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Abstract: This article is devoted to the synthesis and analysis of the quality of the statistical esti-
mate of parameters of a multidimensional linear system (MLS) with one input and m outputs. A
nontrivial case is investigated when the one-dimensional input signal of MLS is a deterministic
process, the values of which are unknown nuisance parameters. The estimate is based only on ob-
servations of MLS output signals distorted by random Gaussian stationary #-dimensional noise
with a known spectrum. It is assumed that the likelihood function of observations of the output
signals of MLS satisfies the conditions of local asymptotic normality. The Jn -consistency of the
estimate is established. Under the assumption of asymptotic normality of an objective function, the
limiting covariance matrix of the estimate is calculated for case where the number of observations
tends to infinity.
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1. Introduction

The model of observations of the output MLS signals, which is used to estimate MLS
parameters, has the form:

© —
Zys=Yur 8, Yuy Zth_r (ll)st, teln,
=0

where Zy, eR”, tel,_n, and n>gq are observations of the output MLS signals Yus
distorted by the noise &; h, (u)= (hk,, (u), ke I,_m), re0,00 is the impulse response of
MLS; and s, € R! , teZ is the input signal of MLS, whose values are unknown nui-

sance parameters.
The value u of the parameter of observations z,, is unknown and belongs to the

open set U of the g-dimensional vector space ueU cR?. The functions h, (u) and

reZ" are supposed to be known. The noise &, =((§k,,, k el,_m) is the m-dimensional
random Gaussian stationary time series with zero mean value and known complex ma-
trix power spectral density (MPSD) F; (1)eC™", i€ [-7,7]. We also suppose that the
noise &, is the regular random process of the maximal rank satisfying the strong mixing
condition [1,2].

Mathematics 2024, 12, 473. https://doi.org/10.3390/math12030473

www.mdpi.com/journal/mathematics



Mathematics 2024, 12, 473

2 of 22

In this article, we synthesized the estimate ﬁ(i ) of the value u in a situation

u,n
where there is no detailed prior information about the MLS input signal s,. Such prob-
lems arise in many technologies, such as radio engineering, acoustics, and seismology,
when it is necessary to determine the characteristics of a physical linear medium based
on the results of its sounding by propagating waves emitted by natural or man-made
sources [3-6]. It is impossible in such problems to observe the medium deformations in
the inner regions of the Earth’s crust, caused by the action of an unknown probing signal
s, . Therefore, the characteristics of the medium can only be determined by analyzing the
wave field excited by the signal s, and recorded by an array of spatially distributed
sensors located at the Earth’s surface.

The problems of estimating the characteristics of the Earth’s medium that arise in
seismology are, as a rule, the most complex. If the propagation of waves in the Earth’s
medium can be described by a system of linear partial differential equations, then the
signals recorded by an array consisting of m seismic sensors can be interpreted as output
signals of an MLS with one input and m outputs. In this case, the physical characteristics
of the Earth’s medium can be considered mathematically as some parameters of this
MLS.

Because the input signal s, of the MLS belongs to a one-dimensional subspace R'
of the m-dimensional space of the MLS output signals, the observations z,, e R", even

distorted by interferences &,, provide enough information about the value ueR?,
g <m of the MLS parameters to construct a consistent statistical estimate of this value.

The problem of statistical estimation of parameters of multivariate observations,
closest in formulation to our problem, was considered in [7]. This is the problem of esti-

mating the parameter B e R™" of the model of observations known as “multivariate
linear functional relationship”:

z, =Bs, +&,, teln; x,=s,+(,, teln,

where s, e R” is a sequence of unknown nuisance parameters and the errors &, ¢, are

independent Gaussian vectors with a mean equal to zero and a covariance matrix equal
to I . That is, the parameter B should be estimated from the observations

(zt, xt), teln.
As noted in [7], if a priori restrictions on an infinite sequence of nuisance parameters
are not imposed, then the nonparametric model (z,, x,), #€1,n does not correspond to

traditional nonparametric models, where observations belong to some metric space and
for which asymptotically efficient (AE) estimates can be constructed. Nevertheless, in [7],
the local asymptotically minimax estimate of the parameter B was constructed, which
has been proposed in [8].

The model of observations z,, differs significantly from the model (Zt, xt) , since

it does not assume observations x, =s,+¢,, te Ln of the nuisance parameters
s, € R! ,t€Z. Also, for z,,, we have additive time series §,, 7€ l,_n , a sample from the
stationary Gaussian random time series with a known MPSD Fé (/1) e C™™ , while for
(z,,%,), &.¢ are independent Gaussian vectors. In addition, the estimated parameter

ueR? is “hidden” in the impulse response h, (u)eR" of the MLS. For these reasons, it

is impossible to construct a local asymptotically minimax estimate for the parameter u
in our problem. Nevertheless, in this problem, it is possible to construct a +/n -consistent
estimate of the parameter value u. This will be performed in detail in Section 3.
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2. Basics of Efficiency Criteria for Statistical Estimates

A oo . . ]
In denoting z, , = (z“,,, te l,n) as a criterion of quality for estimates " (

will use the mean square error (MSE) matrix
K, [ii,]=E, {(ﬁn —u)(, —u)T}

It is said that one estimate 1, ; is better than W,, when the corresponding MSE

matrices satisfy the inequality,

Kn [ﬁn,l:| 2 Kn |:ﬁn,2:|

where inequality A >B means that A -B is a nonnegative semi-definite matrix.

7 —RY .
If WeUCRY s a vector of true values of parameters for so-called regular paramet-
ric probability models of the observations, a lower boundary for matrices K, [i,] in a

class of unbiased estimators 1, (i“,n) exists; it is defined by Fisher’s information matrix
J,(u
»(w) [9]:

K,[4,]>3,' (v),

where J, (u)= j (V“p(Eu’n;u))(vup(imn;u))T p! (Eu,n;u)diu’n;
P
p(iu,n;u) is the probability density of random observations Z,

wn 7
T
Vup(iu,n;u):[%p(iu,n;u)9 k EEJ .

and

In this case, an estimate is said to be statistically effective if the following equality
holds:

K¢ (u)=E, {(fff (Zu)—u) (8 (s )—u)T} =3, (u)

However, effective estimates exist, even theoretically, only in some special para-
metric probability models of the observations, which rarely correspond to practical
needs. Instead, in some cases, it is possible to construct the asymptotically efficient (AE)

estimate 4" (Z, ), which has a limit error covariance matrix K* (u) equal to the limit of

the inverse Fisher’s information matrix J,'(u) (n— %) [10]:

K® (u) = lim nE{(u (Zu) (i (iu,,l)—u)T} = lim nJ," (u)

n—>x0 n—0

For instance, in certain applications, s,,t€ I,_n can be considered a realization of the
stationary Gaussian random process s,,#€Z with a zero mean and known power
spectral density (PSD) g, (4). Hence, the Gaussian probability density p(iu’n;u) of the
random sample Z,,, whose nmxnm-matrix covariance function depends on the pa-
rameter u, does not belong to the exponential family of distributions [11]. Therefore, in

this case, there is no efficient estimate @°f (iu n) that has an error covariance matrix

Kflf (u) equal to the inverse Fisher’s information matrix J ;1 (u) at each number of ob-

servations 7, but an AE estimate exists, and its analytical form is given in [12]. However,
the most common situation occurs when s,,7€Z are unknown, and the observation
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model for Z,, becomes nonparametric and the AE estimate cannot be constructed in

the sense of J,,"(u).

3. The Estimate of MLS Parameters in the Case of Unknown Input MLS Signal

In many applications, the values of the MLS input signal s,, 7€ Z are unknown and
are not observed. In this case, the estimation of u based on the sample of observations
z,, of MLS output signals becomes a statistical problem with nuisance parameters,
which are the unknown values of the signal s,, 7 € Z . This problem was studied in [13]
for cases where the number of nuisance parameters does not increase with the increase in
the number n of observations. In our case, the number of nuisance parameters s,, t € I,_n
is equal to the number n of observations Z, ,, and it is impossible to construct a con-
sistent estimate of the informative parameter u without introducing some constraints
on the asymptotical properties of the nuisance parameters s, t e Ln neZ". Such con-
straints were proposed in [11]:

l.a. The signal s, has finite average power: lim 2n~ ! z |st| =C<oo.
n—o

t=—n

1.b. For any neZ", the signal s, tel,_n satisfies the inequality m|s,|<nﬂ
tel,n

where f€[0,1/2).

Note that almost all sample functions of stationary random processes satisfy such
restrictions [14].

It is shown in [11] that, in cases where all the values of the input MLS signal
s;, t€Z are known and constraints 1.a and 1.b are satisfied (and also some restrictions

on the MLS impulse response h, (u) and the noise MPSD F; (1)), the likelihood func-
tion In p( Z, U ) of observations z, admits the LAN [15] expansion in the vicinity of
value ueU:

1

1npn( Z,,u+n -2 ) 1npn( wnsl )+WTAn(iu’n;u)——wTFn( JW+a, ( u,,,u,w), 1)

2

where |w|<C; C isany constant; P- lim o, (z“n,u,w):O; zu,n—( ZytE] n)

n—0
An(iu,n’ ) (Akn( un’u Sl’ s n)’keﬁ); rn(u):[rk,l,n(u’ﬁl"""s:n)’k’leL_q:|; (2)
Akn( Xy 5Us 815005 8 ) _1/22( X, ;—h; Sj)*Fg’l-l.l;(’j(u).S"j,' X, isthe DFFT of Z,,;

lij(u):li(

. . IR L, .2
U (WSp508, ) =1 lth,j (“)Fé,}h/,j (“)|SJ'
=

; lim Fn(u)=F(u);

n—>0

. 6h(ﬂj;v) S — _
lj;u); hk,_/(“):Tl":“; sj,jel,n are the DFFTsof s,,tel,n;

and the probability distribution of the random function A ( Zy s u) converges as
n—>o© tothe ¢-dimensional Gaussian distribution with the moments (O,F(u)).

When the values s,, tel,n are unknown for any neZ", it is impossible to con-
sistently estimate all unknown parameters of the observations Z,, (i.e., the MLS pa-
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rameter value u together with the nuisance parameters s,, te Ln ) using only the main

terms (2) of the LAN expansion (1) of the likelihood function of the observations. But in
our problem, it is necessary to estimate only the MLS parameter value u, and it is not

necessary to estimate the nuisance parameterss,, t € 1,n . The approach to solving such an

unconventional estimation problem was first proposed in [16]. With some modifications,
this approach was implemented in [12] to solve our problem. The method proposed in
these publications was as follows:

It is easy to show that if the values s,, ¢ el,_n are known, the family of statistics
A, (iu’n, ) (Ak n( Xy p5U ), ke@) in Equation (2) is the gradient of the function

Inp, (in;v,ﬁl,...,s'n) with respect to parameters vy, k € O,_k :

Ay (Xypsu)=n"" gvrea;l(lnpn( X 13V 1500 ))‘v:u, ®)
where
lnpn( X3V S]seees n) ln(ﬁ(ZﬂdetF@j)_l/zexp{—(yku’j —hj(v) ) %i( l'lj(v)_éj)}}
=1

Note that the function pn( Xy 15 Vo S]eens n) in Equation (3) is the asymptotic ap-

proximation of the probability density for spectral observations of X, ;, je 1,7, which

are asymptotically mutually independent [1].

~ae

Hence, the AE estimate (iu n) of parameters u in cases of known s,,t€ln

can be obtained as the root of equation A, (iu,n ; V) =0 and has the form:

n *®

~ - . . . E . .

T (Xu,n) = arg max —Z(xu’j ~h; (v)sj) F:; (xu’j ~h; (v)sj) . (4)
velU Jj=1

When the values of s s J el,_n are unknown, one can, according to [14], construct
some estimate of the value u of the informative parameter together with the unknown
nuisance parameters §;, j€l,n by formally applying the maximum likelihood ap-
proach to the right side of Equation (4). That is, this estimate can be obtained by maxim-
izing the right side of Equation (4) through all unknown parameters

0= (vl,...,vq,s'l,...,j,,) eV ,where V isabounded setof RY™":

(i)(iu,n ) = argmax(ln b, ( X, ,,,(p)) = argmax{—i(xu,j —fl_j (V)s'j )* FE:I/ (Xu,_/ —fl_/ (V)éj )] (5)

(1154 (1154 j=1
Estimates (5) can be calculated by solving the following system of equations:

9 - 2
e e B, (Rui0)=0; 2" n B, (X0 39)=0.

2. gln P(Xui0)=0; kelg.

(6)

By representing a positively definite Hermitian matrix Fg } in the form

Fé ;= Fé }/zFé 2 we obtain:

In p, (Xu0i0) = Zl ) / %
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. = _1/2. o 1/2g
where py ; = F "%, ;3 d;(v)=F ;" (v).
Then, subsystem (6.1) can be written in the form:

2

2re(d (V)P -[d; (v)| sj) =0.
2 .im (8)
21m( (v )p“ J | j (v)| s; )z 0.
The system of Equation (8) has the following solution:

. d* 0 . _
§j()ku/;v)=ﬁ; jeln. )
J

To construct an estimate of the parameter value u, it is necessary to substitute the

estimate §; (X“’ y ;V) according to Equation (9) into subsystem (6.2):

- 0 . dJ(V)d ( ).

—1np(xu,,,;(p)=——z Pu, — Puj| =

) (10)

Thus, we define some estimate &% (in) of the value u of the MLS parameter as a

solution to the nonlinear system of equations:

Z|H V)Pu,;

aVk

]: [zpuj )pu/ =0; keﬁ, veU, (11)

(M)
|d.1' (V)|2

It is easy to check that the matrices II j (v) are the idempotent Hermitian matrices,

where Hj (v)=

ie., l;[j- (v)IL;(v)=T1,(v) for all veU and jeln. Hence, Equation (11) can be re-

written in the following form:

Zpu/ pu/ Zpu /ij( )pu,_j:O; keﬁ (12)
Jj=1

Therefore, the estimate of the value u of the MLS parameter at which the observa-

1/2

tions p, ; =F; were obtained can be found by maximizing the objective function

Xu, j
O(RXuniv)= Zpuj V)bujs (13)
that is,
ﬁ;f (iu’n) = arg max Q(iu,n ;V) . (14)
velU

According to the definitions of quantities p,,, s I j(v) , we can write objective

Function (13) as:
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2

(15)

7

n n l.l*4 (V)F_l-fi :
P . J . j%u,j
x“,jA(/”Lj;v)x“,j = z#

= jah; (V)F jh (v)

Fg_l (l)h(ﬂ;v)li* (A;V)Fgl (1) .

b (2:v) ' (2)h(4v)

0 (iu,n ;V) =

J

where A(ﬂ;v): Xy :h(ij;u)S(ij)+§(lj), in which u

is the value of parameter veU under which the sample ium = (Xuﬂj, Jje L_n) (DFFT of
the sample z, , = (zu,_/, je l,_n) ) was obtained; and 1; = 27jnt.

It is important to note that estimate (14) does not depend on the unknown values of
the nuisance parameters, i.e., the input MLS signals s,, 7 €1,n. For calculating estimate

(14), we must process only the spectral observations X, ; =y, ; + 3 i J € Ln atthe output

of MLS.

In what follows, we will take into account the assumptions under which estimate
(14) was obtained in [12]:

A. The MLS frequency response h(4;v) has second partial derivatives in the com-

ponents of the vector v, and these derivatives are continuousin veU cR?, Ae [—7[, 7[]

2
i, (Av)=

h(ﬂ;v),k,leﬁ, |h,’2,(/1;v)|<c for veU, Ae[-n,x].
vkﬁvl ’

B. detF;(1)>0.

Under assumptions A and B, the matrix functions
. oA(Au) ., *A(A;u
A (ﬂ«;u)=—a( ), A= (16)

exist, are uniformly bounded in norm, and are continuous in veU, Ae [—ﬂ', 7z] for all
kilelyq.
Let us note an equation that will be needed later. From (11) and (15), it follows that

I ; (u)=F"2 () Aj ; (4u)F (2;)

Assumptions A and B may have a physical explanation. The considered MLS model
arises in tasks such as wave field source localization in acoustics, radio, or slowness vec-
tor estimation in seismology, where the vector function h(4;v) describes wave propa-

gation. As a rule, such functions are sufficiently smoothed to have second and even third
partial derivatives in the components of the vector v. Assumption B is related to the
definition of regularity [1] of additive noise, which always holds for stationary Gaussian
processes.

Estimate (14) belongs to the class of M-estimates. M-estimates may have the prop-
erty of robustness, i.e., their accuracy depends less on changes in the probability distri-
bution of observations, unlike AE-estimates [17]. For this reason, M-estimators are used
in many applications of mathematical statistics in the natural sciences and in economet-
rics for statistical estimation problems where complete probabilistic models of observa-
tions are not known [10,18]. In these problems, the estimates are found by maximizing

some objective function O, (iu’n; v), velU instead of the likelihood function. Despite
the fact that likelihood-based estimate (14) is obtained from a parametric observation
model, taking into account an infinite number of estimated parameters @, itis not an AE
estimate but could still be robust.
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The asymptotic properties of M-estimates were studied in [10] for the problem of
estimating the distribution parameter of a one-dimensional random variable from a
sample of independent observations of this variable, while determining the probability
distribution of estimate (14) is a rather difficult task. This task will be simplified if we
consider the equivalent problem of determining the probability distribution of the root

.5

i) (X,,) of the equation grad 0,(x ( " n,v) =0.

The analysis of the asymptotlc statistical properties of the random estimate

a’l (iu,n) when n— o is based on the following theorem proved in [19], Theorem 1

and Corollary 1.

Theorem 1. Let an objective function O, (?u’n;v), veU cR? satisfy the following conditions:
A. The objective function Q, (X ( wnsV ) veU admits the following asymptotic expansion in

a small vicinity of the value ueU cintU :

Qn(iu,n;u+ -2 ) Qn( un’ )+n71/26n( un’ ) (2]’1) (D”(u)w+l3”( U’l’ )’ |W|<C
where n~"'?%3,, (?u’n;u) = [nm&km (iu’n;u) = aWiQn (iu’n;u + n’l/zw)‘w_o ke Gj,
. -
2 —
n'®, (X, ,5u) = [n‘dmn (Xuiu)= awi o O (iu,n;u+n*”2w)‘w:0, k.l e 1,4; (17)
- lim nfltl)n (?u n;u) =®(u); inf det®(u)>C>0; - (u)" <C;
n—»m ’ uelU

P-1lim B, (iu’n;w) =0.

n—x0

B. The vector statistic n™"'%3,, (iu,n;u) has a Gaussian limiting distribution for n—>oo
with the following moments:
. -1
lim E{n 3, ( wnsl )ST( u n;u)} = ‘P(u).

lim E{n_l/zﬁn (iu,n;u)} =0; no®

n—>0

u)||<C.

C. Let some statistic u| ( ) R have the following properties:
a. The statistic u5( Xy, ) is a solution of the system of equations 8, (X,,:v)=0 for any

dp, , (X
n>m and almost each %" with respect to the probability distribution — ™" ( wr ):

- A (=
Pu,n {6,1 (xu,n;un (xu’n )) = 0} =1.
b. The statistic 1, ( un) is the /n -consistent estimate of the value ueU .
Then, the random variable ¢, =n (ﬁf (?u,n)—u) has a Gaussian distribution in the as-
ymptotic n—> o with the following moments:

lim E{¢,,}=0; lim E{¢, &0} =D(u)=@" (0)¥(w)o™ (w); [D@]<C, uelcinv.
n—o

n—0

It has been proven in Section 5 that objective Function (13) satisfies the conditions A
and C of Theorem 1. The proof of the asymptotic normality of »~?5,, (?u,n ;u) , which is
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part of condition B, is quite challenging (it will be discussed in the end), but we will as-
sume that it holds. Then, the random variable g, , = Jn (ﬁ;s (iu’n ) —u) has Gaussian dis-

tribution in the asymptotic n— o with the following moments:

lim E{g,,}=0; lim E{G, &1, | = D(u)= @' (u) ¥ (@)@ (u), (18)
where ®(u)=[ @, (u): klclq] ; ¥ (u)= (W, (u): k.l ely) ;
R S HERTE) 2 :
i (u z_J”tr[(Akungu) (u)k (2))d2] +
{h*(z;um(m)Fg(ﬂ)A;(ﬂ;uW;u)dwsu) P () A,
AL )= 2T A ) A= () lffzﬂ(v)Fz_{ij;v()ii;W veU

n—x0

Vi 2

w, (4)= lim n_12|$(27rjn_1)| ; and v, =[1] is the largest integer j for which
j=1

2ﬂjn_1s/1.

4. Numerical Comparison of i, ( X, n) and the SRP-PHAT Estimator

As mentioned in the introduction, the particular case of MLS parameter estimation
problem is wavefield source localization by antenna arrays. The SRP-PHAT estimator of
source coordinates is the most popular, well-recommended, and robust method, as de-

scribed in [3,6]. In order to demonstrate the effectiveness of i ( un) given by (14)

compared to SRP-PHAT, Monte-Carlo simulations for two different cases of noise §&,

properties were performed in [4]. A set of 150 MLS outputs was considered in this ex-
periment. For the known value of the estimated parameter (x*, y*), a set of 110 mixtures
of 150 MLS outputs and time series &, was simulated.

A simple and known metric was used to numerically compare the effectiveness of
the algorithms:

) La[L 12
pRMSE[vn]:_Z Z(Vi _Vi)
P =il i=1
where v;k S =E is the known value of the unknown parameter V=(v1,...,vq) and
/i=1,q,j=1,p is the set of independent estimated values of the parameter

V=(V1, . q) In the current modeling, ¢ = 2 and p = 110. Two different sets of

v/,i=1,q,j=1,p were obtained by two different estimates: ° ( X, n) and SRP-PHAT.

1

Below, in Figure 1, the empirical two-dimensional probability density functions for
averaged (among MLS outputs) signal-to-noise ratio SNR = 0.05 are obtained for 110 in-
dependent estimates of source coordinates v =(v;,v,) in the presence of real correlated

noise with matrix power spectral density Fi (4) . In Figure 2, similar probability density
functions are provided for F; (2)=const*I, where I is the unit matrix. That means that

g, is represented as multidimensional white Gaussian noise with equal power spectral
densities.
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DENSITY
4000 DENSITY
[ 4000 r
| 20,000 -
2000+ A 20,000
I 2000 10,000 -
10,000
0 0
0.15
0.17 0.17
EAST (KM) EAST (KM)
0197 034 -033 032 010 o3 -033 032
NORTH (KM) NORTH (KM)
(a) (b)

Figure 1. Empirical two-dimensional probability density functions built by two different sets of 110
estimates: (a) set is given by SRP-PHAT, ppir =0.009 ; (b) set is given by ﬁg (?u’n ) ,

Pruse = 0.005 . Case of real noise.

=0.25 o =0.25 — .

1
2
w
T

1

1
S,
w

T

NORTH (KM)
NORTH (KM)

-035 |- -035 |-

0.1 0.15 0.2 0.25
EAST (KM)

0.1 0.15 0.2 0.25
EAST (KM)

(a) (b)

Figure 2. Empirical two-dimensional probability density functions built by two different sets of 110

estimates: (a) set is given by SRP-PHAT, ppuer =0.0532; (b) set is given by ﬁg(xu,n) ,
Pruse = 0.0298 . Case of noise with Fg (/1) =const*1.

As can be seen from Figures 1 and 2, in both cases, the pgr value of 4 (xu,n) is

approximately two times greater than the pg); value of SRP-PHAT. That is, the

changing properties of additive noise &, lead estimate ﬁf(xu’n

) to be more efficient

than SRP-PHAT. But while varying the additive noise properties, both estimators show
nondramatic changes in estimation accuracy, so they are both robust. More detailed in-
formation and a straight numerical comparison are given in [4].

5. Asymptotic Properties of the Objective Function O, (iu,n ;v)

The proof that the objective function Qn(xu’n;v) satisfies conditions A and C of

Theorem 1 consists of a sequence of lemmas.

Lemma 1. The objective function, O, (?u’,, ; V), v eU, satisfies conditions A of Theorem 1.
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Proof. Let us write the Tailor expansion of the objective function Q, (iu’n,

Ju+ n‘l/zw) in

the vicinity n 2w ,

W|<C of the parameter value u with the remainder term in the

Lagrange form:

z * - . z % L xr .
2 pu 11, (“ w12 )"u j Zpu AL (W)py;+n7"2Y by {ZHM (u)w, ]Puﬂj -
Jj=1 j=1 k=1

(19)
ZPUJ[ZHkI/ WlequJ+Bn(pun7 u, )lﬁu,n:(pu,j j=1,l’l), <C
k=1
where n V21T, »(u)zil'l (u+n 1/zw) A | 4 ()= o I, (u+n_1/2w)

pu;=d; (u)s; +i;.

The remainder term f, (ﬁu,n;w) on the right side of Equation (19) has the form:

q n
¥ . _ =372 . * ym -1/2 .
B (X3 W) =172 2 wowpw, | Db M7 (“+”l gk,l,r,jw)pu,j , (20)
kl,r j=1

where |[w|<C, 6, ;€(0,1).
We use the Lagrange form of the remainder term §, ( Xyns W ) above because it is the

simplest form of the Tailor expansion of the objective function Q,,( X0V ) by Equation

(13) given on the closed set v =U, but this form requires the existence of third bounded
partial derivatives of the objective function 0, (X ( sV ) . Let us assume that this is true for

the sake of simplicity. Due to this assumption, there exists a matrix function:

ny,, (v)=F" (zj)A;g,,,,,j (v)F"?2 (zj), 1)

where Aj (v):A(lj;V); A= 27jnt; A(ﬂ;v) é (}b) (% V) (A V) (/1) , velU,
i () B (4)h ()
which is continuous on veU and is bounded for all valid values of its arguments.
In accordance with Equation (7), we have:

Pu,; = Fe %, =d; (u)s; +0;, where d;(v)=F?h;(v).

The term dj (u)s'j is bounded for all jeln, ueUcU. The pairs of random
vectors M;, 1y, J #keln are mutually asymptotically independent for n-—o; the
Gaussian random vectors 1; have asymptotic covariance matrices equal to I for

n— . That is, we have (see Appendix A):

B} =0, jeln; Bl =k B (G & 2 =|on,], j2keln;

E{fl_/ﬂj} F. ”zE{é §j}F 1/2_F 1/2[ +O§JF 1/2 _I+O" (22)

where "O;I " <cn P , Pe (0,1) forall je I,_n .
Taking into account Equation (21) and the boundedness of the terms w,w,w, in

Equation (20), we conclude that the sequence of random variables B, (ﬁ“’n;w) tends to
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zero in probability as n-—o0, in accordance with the Law of Large Numbers [18]

=0. (23)

u.j

(Lemma 2.4):
302 12
’}falon 21; W WPy, Hklr,(“+” O 1.rjW )P
J r

O

Let us assume that the vector statistic
125 (= -1/2 - —
o ( un;u):(n 5k,n(xu’n;u),kel,q),

n
where n %5, , (X, ,:u)= (n_l/z D b 10 (V)‘V:u P > k= l,q] =
=

71/22(

)$j 4y ) it (w)(d, (w)s; ), 24)
12 (i ;u)
particularly satisfies conditions B of Theorem 1. That is mATwn has a Gaussian

limit distribution. Let us prove that the moments of this distribution are

~¥(u)

lim E{n™'3, (X, ,:u)8, (X,.,:
lim E{n—l/Zan (iu,n;u)} =0; nglgo {}’l n (xu,n ll) n (xu,n ll)} ; ll)" <C.
n—>o0
Lemma 2. The statistics given by (24):
~ 2 B n e, )
n l/zé'k’n( XyoU ) I/ZZd ij d | | +n 1/2anl'[k’j(u)nj+
n . (25)
znf”zzRe(nf;n;{,_,(u)a ; (u)sj), k=1g
j=l
have zero mean in the asymptotic n —> oo
nli_r)r;E{nfl/zé'k (iu,n;u)} =0, k el,_q .
Proof of Lemma 2. The term l'[}” (u) has the following form
a,d: Llofaar] oo qo(dd,)
— ] = _ldv| |: o, (dvdv)_ |:dvdv:| v, -
[v=u (26)

: 0
Im, (u)=-——
e %Lavf

[y [duds (a5, ) -[dudi ](aha )|

—— | [ ],

where ueU, jel,_n, kelyg.
Statement 1. The first term on the right side of Equation (25) is equal to zero

71/22d Hk/ d )|sj|2 =0 forall kel,_q.
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Proof of Statement 1. Let us rewrite the terms d(u)IT; (u)d,(u) for any

je Ln, n> q, ke I,_q using the associative law for products of several vectors:
a5 ()1 () () = [ [0 [ o5 ]+ [0, Jau ]
+dy | [ o[ dud; a, (@i, )+ ;4,4 a, (a5dr, )J -

=l (Jul (ahti o )aul” +lau (5t )du J = oyl 0 (0G0 )+l (a5 )) =0
for any jel,_n, n>gq, kel,_q.

O

The mathematical expectation of the last term on the right side of Equation (25) is
n
also equal to zero due to Equation (22): 2n_1/22Re(E{ﬁ;}H}{’j (u)dj (u)sj) =0.
j=1

Statement 2. The limit of the mathematical expectation of the second term on the right side of
Equation (25) is equal to zero:

2 Jim ZE{H, I, ; (u )n]}—n Y2 Jim Ztr[l’[kj( )E{ﬂjﬂ;}}:o.

n—w = n—o =

Proof of Statement 2. As follows from Equation (22):
or [ 10 ()i | | = ety (w) 0 11 (w)O] ], @)
where "O;‘ " <cnP, pe (0,1) forall j eln.
Let us first prove that trl;I}CJ (u)=0 for any ueU, kel jel,n,n>q. The fol-

lowing equalities are held:

trflj (u)=tr[l—dj (u)|dj (u)|72 1"

& (u) [ =m=fd, (0] ufa, (0} ()] -
=m=|d; (u | Zdl] )d; (u m_|dj(“)|_2|dj(u)| =m-1.

Therefore, trl;[}w-(u):aitrl'[ ( ) =0 for any uelj,kel,_q;jel,_n,n>q .

vk ‘V u

Consequently:
L . . .o _ .
n_l/zzitr[l'[}(’j (“)E{'ljﬂj H: I/ZZaVk [ ‘v_u Oﬂ, (28)
=
where "O;I " <cn'P, pe (0,1).

The matrix functions IT ;(v) have continuous partial derivatives with respect to v,

forany veU, je Ln. Consequently, l;I;w- (v)" <C forany veU,je 1,7 . As follows

from Equation (28):

12 <cn V2P _y. (29)

sup itr[fl}w (V)O;l (”717’6 )}

veU j=1

lim n~
n—»0

Finally, we deduce from (26)—(29) that
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lim n‘l/ZZE{ﬁj*H;(’j(v)ﬂj}:O. (30)

n—o0 =
oo

It follows from Lemmas 1 and 2 that the components of the family of statistics
n Y 26( Xu.n ,v) veU inthelimit #n—00 have a zero mathematical expectation:

< = % k3 = 3 .
lim E{ —1/25k( Xy )}: lim E n_l/ZZﬁ:’jH}f’j(u)ﬁw+2n_1/2ZRe(i|u,ij,j (u)dj(u)sj) =0.

n—>0 n—>»00 . .
Jj=1 J=1

Lemma 3. The covariance matrix ¥(u) of the statistic n~"?8(X, ,:u

lim E{nilﬁ(iuﬂ,,;u)ﬁT (?u’n;u)} = ‘I‘(u) = |:ka,l (u), k,l e GJ,

n—0

) has the limit

u ||<C<oo,

where Wy, (u)=2 j af (Af () kg (2) A (4u)F; (2))d 2] +

-

4 [ R (A;u)A) (Au)E: () A (A;u)h(A;u)dw, (A ; k1e0,q ,
[ (Asu) AL (Z5u)E (2)A] (Zu)h(2u)dw, (2)

-

V/L
wy (A)=lim n~ 1Z|s 27 jn”!

n—>0

; v, =[A] is the largest integer n for which 2ajnt <2 ;

Fg' (2)h(4v)h (%V)Fil(l); Aj ()= A (%)
by (2v)F;' (2)h ()

A(/?’;V): ov, |v=u "

Proof of Lemma 3. According to Lemma 2, lim E{nil/é'k( wnst )} 0, k elq ,q . Conse-

n—o0

quently,

Yy (u)=lim E{n S, k( u n,u)é'n’, (iu,n;u)} .

n—0

According to Equation (25) and Statement S.1, we have:
2%, ) = ‘”22( “T (w)i; +2Req I (u)d, (u)s; ). @31)

Therefore, ¥;;(u) can be written as:
1 n n
Yy (u)= ,}E};” d>DE {Qk,in,j + Okl + L ;O + Lk,iLl,j} , (32)
i=1 j=1

where Q; ;=0T ; (u)n;; L ;= 2Re(f|;kl;l}cjj (u)d; (u)s,) :
The double sum on the right side of Equation (32) can be calculated as:
lIIk,l( )_ hm n ZE{Q]C ]Ql] +Qk]Ll] +ijQlj +Lk /LI]}

Jj=1
(33)

+ lim ! z z E {Qk,in,j +Op iy + L0 + Lk,iL[,j} =4+ By
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According to (23), the complex vectors 1;, j el,n become mutually independent
for large values of n:

E{fliflj‘} =02j (nil*ﬂ), where "Ol"j (n’l’ﬁ )"S Cn™'F, Be(0,1). It is easy to show
that the term By, in Equation (33) has the form:

By, = lim n_IZH:E(Qk’i) i E(Ql’j-)+

n—»o a el

+ lim nfli i (E{Qk,i}E{Lz,j}+E{Lk,i}E{Ql,j}+E{Lk,i}E{Ll,j})'

noE =1l

(34)

The first limit on the right side of (34) is equal to zero due to Statement S1:

lim n_liE(Qk’[) Z (Q[/)< llm n I/ZZE{Q,”} lzm n 1/2ZE{QI /}

n—® i=1 Jj#iel,n Jj=1

The second limit on the right side of (34) is also equal to zero since E{i]j} =0.

Hence,
E{L;;}=2ReE{i; |11} ; (w)d, (u)i; =0, kelgq, jeN.

As a result, we obtain:

¥y (u)= lim n 1&( {Qk’_/LL_/}+E{QI’_ij’j})+nliiﬁon’li(E{Qk7le7_i}+E{Lk7jL,’j}). (35)

Jj= Jj=

—

The quantities E{Q; L, ] =E{nj*1'1;€,j(u)i|j x2Re(i|;lL[},j(u)dj(u)s'j)} , klelg
are the sums of terms having the forms E{T]S’ M T, j}as’r’ by, j- That is, they are the

sums of the products of three random variables having Gaussian distributions with zero

mean values. The factors in these products belong to the sets {fy,fj,keﬁ} ,

{77,‘(“},/( € E} . Due to the properties of Gaussian distributions, the mathematical expec-

tations of these products are equal to zero.
Consequently,

lim n~ ZE{Q,”L“} 0, jel,_n, k,le@.

n—o0 ] =1
Thus, we finally obtain

\Pkl —Ilm li( {Qk,le,j}+E{Lk,le,j}):

j=

_hmnle{( T (u )h,»)(ilj*fl},j(“)flj)}+ (36)

n—>ow

—

4 lim n_liE{Re(ﬂ’;fI}(’j (w)d () )Re(A5117; (w)d (u)s; )}

n—0
To find the expression for the mathematical expectation
E{(ﬁj*n}c,]‘ (u)flj)(ilj*];[;’j (u)ﬂj )} , we can use the following theorem proven in [20]
(Theorem 5.2¢, p. 109):
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Theorem 2. If the random vector 'y has the complex Gaussian distribution 97- (O,K), then the

covariance of the product of quadratic forms (yTAy)(yTBy), where A u B are Hermitian

matrices, is determined by the following equation: E{(yTAy)(yTBy)} =2t AKBK].

Using this theorem when y =1, 97 (O,K) =2(0,1), A= I'I}{,j, B= H}J , we ob-

tain:
E{(ﬂj*n;ﬁ ()i, ) (1 (), )} =2u[ T, ; (w)M; ; (u)]. (37)

Since H}” (u)= F'2 (/Ij)[\}{,j (/Ij;u)Fl/z (lj), the first term on the right side of (37)

takes the following form:

lim n_lz’i‘;E{(ﬂj*H}(’j (), ) (A, 117, (), )} B

n—»00
n . . . . . .
= lim 2”_1;”[F1/2 (4 ) A (2] Y2 (4, )8V () A7 (250 B2 (4 )| = (38)
=22JZ[ tr[A}( (l;u)F(ﬂ)A} (ﬂ;u)F(l)]d}t .
0

Let us find an expression for the last term on the right side of Equation (36):

4im 'S E(Re(i1, ()d, (u)s; )Re (W7 (w)d; (w)s))) . (39)

n—0 ]:l

Since I'I}{, ; (u), k eﬁ are Hermitian matrices, then the terms of sum (39) can be
rewritten as E{Re(é*CB)Re(é*BB)} , where a= ﬁ_j ; b= dj (u)$j ; C= H}” (u) ;
B= 1'[} ; (u). The following equalities are valid for the Hermitian matrices C, B and for
the vectors a,b :

2Re(a"Ch)2Re(a"Bb )= (a*Cb + (a*Cb)*j(a*Bb + (a*Bb)* j =(a"Ch+b"C"a)(a"Bb+b"B"a) =
= (a*p +p*a)(a*q + q*a) = (2a*p)(2q*a) = 4aChb*Ba,

where p=Cb, §=Bb and a"p=p"a due to the property of the scalar product, and

C=C",B=B" due to the property of Hermitian matrices. Since

0, =F %5 d;(u)=h; (xlj;u), we can write:
E{zRe(s;h_’; (u) A (w)E; ) 2Re(57H7 (u) Ap (u)§, )} _

=4(flj' (u)Aj; (“)E{gjg;} Al (w)h; (u)|jj|2) ) (40)

=485 ()47 ()8 -0, (7 ) Jax,; ()i, (s,

where "Oj (n_l_ﬁ )" < Cn_l_ﬂ, Be (0,1) ,and C is some constant.

Finally, we obtain:
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Py (w)= lim 20" ztf[(Ak/( )k AL (“)Fé,_/)}r

n—»o =t
n n (41)
+ lim 4n_lz}i; (u)[/\}w (u)Fg)jA},j (u)}l'lj (u)|sj|2 + lim n_IZOI« (n_]_ﬂ),
n—® = A=
where B€(0,1) and lim n IZO ( B ﬂ):O.
n—»0
Equation (36) can then be written in integral form:

2 . . . 2z L . . . .

Wi (w)=2] tr[(A}( (A:u) B, (A) A} (Au)E, (/1))d/1]+ +4 [ B (Bu) Ay (Zu)F (2) A7 (Zu)h(Zu)dw (1), (42)
0 0

’

e a0 | FEQRGMR T ()] o
where A, (4u)= Eﬁv,{ éli *(Av)FZ' (A)h (ﬂ,i) Lu’ o) " ]Z‘i| (ansnf

v, =[4] is the largest integer less than 4.0

Now it is not difficult to write an analytical expression for the elements of matrix
®(u)= nlglgo ®, (u). According to expression (17), we have

_ 0 B ) .
DOy yp(u)=n lE{a—wdk( Xy iU+ W 1/2)w_0}—n lZE{ FNy i (u )qj}:

- n_lé(tr[A’}cJ’j (w)E{i0}} [+ 2Re(E{i5} A%, (w)d, (w)s, )) —n! Z:;tr[A'}cJ’j (w)E {0} .

hm d)nkl = lim n 1ZE{ A’}(,] j} = .[ tr[(A}é’,(ﬂ;u)F(l))Jdﬂ =@, (u) (43)
0

n—

Let us prove that condition C of Theorem 1 is satisfied.

Lemma 4 ([18]). Let the objective function n™'Q, (iu,n ;v), veU, generating the estimate by

the equation

ﬁnQ(x )—argmaxn Q,,( un,v),
velU

have the following properties:
1. Forany veU, the random function n™'Q,(X,,.v) converges in probability to the de-

terministic function Q(v) uniformlyon veU :

P-lim n~ Qn( un,V):Q(V).

n—>x0

The function Q(v) is continuous on veU .

The function Q(v) has a unique maximum u at the set U .

Then, the estimate 1, (X ( ) =argmaxn Q( X, n,v) is the consistent one:

P- hmuQ( un):u'

n—»0

Lemma 4 can be formulated in the following equivalent form:
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Lemma 5. Let the vector random function
S125 (= -1/2 0
n 9, (xu’n,v)z n 5,(’”(

u,n;v)_anilgn( u,n> )’keﬁJr veU,

Iall

generating the estimate W, ( Xy ) as the root of the equation
n_l/zﬁn( Xy 03V ) 0 foreach n>gq,
have the following properties:
1. Forany veU, the random vector function n~"?s, (iu,n ; v) converges in probability to the
deterministic vector function 8(v) uniformlyon veU :

B, ,-lim n %, (iu’n;v) =d(v).

n—>®0

The vector function 8(v) is continuouson veU .

The vector function 8(v) has a unique root w at the set U .
Then, the estimate & (X, , ), which is the root of the equation n™"?8, (X, ,:v)=0, is the
X

n
consistent one: P- lim u;, ( “) u.

n—>x0

Let us prove that the random function 6,1( X, n,v) from the left side of Equation

(12), normalized to n"? as

n PR
2%, (iu,n;v) = nilzﬂxu'/n;c,j (V)f’xu_,’ kelg|,veU,
=

satisfies the conditions of Lemma 4. To do this, we analyze the limits in probability of the
random functions n’m&k (iu’n;v), kel,g, veU when n—>o. These functions have

the form:

~ ~ 2 LA . )
1/25k( Xy n3V ) lzd u)Iy ;(v)d; (“)|Sj| i M (V) +
=

(44)

n —_
+n’lz2Re(f]:‘l’jH}{’j (v)d, (u)sj), kelg.
j=l
The following statement is proven similarly to Theorem 1 in [18]:
Since the random values #;, j €1,n have their properties defined by Equation (22),
and functions l;l}{’ j (V), v €U are continuous on the compact set U, the random func-

tions (44) converge in probability to the limits of their mathematical expectations when
n— o uniformlyin U due to the Law of Large Numbers:

P- Zim{ 1/25k( X0V )}z lim n_mZn:E{ék (?u’n;v)}:ék (v), kelg. (45)

n—0 n—oo ]:1
Let us find expressions for the values & (v). Since
2Re(E{ﬂz’j}H}{’j(v)dj (u)sj)ZO forall kelg,jeln, n>q,

then



Mathematics 2024, 12, 473

19 of 22

R T G . e ., . .2
5 (v) = lim n IZ‘;E{nu’jﬂk,](v)nuJ}-i—nllmn S () (v)d; (u))s, [ @)
J=

n—»om —0 :
J=1

According to (27), the first term in (46) is equal to zero for all veU, k e@. The
second term in (46) converges as n—> to the following integrals uniformly in veU:

2z —
8 (v)=(2z)" [ & (A) W (Av)d(2u)|w(2)[dA, kelq, (47)
0
vV
where w,(4)= lim n_li|s(27rj/n)|2 , v, =[2] is the largest integer n for which
n—>0 j:I
2r jn_1 <A.
Due to the properties of IIj (4;v), the integrals (47) are continuous in veU, and
the functions & (v), k €l,q have the unique roots u, on the compactset U .

Then, according to the statement of Lemma 5, the estimate il ( xn), which is the

root of the equation 9, (in;u) =0, 1ie.,

P {5n (%589 (%,))= o} =1 for n>q, (48)

is the consistent estimate of the value u of the MLS parameter.

Lemma 6. The consistent estimate (in ) , satisfying Equation (48), is the Jn -consistent es-

timate, i.e., it has the following property: for any &>0, there exists a C. >0 for which

P{x/;|ﬁ‘S (?u’n)—u| > Cg} <& forevery n>q.

Proof. Let us formulate the definitions of consistency and n -consistency in the equiv-
alent forms:

(a) Forany ¢, >0, n—oo,thereexistsa C;,(s,) > for which

7|
(b) For any &, >0 , n—o , there exists a C(g,
Pl (%,)-u|<C(e,)f =1-2,.

Let us consider the random event

ﬁf(in)—u|<c1j,1}=1—gn.

)—)oo for which

@ (%,,,)-u|< C,;l} .

An:{ n

Then, condition (a) means that:

P{4,}=1-¢,, where &, >0 (n—>x).
Let us consider the value 0, (in;u) = \/;|(ﬁi (?,,)—u)| and the event
B, = {én (X,:u)<Cy (2, )} .
Then, condition (b) means that: P{B,}=1-¢, (n—>x).

The estimate @ (?n), as the root of the equation o, (in ;u) =0 with a probability

equal to 1, is determined by the following relation:
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P{&n (in;ﬁf (?n))EO} =1 forevery n>gq.

Using the above designations, the statement of Lemma 5 can be written in the fol-
lowing form:

P{ﬁn (%85 (in))zo|An}p{A”}:
:P{an(in;ﬁj(in))zo|Bn}P{Bn}=1—g , &, >0(n—>o). @)

n

Hence, the consistent estimator @i’ (xu n) is also the +/n -consistent one. o

It follows from Lemmas 1-6 that all conditions of Theorem 1 are satisfied, and hence
the random variable §, (iun) = \/;(ﬁﬁ (iu,n ) - u) has, in asymptotic n— o, a zero mean

and bounded covariance:

lim E, (¢, (2,)}=0; iim B, {¢,(Z,),(2,)"} =07 () ¥(w)o (), 0)

n—>0

where the elements of the matrices ®(u) and ¥(u) are represented in the form of in-

tegral expressions (42) and (43).
In order to understand the meaning of Formula (50), let us return to Section 2 and

_ ~ 2
consider a case where 77 ZueUcR and =150 Then, Formula (50) represents the

covariance matrix of a Gaussian two-dimensional distribution that, for certain h, (u)
and Fg (2)e €130 (used in Monte-Carlo modeling), will be very close to the empirical

distribution shown in Figure 1b.
Discussion on the asymptotic normality of n~"2s, (iu,n ;u) .

As it was noted before, the fact of the asymptotic normality of statistics (24) is not
obvious and poses a separate problem that is more difficult than the Law of Large
Numbers. It is required to establish central limit theorem (CLT) conditions for the weak
dependent random variables that are represented as quadratic forms of functions of the
discrete Fourier transform of stationary time series.

The CLT formulated for cases of dependent random variables are presented, for in-
stance, in [21,22]. However, the conditions under which these theorems are stated are
very restrictive, which makes them difficult to apply to statistics (24). In addition to the
existence of finite first- and high-order moments ([21], theorem 27.4), there is a strong
mixing condition for the measure of dependency between random variables, which
cannot be applied to the terms of sum (24). The author believes that there is no ready
solution to this problem in the form of a suitable theorem. At the moment, the author
leaves this problem open for investigation in the future.

6. Conclusions

In this paper, we considered an important case of the vector parameter estimation
problem for an MLS model with one input and several outputs, where the number of
unknown parameters tends to infinity along with the number of observations. This case
has never been studied before, and the explicit analytic form for the covariance matrix
(50) of estimate (14) defined by (42) and (43) is the main theoretical result of this paper.

In practice, output processes y,, are always heavily distorted by additive noise §&,

. That is why specialists in signal processing always look for the best estimate that can
improve the accuracy of the estimation of unknown parameters. For that purpose, every
new suggested estimate should be compared with the existing actual one, as described in
Section 4. Using Formula (50) allows one to calculate the variance of estimator (14) for a
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& =n;+iv

J

given impulse response vector h, (u) and F;(4)eC™" directly instead of performing
the Monte-Carlo procedure, which assumes a mixture simulation of additive noise g,
and outputsy, , multiple times for the calculation of the empirical covariance matrix of

estimator (14).
. . (X )
There are two unsolved theoretical problems regarding statistics ’
that can be considered for future work. The first is establishing the validity of the CLT
under the proven conditions of Theorem 1. The second is related to the question of
boundary existence in a nonparametric model in terms of the lowest covariance matrix
(50) in a class of regular estimators. This boundary can be achievable through estimate
(14) as a likelihood-based estimate, but then it should be proven.
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Appendix A. Probabilistic Properties of DFFT of a Vector Gaussian Stationary Time
Series Satisfying Strong Mixing Conditions

Let & i, JE 1,n be the discrete finite Fourier transform (DFFT) of values §,,t € I,_n
of m-dimensional stationary Gaussian time series & €R",7eZ with zero mean and
matrix power spectral density (MPSD) F(l) =F"® (/1)+iFim (4), Ae[0,2n]:

DFFT _ n n
< &, tjeln, p; :n_l/ZZécos(/Ijt), v; :n‘l/ZZQ, sin(ljt), A;= 27 jnt.
r=1 1=1
Theorem A1 ([23], chapter 4.2). The real and imaginary parts of w;, v;, &j =n;+iv;, and
jeln have the following probabilistic characteristics:

(a) Forevery jel,n, the following equations are correct:
Efn ) =E{v,}=0; E{wnl}=058%+0, (n);
Efo,o1) 00, (7],

E{lljva-} :O.SFJI.m +Ouk,-,vj (n—l—/)’),. E{lelf} =—0.5FJI-m +Ov_,-,u/ (n—l—ﬂ);

an[o, (- sfo, (r+#) <3,
oy (7] - snfo. o ()] <6

(b) Forall j#keln, the following inequalities are correct:
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sup E{p,ij}“: sup E{v(ivg}“SEn_l_ﬁ;
j#kel,n J#keln

sup E{pjvz}“ = sup E{vjulf}“ < én_l_ﬁ;
J#kel,n J#kel,n

where C and B e(0,1) are constants.
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