. We set out to determine, using the

branch distance, whether developmental timing in transformed lineages is independent of

lineage fate, is transformed along with fate, or is lost upon fate perturbation. We devised a sim-

ple heuristic to assess the proximity of RNAi-treated origin lineages to the wild type destina-

tion lineage that expresses the closest pattern of cell fates as defined by Du et al. [10] by

counting the number of wild type examples of the destination lineage that are less than the

maximum inter-wild type branch distance away from the RNAi origin lineage. Using this con-

servative approach, which would fail to detect transformations in cases where the global

embryo clock is altered or where subsets of individual lineages are transformed, we find that

only a handful of genes (12 genes out of 204 characterized) induce homeotic fate transforma-

tions where developmental timing in the transformed lineages also transforms to match that of

the newly acquired fate. This set is composed of genes in the Notch and Wnt pathways, two

PAR polarity genes, and the maternally derived transcription factors skn-1 and pie-1. The fact

that most perturbations produce homeotic transformations generate patterns of cell cycle

duration that match neither that of the original wild type lineage or the newly acquired fate

suggests that lineage-specific developmental timing is likely quite sensitive to genetic perturba-

tion. When homeotic transformations in cell cycle timing do occur, a perfect match to wild

type lineages outnumbers incomplete matches suggesting that, despite its sensitivity to pertur-

bation, the wild type patterns of cell cycle timing may represent stable states. This tool could

be extended to any quantitative cell specific measurement in any tracked lineage, extending

the definition and modalities used to measure cell fate. Our generalized formulation of the
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branch distance expands this capability by allowing for its use in cases where no intuitive align-

ment exists between pairs of cell lineages, for example in the development of non-eutelic

animals.

Our analysis demonstrates that the genetic identity of cell lineages can reproducibly and

finely tune the distribution of cell cycle duration within cell lineages. It is interesting that the

pathways that preserve lineage-specific developmental timing across homeotic transforma-

tions are known to play a critical role in cell fate specifications upstream of most tissue-specific

transcriptional programs. It is thus likely that either a specific subset of factors downstream of

fate regulators or finely tuned expression levels of tissue-specific genes are required for the

proper patterning of cell cycle duration within lineages. Whether this tuning is itself a func-

tional element of the developmental program remains unclear. Perturbations to key cell cycle

regulators generate dramatic changes in cell cycle duration as well as homeotic fate transfor-

mations in C. elegans [47–50], and changes in the duration of the cell cycle of stem cells in

other systems are correlated with specific cell fates such as in the generation of bipolar cells

during retinal development [51]. Our results demonstrate a precise relationship between cell

fate and developmental timing that motivates revisiting gaps in our understanding of links

between cell cycle regulation and cell fate control. More broadly, our findings highlight the

ways in which quantitative analysis of phenotypic similarity can reveal unexpected structure in

animal development. In particular, the use of pairwise distance metrics applied to lineage-

resolve metrics allows for an intuitive extension of notions of cell state and identity. Reducing

these multidimensional data types using such intuitive measures of distance simplifies the

application of common data exploration and visualization strategies.

Supporting information

S1 Fig. Structure in the distance between all WT and RNAi embryos. Shown is a dendro-

gram constructed using the union branch distance measured between all WT and RNAi

treated embryos along with the 4 classes we partition the dataset into. The WT embryos and

WT-like RNAi-treated embryos are highlighted in cluster 3. Significantly Overrepresented

Genes and Functional Classifications in each cluster are listed here. P values were calculated

with Boschloo’s test and significance was determined based on a Bonferroni corrected thresh-

old of 1.5 * 10(-4). Raw data are available in supplemental datasets S1 and S3.

(TIF)

S2 Fig. RNAi embryos are far more dispersed than WT embryos. (A) The distribution of

union branch distances between wild type embryos (red) and between embryos treated with

RNAi against the same gene (blue). Densities were generated using a kernel density estimator.

(B) Strip plot of all RNAi embryos showing the branch distances between embryos treated

with RNAi against the same gene. Embryos treated with RNAi against genes with shared func-

tions are grouped together. The median branch distance within each set of embryos is plotted

as a large circle.

(TIF)

S3 Fig. Correlation between the tree edit distance and branch distance between RNAi

treated embryos and a single WT reference embryo. The mean (circle) and minimum/maxi-

mum values (blue lines) of the distance between embryos treated with RNAi against genes

with common function and a single WT reference embryo are shown.

(TIF)

S4 Fig. All but one WT sublineages possess unique patterns of cell cycle timing. (A) A heat-

map showing the union branch distance between each pair of sub-lineages across 21 WT
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reference embryos. (B) Heatmap showing the p-value calculated using 441 permutation tests

(see methods) against the null hypothesis that sublineages share a common distribution of

intersection branch distances. All but a single comparison (ABprp vs ABpla) are significant

based on a Bonferroni corrected threshold of 2 * 10−5.

(TIF)

S5 Fig. Notch induction systematically shortens cell cycles in affected sublineages. (A) A

heatmap showing the fraction of cells in the lineage listed along the Y axis that have a shorter

cell cycle than the corresponding cell in the lineage along the X axis. Each sublineage contains

32 cells so a lineage in which >16 cells possess a shorter cell cycle is considered to be “faster”

(B) The distribution of comparisons from the heatmap in panel A grouped based on lineages

that do not have a history of Notch activation (green, ABala and ABarp), lineages derived from

ABa in which Notch is activated (red, ABalp and ABara), and all lineages derived from ABp.

(TIF)

S6 Fig. Significantly more transformed lineages match the cell cycle timing of their ectopic

fate than random. (A) The number of WT destination lineages that fall within the trans-

formed neighborhood of lineage annotated as homeotically transformed by Du et al. [10]. See

Main Fig 6B. (B) The number of WT destination lineages that fall within the transformed

neighborhood of homeotically transformed lineages where the length of every cell’s cycle is

shuffled among all cells of the same name across all embryos treated with RNAi against genes

that produce homeotic transformations. Note there are no WT neighbors to any of these shuf-

fled lineages. (C) The number of cases where lineages from RNAi treated embryos that are

shuffled as in (B) fall within the neighborhood of all 21 WT samples of the destination lineage.

The red line shows the corresponding value for the unshuffled data. (D) The number of cases

where lineages from RNAi treated embryos that are shuffled as in (B) fall within the neighbor-

hood of 1 or more WT samples of the destination lineage. The red line shows the correspond-

ing value for the unshuffled data. (E) The number of WT destination lineages that fall within

the transformed neighborhood of all sublineages from all RNAi treated embryos. See Main Fig

6C. (F) The number of WT destination lineages that fall within the transformed neighborhood

of all lineages from RNAi treated embryos where the length of every cell’s cycle is shuffled

among all cells of the same name. (G) The number of cases where lineages from RNAi treated

embryos that are shuffled as in (F) fall within the neighborhood of all 21 WT samples of any

lineage. The red line shows the corresponding value for the unshuffled data. (H) The number

of cases where lineages from RNAi treated embryos that are shuffled as in (F) fall within the

neighborhood of 1 or more sample of any lineage. The red line shows the corresponding value

for the unshuffled data.

(TIF)

S1 Dataset. Number of RNAi embryos in each Cluster. Text file listing the number, type,

and p-value analyzing whether RNAi embryos with specific genes knocked down were signifi-

cantly overrepresented in each cluster, from the hierarchically clustered union distance matrix

(Fig 4A) between all embryos and its corresponding dendrogram (S1 Fig). P-values were calcu-

lated with Boschloo’s Test.

(TXT)

S2 Dataset. List of Genes and the corresponding clusters. Text file listing each gene and the

Clusters its corresponding RNAi embryo belongs to, from the hierarchically clustered union

distance matrix (Fig 4A) between all embryos and its corresponding dendrogram (S1 Fig).

(TXT)
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S3 Dataset. List of clusters and significant functional classifications. Text file listing each

cluster, the functional classifications of all genes in the cluster, and an enrichment analysis ana-

lyzing whether each functional classification is significantly overrepresented in that cluster. P-

values were calculated with Boschloo’s Test (S1 Fig.)

(TXT)

S4 Dataset. List of All Found Transformations. Text file listing each Gene, its corresponding

RNAi embryos and sublineages, along with listing each RNAi sublineages WT neighbor names

and frequencies (Fig 6C).

(TXT)

S1 Appendix. Proof that the generalized branch distance is a metric and comparisons

between the tree edit distance and the Robinson-Foulds distance.

(PDF)
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