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Abstract

Sleep deprivation has an ever-increasing impact on individuals and societies. Yet, to date,

there is no quick and objective test for sleep deprivation. Here, we used automated acoustic

analyses of the voice to detect sleep deprivation. Building on current machine-learning

approaches, we focused on interpretability by introducing two novel ideas: the use of a fully

generic auditory representation as input feature space, combined with an interpretation

technique based on reverse correlation. The auditory representation consisted of a spectro-

temporal modulation analysis derived from neurophysiology. The interpretation method

aimed to reveal the regions of the auditory representation that supported the classifiers’

decisions. Results showed that generic auditory features could be used to detect sleep dep-

rivation successfully, with an accuracy comparable to state-of-the-art speech features. Fur-

thermore, the interpretation revealed two distinct effects of sleep deprivation on the voice:

changes in slow temporal modulations related to prosody and changes in spectral features

related to voice quality. Importantly, the relative balance of the two effects varied widely

across individuals, even though the amount of sleep deprivation was controlled, thus con-

firming the need to characterize sleep deprivation at the individual level. Moreover, while the

prosody factor correlated with subjective sleepiness reports, the voice quality factor did not,

consistent with the presence of both explicit and implicit consequences of sleep deprivation.

Overall, the findings show that individual effects of sleep deprivation may be observed in

vocal biomarkers. Future investigations correlating such markers with objective physiologi-

cal measures of sleep deprivation could enable “sleep stethoscopes” for the cost-effective

diagnosis of the individual effects of sleep deprivation.

Author summary

Sleep deprivation has an ever-increasing impact on individuals and societies, from acci-

dents to chronic conditions costing billions to health systems. Yet, to date, there is no
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Pressnitzer D (2024) Sleep deprivation detected by

voice analysis. PLoS Comput Biol 20(2):

e1011849. https://doi.org/10.1371/journal.

pcbi.1011849

Editor: Frédéric E. Theunissen, University of

California at Berkeley, UNITED STATES

Received: March 17, 2023

Accepted: January 22, 2024

Published: February 5, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011849

Copyright: © 2024 Thoret et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The analyses and

figures of the manuscript can be replicated with the

scripts openly available at https://github.com/

EtienneTho/privavox The Spectro-Temporal

Modulations (STMs) model adapted from the NSL

https://orcid.org/0000-0002-8214-6278
https://orcid.org/0000-0003-4744-5165
https://doi.org/10.1371/journal.pcbi.1011849
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011849&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011849&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011849&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011849&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011849&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011849&domain=pdf&date_stamp=2024-02-23
https://doi.org/10.1371/journal.pcbi.1011849
https://doi.org/10.1371/journal.pcbi.1011849
https://doi.org/10.1371/journal.pcbi.1011849
http://creativecommons.org/licenses/by/4.0/
https://github.com/EtienneTho/privavox
https://github.com/EtienneTho/privavox


quick and objective test for sleep deprivation. We show that sleep deprivation can be

detected at the individual level with voice recordings. Importantly, we focused on

interpretability, which allowed us to identify two independent effects of sleep deprivation

on the voice: changes in prosody and changes in voice quality or timbre. The results also

revealed a striking variability in individual reactions to the same deprivation, further con-

firming the need to consider the effects of sleep deprivation at the individual level. Vocal

markers could be correlated to specific underlying physiological factors in future studies,

outlining possible cost-effective and non-invasive “sleep stethoscopes”.

Introduction

In the last decade or so, insufficient sleep has become a prominent public health issue, with

one third of the adult population sleeping less than six hours per night [1–3]. This chronic

sleep debt is associated with an increased risk of chronic disease, such as obesity, type 2 diabe-

tes, cardiovascular diseases, inflammation, addictions, accidents and cancer [4–8]. Sleep debt

also increase the risk of developing multiple comorbidities [9]. Moreover, more than one

worker out of five operates at night and suffers from a high level of sleep deprivation [10],

which causes accidents in the workplace or when driving [11]. In the present study, we use

automated acoustic analyses of the voice to detect sleep deprivation. The aim is not to improve

the accuracy of current machine-learning approaches [12–14], but, rather, to build on them to

introduce a new focus on interpretability. Ideally, our method should not only detect whether

an individual is sleep deprived or not, but also help to formulate specific hypotheses as to the

physiological consequences of sleep deprivation for a given individual at a given moment in

time.

Currently, there are several techniques aiming to measure sleep deprivation and its associ-

ated physiological consequences. First, sleep deprivation may be simply assessed in terms of

the loss of sleep time, as measured in hours. Remarkably, however, the impact of a given

amount of sleep deprivation varies massively across individuals. In laboratory settings where

the amount of deprivation could be precisely controlled, up to 90% of the variance in cognitive

performance was related to individual traits and not to the actual time spent asleep [15,16].

Second, sleep deprivation may also be measured through subjective sleepiness, which partici-

pants can explicitly report using rating scales [17–19]. However, subjective sleepiness could be

influenced by other factors than sleep deprivation, such as the time of the day, motivation, or

stress. Besides, it is not clear whether reported subjective sleepiness captures the full physiolog-

ical impact of sleep deprivation, given the variety of the potentially implicit processes involved

[20]. Third, objective methods have been developed to measure tangible consequences of sleep

deprivation. The multiple sleep latency test [21], the gold standard in clinical settings, uses

electro-encephalography (EEG) to estimate sleep latency (e.g. the amount of time to go from

wake to sleep) along five successive naps sampled every two hours during daytime. The psy-

chomotor vigilance test [22], often used in research settings, tests for the ability to respond

quickly to infrequent stimuli, with slower reaction times assumed to be markers of attentional

lapses. More recently, new approaches have attempted to measure the concentration of key

molecules in the urine, saliva or breath [23]. Although these objective methods are comple-

mentary to subjective reports, they are often costly, time consuming, or difficult to deploy out-

side of laboratories. So, whereas there are cheap and fast objective diagnosis tools for other

causes of temporary cognitive impairment, such as alcohol or drug abuse, there is currently no
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established means to estimate sleep deprivation effects, at the individual level, in real-life

settings.

If sleep deprivation could be detected through voice recordings, this would fill this gap by

providing a quick, non-invasive, and cost-effective objective measure. Indeed, because the

voice is easy to record with off-the-shelf equipment, there is a growing interest in finding vocal

biomarkers to diagnose a variety of medical conditions [24,25]. For sleep, the idea was first

explored by Morris et al. [26]. Free speech was produced by sleep deprived participants and

rated by the authors. A slowing down of speech and a “flatness of the voice” were noted after

deprivation. These observations were extended by Harrison and Horne [27], who found that

raters blind to the amount of deprivation of the speakers could detect effects on the intonation

of speech after deprivation. More recently, an experiment using a larger database found that,

indeed, raters could detect sleepy versus non sleepy voices with an accuracy above 90% [28].

So, it does seem that there are acoustic cues in the voice that reflect sleep deprivation and/or

sleepiness.

Machine learning has been applied to automate the detection of sleep deprivation and/or

sleepiness from the voice. In an early study [29], sleep deprivation was inferred with high accu-

racy from vocal recordings (86%) but it should be noted that the deprivation was extreme, con-

sisting of 60 hours without sleep, with unknown applicability to the much more common

situation of mild sleep deprivation. Two “computational paralinguistic challenges” have since

been launched, with sub-challenges aimed at assessing sleepiness from vocal recordings

[30,31]. We will not review all of the entries to these challenges here, as they are quite technical

in nature. To summarize, all of them used a similar framework: i) selection of a set of acoustic

features, such as pitch, spectral and cepstral coefficients, duration estimates, and functionals of

those features; ii) dimensionality reduction of the feature set; iii) supervised learning of target

classification using various machine learning techniques, such as support vector machines or

neural networks. The best results varied depending on the challenge. Subjective sleepiness

proved difficult to predict [28], but the binary categorization of sleepy versus non-sleepy voices

could be achieved with high accuracy (over 80%) in the best performing classifiers [32].

The framework described above will be familiar -and effective- for many machine learning

problems, but it has two major limitations from a neuroscientific perspective. First, the initial

selection of features is based on a somewhat arbitrary choice. Often, the choice of features was

guided by the “voice flatness” hypothesis [26,27]. However, other, perhaps more subtle acous-

tic markers of sleep deprivation or sleepiness may have been overlooked by human raters. Sec-

ond, the acoustic features discovered by the classifiers are not necessarily interpretable and can

be difficult to relate to plausible mediating mechanisms [14]. Interestingly, the best-perform-

ing system so far used a carefully hand-crafted small feature set inspired from auditory pro-

cessing models, suggesting that “perceptual” features may be a promising route for sleepiness

detection in the voice [32]. A more recent study has again attempted to focus on “simple”

acoustic descriptors for one of the databases of the paralinguistic challenge, with the explicit

aim to facilitate interpretation [33]. Accurate classification was possible with the simpler fea-

ture set of about 20 features, with a resulting accuracy of 76%.

Here, we aim to extend these findings in four different ways. First, we use our own vocal

database, which has been collected in a controlled laboratory setting where the amount of

sleep deprivation could be precisely controlled. Vocal recordings were obtained from reading

out loud the same texts for all participants, in random order across participants. This is impor-

tant to avoid biases confounding sleep deprivation with e.g. participant identity, which is easily

picked up by classifiers [28,34]. Second, we use a fully generic acoustic feature set, spectro-tem-

poral modulations (STMs), computed with a neurophysiologically-inspired model of auditory

processing [35]. The STM representation has been successfully applied to various machine-
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learning problems such as musical instruments classification [36], timbre perception [36,37],

or speech detection and enhancement [38]. Third, we apply our own technique to interpret

the cues discovered by the classifier [39]. This technique, similar in spirit to the reverse correla-

tion method used in neuroscience and psychophysics, identifies the parts of the input repre-

sentation that have the most weight in the classifiers’ decisions. The main outcome of the

analysis consists in determining the parts of auditory feature space impacted by sleep depriva-

tion. Fourth, by fitting classifiers to individual participants, we aim to uncover plausible physi-

ological factors underlying the large and as of yet unexplained variability observed in the

responses to mild sleep deprivation in normal healthy adults.

Results

Twenty-two healthy women between 30–50 years of age (42.7 ± 6.8) were sleep deprived during

a controlled laboratory protocol. An all-female experimental group was chosen because the cur-

rent experiment took place in parallel with a dermatology study [40], but also because such a

choice was expected to homogenize the vocal pitch range across participants. After a first “Con-

trol night” spent in the laboratory, participants were restricted to no more than 3 hours of sleep

per night during two subsequent “Restriction nights”, also monitored in the laboratory. Such a

sleep restriction is both more ecological than total sleep deprivation and better controlled than

observational paradigms. Vocal recordings were obtained throughout the protocol, during six

reading sessions. The first three reading sessions occurred at different times of the day right

after the control night (no sleep deprivation). The last three reading sessions occurred at the

same times of the day but right after the second restriction night (see Methods for further

details). All participants read, for about 10 minutes, chapters of the same French classic book:

“Le Comte de Monte Christo” by Alexandre Dumas. The order of the excerpts was randomized

across sessions for each participant to avoid a confound with deprivation. In total, our database

thus consisted of 22 healthy participants producing about half an hour of vocal recordings each

(M = 31min, SD = 5min) evenly split between before and after two nights of mild sleep depriva-

tion. Each recording session was further split into 15-s frames. The main classification task was

to decide whether a frame was recorded before deprivation or after deprivation.

Subjective sleepiness reports are highly variable

Sleepiness was self-reported by participants at four different times during the day (similar but

distinct from the three times when voice recordings were obtained, see Methods) using the

Stanford Sleepiness Scale (SSS) questionnaire [19]. Fig 1A shows the distributions of SSS rat-

ings. On average, sleep deprivation had an effect on self-reported sleepiness: sleepiness was

low right after the control night, but increased after the deprivation nights. This was confirmed

by an ANOVA on the SSS, with factors Day (2 levels, before and after deprivation) and Time

of Report (4 levels). Both factors had a significant effect, but with a much larger effect size for

Day (F(1,46) = 52.14, p<0.001, ηp
2 = 0.221) compared to Time of report (F(3,92) = 3.07,

p = 0.029, ηp
2 = 0.048). Moreover, there was no interaction between Day and Time of report (F

(3,92) = 0.59, p = 0.621). Because of this lack of interaction, we now consider average SSS val-

ues for all Times of Reports in a Day, to focus on the effect of sleep deprivation.

Fig 1B illustrates the data aggregated in that way, with individual changes in sleepiness now

identified across the control and sleep deprived day. A remarkable individual variability was

obvious in reported sleepiness. Note that this was in spite of our precise control of the amount

of sleep deprivation, which was equated across all participants. Even so, some participants

showed little effect of sleep deprivation, with even cases of decreases in subjective sleepiness

after deprivation. Such unexpected effects were observed for all baseline sleepiness, low or
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high, as measured before deprivation. This striking variability is in fact consistent with previ-

ous observations involving objective measures of sleep deprivation [16]. It also further justifies

that vocal biomarkers of sleep deprivation should be investigated at the individual level.

Acoustic features of speech before and after sleep deprivation are broadly

similar

To get a first qualitative overview of the effects of sleep deprivation on the acoustic features of

speech, and in particular to test whether deprivation had any obvious average effect on the

voice, we computed STM representations before and after deprivation.

Let us describe the STM representation in more details. At each moment in time, STMs

contain the dimensions of frequency, rate, and scale. The frequency dimension, in Hz but on a

logarithmic scale, reflects the spectral content of the sound. It is obtained by bandpass filtering

the temporal waveform into several sub-bands, in a way intended to simulate peripheral audi-

tory filtering. Rates and scales are then obtained using a bank of spectro-temporal modulation

filters at the output of each peripheral channel. The rate dimension, in Hz, reflects the modula-

tions in sound amplitude in the time domain. Slow modulations have low rates, whereas fast

modulations have high rates. Positive rates indicate temporal modulations coupled with down-

ward changes in frequency, whereas negative rates indicate temporal modulations coupled

with upward changes in frequency. The scale dimension, in cycle per octave, reflects modula-

tions in the spectral domain. Sounds with fine details in their spectral envelopes have high

scale values, while sounds with relatively flat spectral envelopes have low scale values. For

speech, the dominant rates are between 2 Hz and 8 Hz [41], while dominant scales, related to

the harmonic structure of vowels, are around 2 cyc/oct [42]. The STM representation is similar

to other widely used auditory front-ends such as the Modulation Power Spectrum (MPS)

[43,44], the main difference being the logarithmic vs linear frequency scales used by the STM

and MPS models, respectively.

The full STMs thus have four dimensions of time, frequency, rate, and scale. To have a look

at the overall effect of sleep deprivation on acoustic features, we averaged the STMs along the

Fig 1. A. Subjective sleepiness. Sleepiness was evaluated by self-reports on the Stanford Scale before sleep deprivation (Control) and after two nights of

mild sleep deprivation (Sleep deprived). The abscissa indicates the time of day when sleepiness reports were collected. B. Average reported sleepiness

before and after sleep restriction. Lines connect data points for each participant.

https://doi.org/10.1371/journal.pcbi.1011849.g001
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time dimension, separately before and after deprivation. Average STMs before (Fig 2A) and

after (Fig 2B) deprivation were qualitatively similar. The rate-scale projections showed that,

unsurprisingly, high energy in the STMs was focused in regions associated to speech [38]. The

frequency-rate projection simply showed the average spectrum of our vocal recordings.

To further investigate the candidate acoustic differences caused by deprivation, we sub-

tracted STMs before and after deprivation (Fig 2C for the population-level results, S1 Fig for

individual-level results). At the population level, maximal differences in the rate-scale projec-

tion were less than 3%, while differences up to 11% were observed in the frequency-rate pro-

jection. At the subject level, differences in the rate-scale projection were around 24.68% on

average (SD = 6), while differences up to 40.83% on average (SD = 12) were observed in the

frequency-rate projection. Larger differences seem therefore observable at individual level but

there is no obvious structure to the differences: they appear noisy and do not necessarily

match the STM regions of high energy in speech (see S1 Fig).

For comparison with the state-of-the art of sleepiness detection from the voice [33], we also

computed speech features using the openSMILE library [45]. The full 4368 speech features sug-

gested in [33] were extracted (see Methods). Four of them are illustrated in Fig 2D, averaged

before and after deprivation. These features were selected according to the “voice flatness”

hypothesis. According to this hypothesis, it could be that sleep deprivation lowered the average

pitch of the voice and reduced with its variation. It could also be that the quality of the voice,

described with such adjectives as “creakiness” or “breathiness”, could systematically change

after deprivation. The closest openSMILE correlates of such perceptual descriptors are shown

in Fig 2D. Visually, no obvious change was induced by sleep deprivation, with increases or

decreases for all four features.

At this point, it is unclear whether the raw acoustic differences illustrated in Fig 2 are mean-

ingful compared to the within- and across-participant variability. Also, the choice to illustrate

4 features out of 4368 is somewhat arbitrary. So, it remains to be tested whether the STM or

openSMILE features have any predictive power to detect sleep deprivation. To address this

point in a principled manner, we now turn to machine-learning, for the new STM representa-

tion and also for the openSMILE feature set.

Detection of sleep deprivation from the voice is possible based on generic

auditory features

A first question raised by the present study is whether fully generic auditory features can be

used to detect sleep deprivation from the voice. To address this question, the STM representa-

tion was used as the input feature space for a standard machine-learning pipeline [13,14,36].

Recordings were converted to 15-s long frames, to be classified as “before sleep deprivation” or

“after sleep deprivation” on the basis of their STM representation. The dataset was first trans-

formed into train and test splits. We then reduced the high dimensionality of the feature space

by means of a principal component analysis (PCA) on the training set (see Methods). The

PCA spaces were finally fed to a support vector machine classifier (SVM) with a Gaussian ker-

nel (radial basis function). We opted for an SVM and not a deep-learning architecture mainly

because of the relatively modest size of our dataset, but also because SVMs have been shown to

outperform more complex classifiers in similar tasks [14]. The performance of the SVM was

evaluated with Balanced Accuracy (BAcc, see Methods).

At the population level, two cross-validation strategies were used. First, a Leave-One-Sub-

ject-Out (LOSO) strategy, in which one subject was left out of the training set and constituted

the test set. The procedure was repeated for each participant. This procedure is the most strin-

gent test of generalization of prediction for unknown participants. However, in small datasets
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Fig 2. Acoustic analyses. A. Spectro-Temporal Modulations before sleep deprivation. Projections on the rate-scale

and rate-frequency planes are shown. Arbitrary model units. B. As in A., but after sleep deprivation. C. Acoustic

difference before and after sleep deprivation, shown as 2 * abs(B-A) / (A+B). Units of percent. D. Speech features

before (green) and after (orange) sleep deprivation. Displayed are four openSMILE features related to average pitch

(mean of the fundamental frequency f0), pitch variation (standard deviation of f0), voice creakiness (jitter) and voice

breathiness (logarithm of the Harmonic to Noise Ratio). Lines connect data points for each participant.

https://doi.org/10.1371/journal.pcbi.1011849.g002
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with a large amount of individual variability, it has been argued that LOSO may be inappropri-

ate [46]. This is likely the case for our dataset, with 22 participants and a large expected vari-

ability for the effects of sleep deprivation. Thus, we also report cross-validation using a

50-times repeated splitting of 25% of the data (50-splits, 25% test) randomly selected among

the whole pool of participants, as suggested in [46]. At the participant level, the LOSO strategy

does not make sense, so only the 50-splits, 25% test validation was used.

Classification performance is shown in Fig 3. At the population level, the classifier was able

to detect sleep deprivation significantly above chance (50-splits, 20% test: BAcc, M = .77, SD =

.01, t-test against .5: t(49) = 145.27 p< 0.001; LOSO: BAcc, M = .56, SD = .09, t-test against .5:

t(21) = 3.01, p = .006). This seems on par with the state of the art obtained with different

speech databases [32,33]. Interestingly, and as expected from the sizeable individual variability

observed in the SSS reports, the same machine-learning pipeline was more accurate when

applied at the individual level (BAcc, M = .86, SD = .09). Noticeably, for half of the partici-

pants, the classifiers’ accuracies displayed BAccs above .9, outperforming the state of the art

and matching human performance on a similar task [28]. For two participants, the classifiers’

accuracies were relatively poor. Participant #1 displayed a decrease in sleepiness after depriva-

tion (-0.75 for the sleepiness ratings averaged after and before deprivation), and was the only

participant to exhibit such a trend in the group for which vocal recordings were available

(another participant exhibited such a decrease in Fig 1B, but could not be included in the vocal

analysis because of missing recordings). This may have contributed to the poor accuracy of the

classifier. Participant #2 did exhibit an increase in sleepiness after deprivation (+0.75), so there

are no obvious reasons for the classifier’s poor performance in this case.

Overall, classification accuracies show that there is enough information in the fully generic

STM representation of vocal recordings to detect mild sleep deprivation in otherwise normal

and healthy participants. The classification performance at the population level is poor using a

LOSO cross-validation procedure, and it is also possible that the population classifiers

Fig 3. Machine learning classification results with STM input features. A. Balanced Accuracies for the population-level classifier using the generic STM

representation as input feature space. Two cross-validation procedures are reported (see text). Error bars show standard deviations. Stars indicate the

significance level of t-tests against chance level (**< .01; ***< .001). B. Balanced Accuracies for the classifiers tuned to individual participants, obtained

with the 50-splits, 25% test cross-validation procedure. Participants are ranked according to classification accuracy.

https://doi.org/10.1371/journal.pcbi.1011849.g003
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benefited from a high input dimensionality to learn several individual recordings from differ-

ent features sets, so the generalizability of our approach across speakers is not warranted. How-

ever, performance is generally excellent at the individual level, strengthening the idea that

individual variability is key when considering vocal correlates of sleep deprivation.

Individual classifiers detect voice changes related to sleep deprivation

Individual classifiers were excellent at discriminating recordings before and after deprivation,

but there is one critical question that needs be addressed before any further investigation: were

the classifiers sensitive to changes in the voice related to the experimental manipulation, sleep

deprivation, or were they rather only picking up random acoustic variations that are bound to

exist across different reading sessions?

Some sources of random acoustic variation can be ruled out by our experimental protocol.

All participants were recorded with the same microphone before and after deprivation, in the

same room, at the same location in the room. This minimizes confounds such as microphone

frequency response or room reverberation.

However, there remains the possibility that participants simply talked in different ways

when reading the same text more than once, for reasons unrelated to sleep deprivation. To test

for this possibility, we took advantage of the availability of multiple reading sessions per partic-

ipant: three reading sessions before deprivation and three reading sessions after deprivation,

recorded at different times of the day. The before and after sessions were pooled together for

the main analysis of Fig 3. Here, we trained and cross-validated individual classifiers using the

same pipeline as for the main analysis, but this time to discriminate between all possible pairs

of different reading sessions for a given participant. We then averaged the average accuracy for

all sessions “Within” the same state (discriminate two different sessions recorded both before

or both after deprivation) or “Across” states (discriminate one session recorded before depri-

vation and one session recorded after deprivation). If our experimental manipulation had no

effect, the accuracies “Within” and “Across” should be identical.

This was not the case (Fig 4, two-tailed comparison t(21) = 5.1, p = 5e-5). Note that the analysis

likely underestimates the effect of the experimental manipulation, because a lot of “Across” accu-

racies were near ceiling (hence the use of Rationalized Arcsine Units for display and statistical

analysis purposes, see [47]). Also, there are interesting, non-random causes of variability within a

state: the circadian rhythm and the homeostatic pressure for sleep that are both associated with

fatigue, which could explain the relatively high performance already in the “Within” case. In any

case, the results show that the classifiers picked up changes in voice due to sleep deprivation.

Using standard speech features does not improve sleep deprivation

detection accuracy

Even if the STM representation successfully supported sleep detection at the individual level, it

could be that it missed important speech features such as “pitch” or “pitch variation”, which

are at the core of the “voice flatness” hypothesis and are part of most automatic sleepiness

detection pipelines.

To investigate this possibility, we used the full openSMILE feature set (4368 features) as

input feature space. We then applied the same classification pipeline as for the STM represen-

tation, consisting of dimensionality reduction followed by a Gaussian kernel SVM. This

resulted in a pipeline matching the state-of-the art for sleepiness [33] while allowing compari-

son between the two input spaces.

Results are displayed in Fig 5. At the population level, the openSMILE classifier accuracy

was similar to the STM classifier (50-splits, 20% test: BAcc, M = .70 SD = .01, t-test against .5: t
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(49) = 91.6, p< 0.01; LOSO: BAcc, M = .56, SD = .09, t-test against .5: t(21) = 2.98, p = .007).

At the individual level, the accuracies of the openSMILE classifiers were on average poorer

than those observed with the STM classifiers (BAcc, M = 0.67, SD = 0.9). The correlation

between classification performance using STM or openSMILE feature was low (r(20) = .34, p =

.11). Interestingly, however, participants #1 and #2 for whom poor classification performance

was observed using the STM input feature space also displayed poor classification using the

openSMILE input feature space.

These results show that, for our voice database at least, using standard speech features

decreased the accuracy of sleep deprivation detection. The relevant information to detect sleep

deprivation from the voice was thus better expressed in the STM representation, with the

added benefit, from our perspective, that generic auditory features should be easier to inter-

pret. We now focus on the STM representation to interpret the features used for classification.

Interpreting classifiers to identify vocal biomarkers of sleep deprivation

To gain insight about the nature of the acoustic features distinguishing speech before and after

sleep deprivation, we probed the trained STM classifiers using a recent interpretation tech-

nique based on reverse correlation [39]. Briefly, the technique consists in randomly perturbing

the input to the trained classifier, over thousands of trials, and then averaging all of the noisy

representations leading to correct classification. This aims to identify the portion of the input

that participates the most to the classifier’s performance. The input representation was per-

turbed using additive noise in the PCA-reduced feature space [48]. Averaging all masks lead-

ing to a correct classification decision revealed, in our case, the discriminative features of a

voice after deprivation compared to before deprivation (for details, see Methods and 39).

Fig 4. Classification accuracy for voice variability unrelated versus related to sleep deprivation. Balanced

Accuracies for discriminating reading sessions recorded both before or after sleep deprivation (“Within”) or for

discriminating one reading sessions recorded before and one reading session recorded after sleep deprivation

(“Across”). As 15 out of 22 classifiers produced accuracies above 0.9 for the Across comparison, BAccs were converted

to rationalized arcsine units (RAU). Points represent individual participants. The median and interquartile intervals

are also shown.

https://doi.org/10.1371/journal.pcbi.1011849.g004
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As a preliminary step, we evaluated the consistency of the interpretation masks. Because of

our cross-validation technique, 50 classifiers were fitted either for the whole dataset for the

population-level classifier or for each participant’s classifier. To check internal consistency, we

computed the pairwise Pearson’s correlation coefficients between all 50 interpretation maps.

At the population-level, this “consistency correlation” was low albeit significantly above

chance (r(22527): M = .20, SD = .34; all but 28 over 1225 pairwise correlations were significant,

p< .05) which is consistent with the large variability suspected across listeners. At the partici-

pant-level, however, consistency correlations were very high (r(22527): M = .91, SD = .06, min

= .73; all but 3 over 26950 pairwise correlations were significant, p < .05). Furthermore,

because individual classifiers varied in accuracy, we could check whether the consistency of

the interpretation improved with accuracy. As expected, the correlation between BAccs and

consistency correlation was strong (r(20) = .71, p = .0003). These consistency results confirm

that caution should be applied when considering population-level interpretations, but that

individual results are robust and can be interpreted.

Fig 6 shows the interpretation maps for the population-level classifier. Maps should be read

as follows: red areas correspond to STM features where the presence of energy is associated

with sleep deprivation for the classifier, whereas blue areas represent STM features where the

absence of energy is associated to sleep deprivation for the classifier. For the population-level

map, the rate-scale projection resembles the raw difference before and after deprivation,

although less noisy, whereas the frequency-rate projection does not match such raw acoustic

differences (compare with Fig 2C). As these population-level interpretations are not robust, we

simply show them for illustrative purposes and refrain from further description of their

features.

Fig 7A shows all individual classifiers on the rate-scale projection, ordered along increasing

accuracy (BAcc) of the corresponding classifier. We chose to interpret in priority the rate-scale

projections, as is done in most speech applications [38]. The frequency-rate projections are

provided as S3 Fig. The main feature of the results is the striking diversity of the individual

maps, which is not related to classifier accuracy in any obvious manner. For some participants,

Fig 5. Machine learning classification results with openSMILE input features. Format as in Fig 3. In particular, for B., participants’ labels (#) are

identical to Fig 3.

https://doi.org/10.1371/journal.pcbi.1011849.g005
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sleep deprivation was detected through a reduction in energy over a range of STM features

(blue color), consistent with a “flattening” of speech modulations. But the opposite was also

observed for other participants (red color). Moreover, the details of the discriminative features

also varied across participants. As shown before, these details are robust and warrant

interpretation.

To get a better understanding of this variability across individual maps, we performed a

PCA on the maps themselves, which we will term interpretation-PCA for clarity. A first inter-

pretation-PCA dimension explained 35.9% of the variance, while a second dimension

explained 24.2% of the variance. There was a drop for all other dimensions (N = 3) which

explained less that 13% of the variance, see S4 Fig. Participants ordered on the first two inter-

pretation-PCA dimensions are shown in Fig 6B. We computed the variance of all STM features

along each interpretation-PCA dimension, to visualize the features that distinguished the

interpretation maps along these main axes of variation. Results are shown in Fig 7C and 7D.

The features defining the first interpretation-PCA dimension were clustered between rates of

about 2 Hz to 8 Hz, which is exactly the amplitude modulation range corresponding to speech

prosody and syllabic rate [41]. This shows that the amplitude modulation characteristics of

speech was affected by sleep deprivation. Importantly, depending on the individual, the classi-

fiers used the presence or absence of energy around these rates to detect sleep deprivation.

This shows that while some participants spoke in a “flattened” voice after deprivation, consis-

tent with classic hypotheses [26,33], others instead spoke in a more “animated” voice after dep-

rivation. The features defining the second interpretation-PCA dimension clustered at very low

rates and covered a broad scale range, peaking at about 2 cyc/oct. This corresponds to long-

term spectral characteristics of speech and vowel sounds. In speech, such voice-quality or tim-

bre features are determined by the precise shape of the various resonators inside the vocal

tract, such as the throat and nasal cavities: by filtering the sound produced by the vocal folds,

resonators impose formants that impact the timbre of vowels and other speech sounds.

Fig 6. Interpretation of the population-level classifier. Discriminative features (see main text) are shown in the input STM space, for the rate-scale and

frequency-scale projections. Red areas indicate features positively associated to sleep deprivation by the classifier. Blue areas correspond to features

negatively associated to sleep deprivation by the classifier. Color bar indicate the averaged value of the reverse correlation mask. Values are low because of

the relative low consistency of the interpretation masks for this population-level classifier.

https://doi.org/10.1371/journal.pcbi.1011849.g006
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Correlation with subjective sleepiness reports

All participants were subjected to the exact same amount of sleep deprivation. Nevertheless,

their subjective sleepiness reports varied widely (Fig 1). We investigated whether the variability

in subjective sleepiness reports could be accounted for by characteristics of the individual

machine-learning classifiers.

First, we simply correlated the individual classifier’s accuracies to the individual SSS reports

after sleep deprivation. If subjective sleepiness was a full measure of the impact of sleep depri-

vation, we would expect a high correlation between the classifier’s accuracy and SSS reports.

Results are shown in Fig 8A. There was no significant correlation between BAccs and SSS

reports (r(20) = .32, p = .14, BF10 = .47), suggesting that subjective sleepiness did not express

all of the objective effects of sleep deprivation, at least as captured by our voice classifiers.

Next, we investigated whether the classifier’s interpretation maps could account for the SSS

reports variability. In particular, we reasoned that the prosodic and rhythmic changes captured

by the first interpretation-PCA dimension could be due to cognitive factors, inducing flattened

Fig 7. Interpretation of the participant-level classifiers. A. As for Fig 6, but for individual participants identified by their participant #. B. Projection of

participants # in the interpretation-PCA space of all participant’s masks (see text for details). C. and D. Variance of the idealized masks along the first two

dimensions of the interpretation-PCA. Idealized masks are obtained by first sampling the PCA latent space between -2 and 2 for the two first dimensions

with 30 values and then inverting the latent space into the input feature space by using the inverse transform of the PCA. Red areas show the discriminative

features that vary the most along each interpretation-PCA dimension. Units: variance in the feature space.

https://doi.org/10.1371/journal.pcbi.1011849.g007
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or animated speech. Such factors could be explicit to participants–if only by self-monitoring

their own speech rate and intonation. In contrast, the voice quality cues captured by the sec-

ond interpretation-PCA dimension could be more subtle and remain implicit. Results are

shown in Fig 8B and 8C. Consistent with our hypothesis, we observed a moderate but signifi-

cant correlation between the location of participants on the first interpretation dimension and

sleepiness reports (r(20) = -.44, p = .03, BF10 = 1.34). In contrast, the location of participants

on the second interpretation dimension did not show any significant correlation with sleepi-

ness reports (r(20) = .19, p = .38, BF10 = .23).

Finally, to assess the full information contained in the interpretation maps, we fitted a linear

model that used coordinates on both interpretation-PCA dimensions to predict SSS scores

after deprivation (see Methods). Results showed that it was possible to predict sleepiness from

interpretation maps (R2: M = .29, SD = .18) significantly above chance (two-sample t-test to 0:

p< .00001). This results further suggests that the classifiers detected voice changes related to

sleep deprivation and not random variation across reading sessions.

Discussion

Summary of findings

We ran a sleep deprivation protocol with normal and healthy participants, collecting subjective

reports of sleepiness plus vocal recordings before and after deprivation. After two nights of

mild sleep deprivation, subjective sleepiness increased on average, although with striking indi-

vidual differences—including some participants even reporting decreases in subjective sleepi-

ness after deprivation. Nevertheless, sleep deprivation could be detected accurately by means

of machine-learning analysis of vocal recordings. Classification was most accurate at the indi-

vidual level, with 85% balanced accuracy on average. Importantly, such a classification was

based on a fully generic auditory representation. This allowed us to interpret the discriminative

features discovered by classifiers to detect sleep deprivation. Two broad classes of features

were revealed: changes in temporal modulations within the rhythmic range characteristic of

speech sentences, and changes in spectral modulations within the timbre range of speech

Fig 8. Relation between subjective sleepiness and voice classifiers. A. Subjective sleepiness is plotted as a function of balanced accuracy of each

participant-level classifier. B. Subjective sleepiness is plotted as a function of the coordinate of each participant-level classifier on the first dimension of the

interpretation-PCA space. C. As in B., but for the second dimension of the interpretation-PCA space.

https://doi.org/10.1371/journal.pcbi.1011849.g008
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sounds. Furthermore, the interpretation maps could account for some of the variability in sub-

jective sleepiness reports, which were correlated to the changes in temporal modulations (“flat-

tened” or “animated” voice).

Candidate mechanisms underlying the vocal biomarkers of sleep

deprivation

Our data-driven analysis revealed that classification was based on two classes of auditory fea-

tures: temporal modulations in the 2 Hz to 8 Hz range, and spectral modulations around 2

cyc/oct. We now speculatively relate these vocal features to two classes of well-established

neurophysiological effects of sleep deprivation.

The temporal modulation features associated to sleep deprivation were in a range which

has been robustly found as characteristic of speech across a variety of languages, to the extent

that they have been described as “universal rhythmic properties of human speech” [41]. Such a

universal rhythm is imposed by the biomechanical constraints of the vocal apparatus and by

the neurodynamics of its control and perception systems. The changes in speech rhythms

observed after sleep deprivation could thus result from a temporary impairment of the cogni-

tive control of the speech production process. Sleep deprivation impacts cognitive function

[20], presumably through changes in glucose consumption in frontal and motor brain regions

[49,50]. Accordingly, previous studies showed lower activity in the dorsolateral prefrontal cor-

tex and in the intraparietal sulcus in cognitive tasks requiring attention, with large inter-indi-

vidual variability [51]. A reduced connectivity was also observed within the default mode

network, the dorsal attention network, and the auditory, visual and motor network following

sleep deprivation [50,52,53]. Finally, extended wakefulness has been associated with an

increase in the intrusion of sleep-like patterns of brain activity in wakefulness [54,55]. All these

results suggest that sleep deprivation is akin to a minor cognitive frontal dysfunction, and may

thus plausibly affect the fluency of vocal production. Interestingly, compensatory responses

were also observed in cognitive tasks, which may explain why some of our participants

responded to deprivation with less speech modulation, consistent with the classic “flattened

voice” hypothesis [26,27], whereas others unexpectedly responded with speech over-modula-

tion and instead produced an “animated voice” after deprivation.

The spectral modulation changes detected by our classifiers were consistent with changes in

the timbre of speech sounds, and in particular vowel sounds [35,38,42]. Such sounds acquire

their distinctive spectral envelopes by means of the resonances of the vocal tract, including the

throat and nasal cavities. Inflammation of the throat and nose could be responsible for these

changes in timbre. Sleep deprivation is known to trigger an immune response leading to

inflammation. A cortisol increment can be observed after a single night of sleep deprivation

[8,56,57], so is plausible in our protocol that included two nights of mild sleep deprivation. In

terms of mechanisms, sleep restriction and deprivation disturb the normal secretion of hor-

mones like cortisol or testosterone, and is associated with increased rates of interleukin-6 and

CRP as assessed on salivary samples in normal subjects. This inflammatory response could be

linked to an elevated blood pressure following sleep deprivation [58] and could affect the vocal

tract and impact the spectral envelope of speech. It should be noted that other variables, such

as changes in hydration or food intake due to deprivation, might also impact characteristics of

the vocal apparatus and induce timbre changes instead or in addition to putative inflamma-

tion. Such additional variables were not controlled in our protocol.
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Limitations of the study

There are both technical and conceptual limitations to the present study. We chose to use a

controlled protocol to precisely equate sleep deprivation in our participants, but this came at

the expense of a relatively small dataset compared to the online databases used by machine-

learning challenges [30,31]. Our protocol prevented biases in the database, such as associating

the identity of speakers with the amount of sleep deprivation [28], but also limited our choice

of possible machine-learning techniques to perform the classification. We thus used an SVM

classifier, and not potentially more powerful deep-learning architectures. We note however

that in the studies that compared SVMs with other classifier types, SVM performed best,

including in state-of-the-art studies [14,32,33]. In any case, the interpretation method we used

could be applied to any kind of classifier [39], including more complex ones.

All participants were female, mainly for practical reasons. Sleep deprivation might affect

females and males differently, in particular with respect to inflammation, although the evi-

dence is still mixed [59]. The generalizability of our findings to males thus remains to be tested

experimentally. In addition, the modest performance observed for population-level classifiers

limits the generalization of our approach to unknown speakers, which would be desirable for

practical use cases involving pre-trained classifiers. However, this also confirms the interest to

apply interpretation techniques at the individual level, to capture the variability that seems

inherent to the effects of speech deprivation.

The feature set we used was a generic auditory representation, which is a major difference

with previous machine-learning oriented studies. On the one hand, some studies were fully

data-driven and selected the best-performing features from thousands of speech descriptors.

The resulting features were often difficult to interpret. On the other hand, there were also stud-

ies using a small set of features, but these features were carefully hand-crafted and potentially

lacked genericity. Our approach represents a trade-off between these two ideas: we applied a

data-driven approach to select a small subset of features, but because these features were from

a generic representation, they remained interpretable. A clear limitation is that we did not

include features related to pitch or functionals of pitch such as contour features, which have

been repeatedly shown to be useful for sleepiness detection [14,32,60]. However, average esti-

mates of pitch and pitch variation (Fig 2D) suggested that there were no obvious effects on

these features in our database. Furthermore, our classification pipeline applied to standard

speech features performed worse than using the STM representation. We believe that these

omissions were compensated by the richness of the STM representation. Pitch and pitch func-

tionals will in fact be indirectly reflected in the STMs, which analyses sounds over a broad

range of temporal scales simultaneously.

The possible physiological mechanisms that we put forward as a mediation between sleep

deprivation and vocal features have to be considered as fully speculative for now. We did not

collect the objective measures required to confirm or infirm these interpretations. The cogni-

tive factor could be assessed with objective behavioral measures, such as the psychomotor vigi-

lance test [22], or with brain imaging data [49,50]. The inflammatory factor could be assessed

by biological analyses of e.g. cortisol in the saliva [8,57]. Because we have not gathered such

measurements, we can only argue that both minor cognitive dysfunction and inflammation

effects are likely for our participants as a group. In any case, the present study is the first one to

suggest that such factors may be measured at the individual level from voice biomarkers, and it

raises the possibility for future investigations to confirm or reject this hypothesis by actually

correlating vocal features with more invasive objective markers.

The classification task we investigated consisted only in detecting whether a vocal recording

was performed before or after sleep deprivation. We did not attempt to decode the effect of
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more subtle factors on the voice, such as the time of the day, which would reflect the interac-

tions between circadian rhythms and sleep deprivation. These interactions have been shown in

a recent study [61], albeit using a more severe deprivation protocol (60 hours without sleep).

Unfortunately, our experimental design does not provide the statistical power to examine

within-day variations before sleep deprivation (half the dataset) or the interaction between

within-day variations and deprivation (second-order effect). In the same study, a regression

approach was implemented to provide predictions beyond binary classification. Interestingly,

this approach was successful only for predicting objective measures, such as sleep latency, but

failed for subjective reports. This is consistent with the claim that subjective scales incom-

pletely characterize the full effects of sleep deprivation and can usefully be complemented by

objective measures such as voice analysis. As we did not collect objective measures of sleepi-

ness beyond the voice, we did not attempt a regression analysis.

Finally, on a conceptual level, we wish to raise a basic but inescapable limitation of any

study of sleep deprivation. Sleep deprivation may be defined, as we did, by the amount of sleep

available to each individual. However, as has been repeatedly pointed out and again observed

here, there is a remarkable diversity of responses to the same amount of sleep deprivation.

Thus, it should not be expected that any one measure will capture all of the effects of sleep dep-

rivation. Subjective reports may capture explicit feelings of fatigue, but be blind to implicit

effects [61]. With objective measures, which are by necessity indirect, there is an issue with

interpreting negative outcomes. In our case for instance, how to interpret a relatively poor

accuracy for a sleep deprivation classifier, such as was observed for two participants? It cannot

be decided whether this poor accuracy showed that sleep deprivation had no effect on these

participants, or that sleep deprivation had effects that were not expressed in the voice, or that

the classifiers simply failed for technical reasons. Measuring multiple markers of sleep depriva-

tion, including the novel ones we suggest, and incorporate them into a holistic model of the

neurophysiological effects of sleep deprivation seems to be a promising way forward.

Perspectives

Keeping these limitations in mind, the demonstration of vocal biomarkers for sleep depriva-

tion could have major clinical implications. Subjective sleepiness reports do not capture the

whole effect of a lack of sleep [61]. Moreover, such reports rely on the honest cooperation of

participants, which is not a given if self-reports of excessive sleepiness can have negative work-

related or financial consequences for the individual. Objective correlates of sleepiness exist

[21,22], but vocal biomarkers would represent a considerably cheaper and faster alternative,

requiring no specialized equipment and increasing their practicality for real-life clinical assess-

ment. Crucially, our technique also goes beyond the simple binary detection of sleep depriva-

tion: thanks to the application of interpretability techniques [39], we suggest that different

neurophysiological processes related to sleep deprivation may be untangled through the voice

alone. Such measures could in turn be used to design interventions tailored to each individual

and situation, if the effects of sleep deprivation needed to be temporarily alleviated for

instance. More generally, there is a growing realization that interpretability is key to future

clinical applications of artificial intelligence, as both patients and clinicians would likely want

to understand the reason for a diagnostic [62]. For application to real-life settings, it is particu-

larly interesting to identify features that do not correlate with subjective sleepiness, as one of

the biggest dangers of sleep loss is the partial agnosia for one’s own sleepiness.

To finish, it is useful to point out that the methodological pipeline we introduced here is

fully generic, as the audio features representation used is itself generic and the interpretation

method can be applied to any classifier. Therefore, the present study could pave the way for
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future investigations of vocal biomarkers over the broad range of fundamental or clinical

applications that are currently only starting to be considered [24,25].

Materials and Methods

Ethics statement

The study was conducted according to French regulations on human research including agree-

ments from the Hotel-Dieu Hospital Ethics Committee (CPP Ile de France 1—N˚ 2017-sept.-

13690), with signed consent from participants who received financial compensation. Our pro-

tocol was conducted in accordance with the 2016 version of the Declaration of Helsinki and

the ICH guidelines for Good Clinical Practice.

Experimental design

A group of twenty-four healthy women between 30–50 years old (42.7 ± 6.8) took part in the

experiment. This study was part of a dermatological study and only Caucasian phototypes I-IV

(Fitzpatrick classification) were recruited. Participants were non-smokers and did not report a

history of substance abuse. They had a Body Mass Index (BMI) between 19 and 25, no sleep

disorders or chronic disease, no daytime vigilance issues (Epworth Sleepiness Scale� 10), and

were not under any medical treatment (exclusion criteria).

Before the experiment, participants wore an actigraph for 7 days and were instructed to

maintain a regular sleep-wake behavior with their usual 7–8 h of sleep (i.e., in bed from 23:00–

01:00 until 07:00–09:00). The compliance with these recommendations was verified through

the actigraphic recordings (MW8, CamTech; UK) that were inspected by the research team at

the participant’s arrival the morning before the first night of sleep restriction (day 1). No sleep

episodes were detected outside of the scheduled experimental time in bed (see [40] for details).

The protocol lasted for 3 days (day 1: before sleep restriction; day 2: during sleep restriction;

day 3: after sleep restriction), which included 2 nights of sleep deprivation (at the end of day 1

and 2). For days 1 and 2, participants were instructed to restrict their sleep time to 3h (i.e., in

bed from 03:00 to 06:00) and to follow their usual routine outside the laboratory. After the sec-

ond sleep-restricted night (day 3), the participants went to the laboratory on the morning and

their actigraphy recordings were immediately analysed to ensure their compliance with the

imposed sleep-wake hours. During day 1 (after habitual sleep and before sleep restriction:

baseline condition) and day 3 of each session, the participants remained in the sleep laboratory

from 09:00 to 19:00 under continuous supervision. In order to help the participants stay

awake, from the moment they left the laboratory at the end of day 1 until their return to the

laboratory at the beginning of day 3 at 09:00, two investigators exchanged text messages with

the participants at random times during the entire period outside of the laboratory. Text mes-

sages were sent throughout the night (except during the period where participants were

instructed to sleep, that is between 3 and 6 a.m.). Participants had to respond right after receiv-

ing these messages. In case of an absence of response, participants were immediately called on

their personal phone. For lunch in the laboratory (days 1 and 3), participants received con-

trolled meals consisting of a maximum of 2,500 calories/day with a balanced proportion of

nutrients (protein, fat, and carbohydrates).

Voice recordings

During day 1 (before sleep deprivation) and day 3 (after), at three different times during the

day (9am, 3pm, 5 pm), participants were seated and instructed to read 10 minutes of different

chapters of the same French classic book: “Le Comte de Monte Christo” (Alexandre Dumas,
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1844). Their voice was recorded with a portable recorder (Zoom H1/MB, stereo-recording).

Then, during one minute, participants produced free speech, but these recordings were not

used in the present analyses. Two participants had to be discarded at this stage, as technical

issues prevented the completion of all recording sessions.

Baseline speech feature set

We computed basic speech features using the openSMILE library [45], in the configuration

recommended for the Interspeech 2011 challenge. This feature set has been used for in state-

of-the-art studies detecting sleepiness from voice recordings [33]. It consists of 59 low-level

descriptors, including 4 energy descriptors, 50 spectral descriptors, and 5 voice descriptors.

These descriptors were then combined with 33 base functionals and 5 f0 functionals, resulting

in a total of 4,368 features.

Spectro-Temporal Modulations (STM)

The sound files, initially sampled at 44.1 kHz, were down-sampled to 16 kHz. Spectro-Tempo-

ral Modulations (STMs) were computed with our own toolkit, available on the repository asso-

ciated with the paper and which is directly adapted from the standard NSL Toolbox [35].

Sounds were processed through a bank of 128 constant-Q asymmetric bandpass filters equally

spaced on a logarithmic frequency scale spanning 5.3 octaves, which resulted in an auditory

spectrogram, a two-dimensional time-frequency array. The STM were then computed by

applying a spectro-temporal modulation filterbank to the auditory spectrogram. We generally

followed the procedure detailed in [36], with minor adaptations. A 2D Fourier transform was

first applied to the spectrogram resulting in a two-dimensional array [44] whose dimensions

were spectral modulation (scale) and temporal modulation (rate). Then, the STM representa-

tion was derived by filtering the MPS according to different rates and scales and then trans-

forming back to the time-frequency domain. We chose the following scale (s) and rate (r)
center values as 2D Gaussian filters to generate the STMs: s = [0.71, 1.0, 1.41, 2.00, 2.83, 4.00,

5.66, 8.00] cyc/oct, r = ±[.25, .5, 1, 2, 4, 5.70, 8, 11.3, 16, 22.6, 32] Hz. Such a range covers the

relevant spectral and temporal modulations of speech sounds as already used in different stud-

ies [63]. The resulting representation thus corresponds to a 4D matrix with dimensions of

time, frequency, scale, and rate.

Classification pipeline

For all recordings, STMs were computed and used as the basis for the input feature space.

STMs were computed with 22 rates x 8 scales x 128 frequencies per 40ms temporal windows.

One data point for the classifier consisted of the average of 3841 successive temporal windows,

yielding frames of 15 seconds. Thus, there were 22528 features for every 15-s long frame.

Standard machine-learning pipeline were then used [13,14,36] to predict whether a frame

belonged to the sleep deprived class or not. First, the whole dataset was randomly separated

into a training set and a testing set, either by randomly holding 25% of the data into the testing

set or, only at population level, by holding-out the data from one participant to define the

training and the testing in a Leave-One-Subject-Out (LOSO) cross-validation procedure. We

then reduced this high dimensionality of the feature space by means of a principal component

analysis (PCA). At the population level, we trained a PCA on the whole dataset and retained

the 250 main dimensions, explaining 99% of the variance. We further checked that the exact

choice of PCA dimensions did not affect our conclusions, about the performance but also

about the interpretation of the classifiers (see S2 Fig). At the participant level, for each partici-

pant we trained a PCA on the data from all other participants, to reduce a possible
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contamination of the reduced space by peculiarities of the considered participant. We next

retained the 30 main dimensions of the PCA. The number of PCA dimensions in this case was

chosen empirically, so that the reduced feature space still explained more than 90% of the vari-

ance and provided a dimensionality lower than the number of frames available for each partic-

ipant (between 98 and 194 frames of 15 s each), to avoid overfitting. We checked that the exact

choice of PCA dimensions did not affect our conclusions, in particular on the interpreted fea-

tures that are consistent for PCA dimensions above 30.

The PCA spaces were then fed to a support vector machine classifier (SVM) with a gaussian

kernel (radial basis function). The training set was used to fit the SVM through an hyperpara-

meter grid-search, using a stratified 5-folds cross-validation. The fitted SVM was then evalu-

ated on the testing set by computing Balanced Accuracy (BAcc, defined as the average of true

positive rate, or sensitivity, with true negative rate, or specificity). For the randomly selected

train/test split, we repeated the fitting procedure 50 times, generating 50 distinct train/test sets

for both the population and individual levels (denoted 50-splits, 25% test). In the Leave-One-

Subject-Out (LOSO) approach, we replicated the fitting procedure with 22 participants, each

excluded once and designated as the testing set. In each instance, we computed the final bal-

anced accuracies and then averaged them across either the 50 different train/test splits (in the

case of 50-splits, 25% test) or across the 22 subjects (in the case of LOSO). Lastly, for each

cross-validation procedure, we conducted a t-test against the threshold of 0.5 using the distri-

butions of balanced accuracies. This allowed us to evaluate the classifier’s capability to predict

sleepiness from voice, assessing its performance compared to random chance. All the classifi-

cation pipelines from PCA to RBF + SVM are implemented with the scikit-learn library [64].

Interpretation of the classifiers

Each classifier fitted in the study was probed with a reverse correlation technique which pro-

vides an interpretation of which features are relevant to the classifier [65]. We refer to our

method paper for a full description of the method [39]. Briefly, noisy inputs or “probes” were

generated and the classifier’s decisions were registered for each probe. The average of probes

leading to a “before deprivation” was computed and then subtracted to the average of probes

leading to an “after deprivation” decision, to obtain what we termed an “interpretation mask”

for the classifier. We used the version of the method where probes are pseudo-random noises

in the PCA-reduced input space [39], as this increases search efficiency. For each classifier, the

number of probes was set to 100 times the number of available frames, which represented

between 9800 and 20000 probes depending on the classifier. The resulting interpretation

masks are composed of positive and negative values. Positive values correspond to features

which are associated to sleep deprivation, while negative values correspond to features associ-

ated to the absence of sleep deprivation. Here we refer to the content of the mask as mask as

the "discriminative information", which has also been termed "represented features" previously

[39].

Supporting information

S1 Fig. Acoustic difference before and after sleep deprivation before and after sleep depri-

vation computed as 2*abs(After-Before) / (After+Before)–for each subject ranked accord-

ing to the classifier accuracies. Units: Percent.

(TIF)

S2 Fig. Performance of the classifiers as a function of the number of principal components,

averaged across the 22 subjects. (Right) Average pairwise correlations between the
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interpretation masks for different number of Principal Components averaged across the 22

subjects. In order to evaluate for how many PCs the interpretations are stabilized, pairwise cor-

relations between each masks, 1 one for each PC, has been done for each and averaged across

the whole 22 subjects. We observe that the interpretation is stabilized around 20 PCs which.

(Left) Error bars represent standard deviations.

(TIF)

S3 Fig. Average masks in the frequency-rate projection for all subjects (ranked by balanced

accuracy). Red indicates the areas of the frequency rate projections that are used by classifier

to predict a sleep deprived excerpt and conversely, blue indicates frequency-rate areas that

characterize a non-sleep deprived voice.

(TIF)

S4 Fig. Explained variance with respect to the number of principal components for the

interpretation-PCA analysis. Units: percent.

(TIF)
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