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ABSTRACT 
 

Aims: This study aimed to investigate the effects of HIV infection and occupational exposure on the 
concentrations of selected toxic metals and essential trace elements such as zinc in relation to the 
carcinogenic process.  
Study Design: Comparative cross-sectional study.  
Place and Duration of Study: Participants were recruited from two local government areas 
(Calabar municipal and Calabar south) and one secondary health facility in Calabar, Nigeria from 
April 2017 to February 2018.  
Methodology: Study participants comprising 248 adults (191 males, 57 females, aged 18-65 
years) were divided into four groups based on HIV status and occupational exposure to toxic 
metals: HIV-positive exposed (HPE; n=62), HIV-positive unexposed (HPU; n=66), HIV-negative 
exposed (HNE; n=60), and HIV-negative unexposed (HNU; n=60). The HIV-positive and HIV-
negative groups had similar occupations, ages, and other characteristics. Blood cadmium (Cd), 
lead (Pb), mercury (Hg) and selenium (Se) were measured by inductively coupled plasma optical 
emission spectrometry (ICP-OES), while serum zinc (Zn) and copper (Cu) were determined using 
atomic absorption spectrometry.  
Results: Lead, cadmium, and mercury were significantly elevated in HPE (14.92 ± 0.54 μg/dl, 0.25 
± 0.01 μg/L, 1.93 ± 0.08 μg/L respectively) compared with the HNU (11.07 ± 0.48 μg/dl, 0.17 ± 0.01 
μg/L, 0.76 ± 0.05 μg/L), p<0.01, respectively. Zinc, a well-known antioxidant, p53 activator, and cell 
cycle regulator, was significantly lower in the HPE than in HPU, HNE, and HNU (p=0.02, p<0.01, 
p<0.01 respectively). Toxic metal exposure and HIV-positive status were associated with increased 
Pb and Hg levels as well as decreased Zn, suggesting additive effects.  
Conclusion: Occupationally exposed HIV-positive individuals exhibited a higher toxic metal burden 
and a lower zinc level, both of which are important determinants of genome instability and may 
exacerbate DNA damage as well as impair DNA repair, raising cancer risk. Further studies with a 
larger sample size may fully elucidate the mechanisms underlying the interaction between HIV 
infection and occupational toxic metal exposure. 
 

 

Keywords: Human immunodeficiency virus; occupational exposure; toxic metal; cancer risk. 
 

1. INTRODUCTION  
 
Over 14 million new cancer cases and 8.2 million 
cancer deaths are estimated to occur globally 
each year, with low- and middle-income 
countries accounting for 57% of new cancer 
cases and 66% of cancer deaths [1]. Infectious 
agents are major contributors to the global 
cancer burden, with an estimated 2.2 million 
infection-attributable cancer cases reported 
worldwide in 2018 [2]. Infectious agents such as 
Helicobacter pylori, hepatitis B virus (HBV), 
hepatitis C virus (HCV), human herpesvirus type 
8 (HHV8), human immunodeficiency virus (HIV), 
and human papillomavirus (HPV) are considered 
potentially modifiable risk factors of cancer [3]. 
According to Odutola et al. [4], infections play a 
significant role in the etiology of a wide variety of 
malignancies in the Nigerian population, with 
22% of incident cancer cases related to 
infectious agents. Indeed, 23.2% of cancer cases 
reported in Nigeria in the Global Cancer 
Incidence, Mortality and Prevalence 
(GLOBOCAN) 2018 database were caused by 
infections [2]. 

Occupational exposure to toxic metals occurs as 
a result of their use in a variety of industrial 
processes, including grinding, painting, soldering, 
welding, and working near engines, colour 
pigments, alloys, coal combustion, resuspended 
dust, vehicle emissions, construction dust, and 
industrial emissions [5,6]. Toxic metals are 
considered occupational pollutants because 
metal mixtures containing lead, cadmium, 
mercury, and other hazardous metals are 
present in the workplace and can exert adverse 
effects on biochemical and physiological 
processes with attendant health problem, key 
among which is cancer [7–9]. Current 
malignancies can be attributed to occupational 
exposures in the past, and a considerable 
proportion of future cancers could be attributed to 
occupational exposures if historical trends and 
current exposure patterns persist [10]. Toxic 
metals have been shown to have genotoxic and 
carcinogenic potential via a variety of 
mechanisms. Epigenetic modifications, activation 
of hypoxia signalling pathways, and the 
production of reactive oxygen species, resulting 
in oxidative damage are widely recognized as the 
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major mechanisms underlying metal-induced 
toxicity, including carcinogenesis [11]. 
 
Each year, workers are occupationally exposed 
to a mixture of chemicals, some of which may be 
carcinogenic, but the ingredients are kept as a 
trade secret [12]. The impact of environmental 
and occupational exposures to toxic metals has 
not been adequately investigated as contributors 
to the rising cancer incidence among the HIV 
population in small and medium-sized industries 
[13]. Previous studies have either focused on 
occupationally exposed workers or on HIV-
infected patients as their subjects of 
investigation, providing evidence that HIV-
infection or occupational toxic metal exposure 
independently increases the risk of cancer 
through a variety of mechanisms. However, the 
possible synergistic effects of these factors on 
cancer risk have received little attention. This 
study was, therefore, designed to examine the 
joint effects of occupational toxic metals and HIV 
infection on the carcinogenic process, while 
taking into account demographic and lifestyles 
factors. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Participants 
   
The study population comprised one hundred 
and twenty-eight HIV positive and one hundred 
and twenty HIV negative Nigerian adults (191 
men, 57 women, mean age of 38.35 ± 0.72 
years), who were age and sex matched and had 

similar environmental and occupational 
characteristics. They were all adjudged to be 
clinically healthy following the administration of a 
medical and social questionnaire. Participants for 
this study was recruited in Calabar, Cross River 
state, Nigeria. 
 
In this comparative cross-sectional study, 
participants were selected using a convenience 
sampling strategy. Participants who reported 
regular use of a supplement at the time of the 
study or in the preceding month were excluded. 
Exposure characterization in the study was 
based on HIV test results and the occupations of 
study participants. Interviews were conducted 
using a structured questionnaire to elicit relevant 
information, including occupational exposure 
data. Hence, the occupational exposed group of 
the study population were all drawn from various 
occupations associated with toxic metal 
exposure, such as cement factory workers, 
electricians, bars & night-clubs workers, auto-
mechanics, painters & printing press workers, 
weed sprayers and pesticide workers, welders, 
and petrol station dispensers. Additionally, the 
unexposed group of the study population 
consisted of occupational groups considered low 
risk for toxic metal exposure, such as                    
teachers, students, and admin staff in both the 
private and public sectors (data entry clerks, 
customer service clerks, receptionists). Thus, the 
total study population (N = 248) was stratified 
into 4 primary subgroups based on HIV status 
and occupational exposure to toxic metals               
(Fig. 1). 

 

 
 

Fig. 1. Schematic of subgroups in the study population 
HPE: HIV Positive Exposed; HPU: HIV Positive Unexposed; HNE: HIV Negative Exposed;  

HNU: HIV Negative Unexposed 
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2.2 Elemental Analysis of Metals in Blood 
Sample Using ICP-OES 

 

Blood cadmium (Cd), lead (Pb), mercury (Hg) 
and selenium (Se) concentrations were 
determined by inductively coupled plasma optical 
emission spectrometry (ICP-OES) using the 
PerkinElmer Optima 3300 DV ICP-OES 
instrument (Manufacturer: Perkin Elmer; Model: 
Optima), based on the method by Jones [14]. 
This method directly measures Pb, Cd, Hg and 
Se content of whole blood specimens after a 
simple dilution sample preparation step.  
 

Prior to sample analysis, interference corrections 
were established, and an initial demonstration of 
instrument performance was documented. 
Additionally, the plasma was given 30 to 60 
minutes to equilibrate. The plasma power and 
nebulizer flow were optimised. During 
optimization, a standard solution containing 
known amounts of various metals was pumped 
through the torch. Adjusting the plasma power 
between 1300 and 1400 W while observing the 
element's signal strength in the continuous 
graphics window constitutes optimization. The 
wattage that produces the best signal was 
determined and utilised during analysis. In 
addition, the nebulizer flow was incrementally 
varied between 0.90 and 0.60 L/min for radial 
and axial plasmas, respectively, and the optimal 
flow was determined and applied to the analyses. 
 

It is generally accepted that use of serum in 
measurements, which is usually produce after 
coagulation process usually leads to nonuniform 
distribution of materials especially those that are 
more located inside the red cells such as Pb. For 
this reason, EDTA tubes were collected using the 
phlebotomy protocols outlined in our laboratory 
manual. After whole blood collection and proper 
vertexing, a fraction of the original volume was 
diluted and mixed properly to ensure a uniform 
distribution of cellular materials that would 
accurately reflect the average metal 
concentration of all fractions of the larger 
specimen. Before analysis, dilution of blood was 
performed by adding 1 part sample + 50 parts 
diluent consisting of a solution of 1% HNO3 and 
0.01% Triton® X-100. 
 

Blood samples were introduced into the ICP-
OES instrument as a liquid sample stream and 
forced through an argon-gas nebulizer, which 
converts the bulk liquid into an aerosol of small 
droplets. A flowing argon stream selectively 
passes the smaller droplets in the aerosol 
through the spray chamber into the 6000-8000K 

plasma of the ICP, where they are dried, 
vaporised, atomized, excited, and/or ionised by 
the plasma. The high energy of the plasma 
results in the excitation and/or ionization of the 
atoms of lead, cadmium, mercury, and selenium. 
When excited atoms and ions return to their 
ground states, photons of a specific wavelength 
are emitted, which are collected by a device that 
sorts the emission by wavelength. The emitted 
energy is detected and converted into electronic 
signals, which are then converted into 
concentration data. 
 

2.3 Zinc and Roles in Biologic Processes   
 

Many Zn-dependent enzymes and proteins make 
Zn an important micronutrient for many adaptive 
functions or physiological processes, such as 
DNA repair, cell cycle regulation, antioxidant 
defense systems, adaptive and acquired immune 
functions associated with cancer prevention. Due 
to the known involvement of Zn in many biologic 
processes, we studied Zn levels in HIV positive 
and HIV negative individuals who were 
occupationally exposed and unexposed to 
understand the role of either lower or higher 
levels in the complex interactions of toxic metals 
and HIV infection in promoting cancer disease 
risk. Zn levels in each group were measured and 
compared. 
 

2.4 Determination of Serum Zn and Cu 
Levels  

 

Serum zinc (Zn) and copper (Cu) concentrations 
were determined using the methods of Smith et 
al. [15] and Osheim [16] with a 210/211 VGP 
atomic absorption spectrophotometer (Buck 
Scientific, USA) at 213.9 nm and 324.7 nm, 
respectively. The AAS is a sensitive and 
accurate technique for measuring trace metal 
concentrations in biological samples. Quality 
control checks were performed to ensure that the 
results were accurate and precise. This entailed 
repeating analyses with certified reference 
materials. Furthermore, the AAS instrument was 
regularly maintained and calibrated using 
standard solutions, in accordance with the 
manufacturer's instructions for instrument 
operation. 
 

2.5 Statistical Analysis   
 

The Statistical Package for Social Scientists 
(SPSS) version 25.0 software was used to 
conduct statistical analyses, including descriptive 
statistics (SPSS Inc., USA). All values were 
expressed as the mean standard error of the 
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mean. Levels of toxic metals and trace elements 
in the 4 subgroups of the study population were 
compared using ANOVA. The Scheffe or Games-
Howell significant difference post hoc test was 
used to determine the differences when the null 
hypothesis of ANOVA was rejected. The 
Chisquare test and Fisher’s exact test were used 
for qualitative variables. Pearson correlations 
were used to establish the correlation between 
the different parameters. Two-way ANOVA was 
used to examine associations between markers 
of cancer risk (outcome variables) and the 
independent variables, HIV status and toxic 
metal exposure. A significance level of <0.05 
was considered statistically significant. 

3. RESULTS 
 
The proportions of consenting HIV positive               
and HIV negative individuals were comparable 
when grouped by occupations that predispose 
workers to toxic metal exposure and those that 
do not (Table 1). Duration spent on occupations 
associated with toxic metal exposure in the HPE 
(9.94 ± 1.14 years) was comparable to that of the 
HNE (9.73 ± 1.06 years), p = 0.90. Descriptive 
statistics of primary outcome measures studied 
in relation to the two independent variables, HIV 
status and Occupational exposure is represented 
in Table 2.  

 
Table 1. Occupations of study participants categorized into exposed and unexposed groups 

 

Occupations HIV Positive  HIV Negative  X2 P-value 

Occupationally Exposed 
  

a8.94 .25 
Cement factory worker 2(3.2%) 1(1.7%) 

  

Electrician 5(8.1%) 6(10%) 
  

Bars & Night club worker 14(22.6%) 6(10%) 
  

Mechanic 14(22.6%) 19(31.7%) 
  

Painter & Printing press worker 6(9.7%) 3(5%) 
  

Weed sprayer &Pesticides worker 7(11.3%) 3(5%) 
  

Welder 7(11.3%) 13(21.7%) 
  

Petrol Station Dispenser 7(11.3%) 9(15%) 
  

Total 62(100%) 60(100%) 
  

Occupationally Unexposed 
  

0.14 .99 
Admin Staff (Private sector) 23(34.8%) 21(35%) 

  

Civil Servants (Admin Public Sector) 16(24.2%) 13(21.7%) 
  

Teachers & Students 7(10.6%) 7(11.7%) 
  

 Unemployed & unexposed 20(30.3%) 19(31.7%) 
  

Total 66(100%) 60(100%)     
aFisher's Exact Test 

χ2 = Chisquare 

  
Table 2. Descriptive statistics of primary outcome measures studied in relation to the two 

independent variables, HIV status and occupational exposure 
  
Dependent 
Variable 

Independent Variable Mean Std. 
Error 

95% Confidence Interval 

HIV 
Status 

Occupational 
Exposure 

Lower Bound Upper Bound 

[Pb] µg/dl Positive Exposed 14.92 0.54 13.83 16.01 
Not Exposed 13.66 0.43 12.80 14.53 

Negative Exposed 13.10 0.44 12.21 13.98 
Not Exposed 11.07 0.48 10.11 12.02 

[Cd] µg/L Positive Exposed 0.25 0.01 0.23 0.28 
Not Exposed 0.34 0.01 0.32 0.36 

Negative Exposed 0.18 0.01 0.16 0.19 
Not Exposed 0.17 0.01 0.15 0.19 

[Hg] µg/L Positive Exposed 1.93 0.08 1.76 2.10 
Not Exposed 0.88 0.05 0.78 0.97 

Negative Exposed 0.67 0.05 0.57 0.76 
Not Exposed 0.76 0.05 0.67 0.86 
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Table 2. Continued 
 

Dependent 
Variable 

Independent Variable Mean Std. 
Error 

95% Confidence Interval 

HIV Status Occupational 
Exposure 

Lower 
Bound 

Upper 
Bound 

[Se] µg/L Positive Exposed 73.72 1.74 70.24 77.19 

Not Exposed 60.26 2.63 55.01 65.51 

Negative Exposed 79.97 4.73 70.49 89.44 

Not Exposed 84.94 4.74 75.45 94.42 

[Cu] µg/dl Positive Exposed 127.76 6.57 114.63 140.89 

Not Exposed 124.06 6.15 111.78 136.34 

Negative Exposed 118.66 7.82 103.00 134.31 

Not Exposed 115.88 4.92 106.02 125.73 

[Zn] µg/dl Positive Exposed 96.75 2.25 92.26 101.25 

Not Exposed 108.12 3.00 102.13 114.10 

Negative Exposed 120.80 4.84 111.10 130.48 

Not Exposed 125.18 5.12 114.93 135.43 

Cu/Zn 
ratio 

Positive Exposed 1.35 0.08 1.20 1.50 

Not Exposed 1.17 0.05 1.06 1.28 

Negative Exposed 1.02 0.08 0.86 1.19 

Not Exposed 0.92 0.05 0.83 1.02 
Pb = Lead; Cd = Cadmium; Hg = Mercury; Se = Selenium; Zn = Zinc; Cu = Copper 

 
Blood Pb, Cd, and Hg concentrations were 
significantly higher in occupationally exposed 
HIV positive individuals than in HIV negative 
unexposed individuals (p < 0.001) (Fig. 2). While 
the occupationally exposed HIV positive 
individuals had higher blood Pb levels than HIV 
positive individuals who were occupationally 
unexposed and HIV negative exposed 
individuals, the difference was not significant (p = 
0.31 and p = 0.07 respectively). Interestingly, 
blood Cd and Hg levels were significantly higher 
in occupationally exposed HIV positive 
individuals than in HIV negative exposed 
individuals (p < 0.001) (Fig.e 2). In addition, the 
occupationally exposed HIV positive individuals 
had higher blood Hg levels than HIV positive 
individuals who were occupationally unexposed 
(p < 0.001) (Fig. 2). Zinc level was significantly 
lower in the HIV positive exposed individuals 
when compared with the other three groups 
(HPU, HNE, HNU) (p = 0.02, p < 0.001, p < 
0.001 respectively) (Fig. 2). In contrast, serum 
Cu levels were higher in HIV positive exposed 
individuals than in the other three groups (HPU, 
HNE, and HNU), but the difference was not 
statistically significant (p > 0.05). There was also 
a significant positive correlation between serum 
Zn and Cu levels (r = 0.27, p < 0.001). 

 
The effects of occupational exposure and HIV 
infection on selected toxic metals and trace 
elements were studied using a two-way ANOVA 
model. While occupational exposure and HIV 

infection increased blood Pb level in an additive 
and independent manner (p < 0.001) (Fig. 3A) 
both factors act interactively to elicit changes on 
Cd level (p < 0.001) (Fig. 3B). HIV infection 
independently increased blood Cd levels in                  
both the occupationally exposed and unexposed 
study groups (p < 0.001). Interestingly, HIV 
infection and occupational exposure increased 
blood Hg levels synergistically (p < 0.001) (Fig. 
3C). 
 
HIV infection had an independent influence on 
selenium levels (p < 0.001), but it also interacted 
with Occupational toxic metal exposure to cause 
alterations in selenium levels (p =0.01) (Fig. 3D). 
Furthermore, both occupational exposure and 
HIV infection decreased serum Zn levels 
independently, and the effects were additive (Fig. 
3E). On the other hand, both factors tended to 
raise serum Cu levels independently, but the 
effects were not significant (p = 0.62 and p = 
0.18, respectively) (Fig. 3F). 

 

4. DISCUSSION 
 
There are indications that infection with HIV and 
occupational toxic metal exposure might 
predispose to cancer risk. An increased risk of 
cancer was found in HIV-positive people               
who were exposed to toxic metals at work. 
Indeed, this study highlighted the combined 
effects of occupational chemical exposure           
and HIV infection on cancer biomarkers, with 
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some of these effects being additive or 
interactive in relation to the carcinogenic 
process. The current study demonstrates that 

HIV infection exacerbates pre-existing cancer 
risks associated with occupational exposures 
and vice versa. 

 

 
 

Fig. 2 Selected toxic metals and essential trace elements in occupationally exposed and 
unexposed groups of HIV positive and negative participants 

* Overall p-value across the study group 
Pb = Lead; Cd = Cadmium; Hg = Mercury; 

Se = Selenium; Zn = Zinc; Cu = Copper 
 Mean levels of toxic metals (Pb, Cd, Hg) and trace elements (Se, Zn, Cu) in HIV positives exposed 

occupationally to toxic metals (HPE, n=62), HIV positives unexposed occupationally to toxic metals (HPU, 
n=66), HIV negatives exposed occupationally to toxic metals (HNE, n=60), and HIV negatives unexposed 

occupationally to toxic metals (HNU, n=60) 

 Mean values with no superscript in common differ significantly (p < 0.05). The error bars show the standard 
error of the mean; values are mean ± Standard Error 

 

  
 

Fig. 3A. Effect of independent factors on Pb 
 

Fig. 3B. Effect of independent factors on Cd 
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Fig. 3C. Effect of independent factors on Hg 
 

 
Fig. 3D. Effect of independent factors on Se 

 

  
 

Fig. 3E. Effect of independent factors on Zn 
 

Fig. 3F. Effect of independent factors on Cu 
 

Fig. 3. Effects of HIV status & occupational exposure on toxic metal and essential trace 
elements levels 

Toxic Metals and Essential Trace Elements: (A) Blood Lead level [Pb]; (B) Blood Cadmium level [Cd]; (C) 
Mercury [Hg]. (D) Selenium [Se]; (E) Zinc [Zn]; Copper [Cu] 

Independent Factors: HIV = HIV Status; Exposure = Occupational exposure to toxic metals. 
A significant effect(s) of the two factors at p < 0.05 

Mean concentrations of toxic metals and essential trace elements in the occupationally exposed groups (circles) 
stratified by HIV status were compared with the occupationally unexposed groups (squares) stratified by HIV 

status. The effects of occupational toxic metal exposure and HIV infection were considered additive and 
independent of each other in a two-way ANOVA model if the main effects were significant (p < 0.05) and the 

interaction was not significant (p > 0.05). The effects of occupational toxic metal exposure and HIV infection, on 
the other hand, were considered interactive (i.e., the factors interact to create a synergistic effect) if the 

interaction effect is significant (p < 0.05), regardless of the p-values of the main effects. Visually (based on the 
profile plots), no intersection of the lines connecting the occupationally exposed and occupationally unexposed 
groups indicates that the effects of each factor on toxic metal and essential trace element levels were additive 
and independent of each other if p < 0.05 for the main effects, whereas intersection of the lines indicates that 
factors interacted (Figs. 3A-F). Synergism occurs when two factors interact to influence a biological response 

rather than acting independently 
 
It is apparent from the results that the 
combination of toxic metal exposure and HIV 
infection considerably lead to higher blood Pb, 
Cd, Hg, and decreased Zn levels, which together 

suggest a trend towards increased risk of cancer 
and other health related conditions associated 
with repression of antioxidant function. The 
significantly elevated Pb, Cd, and Hg blood 
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levels observed in the occupationally exposed 
HIV positive individuals are consistent with 
previous reports by Xu et al. [17], Emokpae & 
Mbonu [18], and Folorunso et al. [19]. These 
studies, however, examined a single cancer risk 
factor in isolation, rather than in combination with 
other risk factors. To our knowledge, no previous 
studies have evaluated toxic metal and essential 
trace element levels in HIV-positive individuals 
who are occupationally exposed, as the majority 
of research has focused on occupationally 
exposed workers or HIV-infected patients. 
 
The effect of occupational exposure and HIV 
infection on blood mercury level was assessed. 
Blood Hg level was significantly higher in the 
occupationally exposed HIV positive group 
compared with the occupationally unexposed 
HIV positive, and the occupationally exposed and 
unexposed HIV negative groups, which is a 
finding that aligns with past studies [17,18,20–
22]. The occupationally exposed HIV positive 
individuals are likely to have been further 
exposed to mercury through their diet, with fish 
being a major source of methyl mercury 
exposure, but this was not assessed. In a 
synoptic review, Eisler [23] reported that mercury 
levels in the hair, urine, blood, and other tissues 
of occupationally exposed gold miners exceeded 
all safety thresholds recommended by many 
national and international regulatory authorities 
responsible for human health protection. 
Previous studies have linked mercury to the 
development of cancer [24,25]. The genotoxic 
effect of mercury could be elicited by either the 
production of oxygen free radicals, damage to 
microtubules and DNA repair mechanisms, or 
direct damage to DNA. 
 
Furthermore, our findings indicate that 
occupational chemical exposure and HIV 
infection exhibited positive cooperativity, 
resulting in elevated blood levels of Cd and Hg, 
which may disrupt cell cycle regulation and 
control mechanisms and thus pose a significant 
cancer risk to humans. Wei et al. [26] and Kolluru 
et al. [27] earlier demonstrated that Cd promotes 
carcinogenesis via aberrant cell cycle regulation, 
whereas Marima et al. [28] reported that the 
components of highly active antiretroviral therapy 
(HAART) [efavirenz (EFV) and lopinavir/ritonavir 
(LPV/r)] alter cell cycle progression, with a 
significant S-phase arrest, indicating cellular 
stress, cytotoxicity, and DNA damage within the 
cell. The International Agency for Cancer 
Research (IARC) has established a strong link 
between cadmium exposure and cancer risk, 

concluding that occupational Cd exposure 
increases cancer risk [29]. However, this author 
did not evaluate the effect of concomitant 
infection with HIV and exposure to toxic metals. 
Based on our investigation, it is suggested that 
simultaneous occupational exposure to Cd, Hg, 
and Pb, along with HIV infection, may potentially 
interact to suppress the levels of Zn. Therefore, 
occupational exposure to toxic metals in HIV 
positive individuals may worsen decreased Zn 
levels and dysregulation of the anti-oxidative 
pathway. 
 
The precise molecular mechanism by which HIV 
infection may exert a positive cooperativity effect 
in the presence of elevated Cd and Hg levels, 
thereby promoting a synergy for increased 
cancer risk, is not fully understood. Rezapour et 
al. [30] clearly showed that cadmium levels in 
nasopharyngeal cancer patients were 
significantly higher than in controls and 
concluded that exposure to cadmium was likely 
to cause nasopharyngeal and pharyngeal 
cancer. In contrast to that report, we did not 
determine organ specific cancer risks, however 
the molecular biology that underpin their finding 
was not clearly understood. To investigate a 
possible mechanism for cancer risk in HIV-
infected patients who are also exposed to toxic 
metals, we hypothesized that toxic metal 
exposure, especially Cd, might promote cancer 
risk by increasing the sensitivity of cells to                
the effects of certain HIV-associated viral 
proteins that repress the ability of cells to repair 
oxidative DNA damage via a zinc dependent 
pathway.  
 
Conversely, HIV-associated viral proteins may 
increase the vulnerability of cells to oxidative 
DNA damage, exacerbating the pre-existing risk 
of developing cancer in occupationally exposed 
individuals via a zinc dependent mechanism. 
This is consistent with the observation that HIV-1 
proteins, particularly the envelope glycoprotein 
gp120 and the HIV-1 trans-acting protein Tat, 
generate reactive oxygen species (ROS) and 
cause oxidative stress, as well as deplete the 
protective antioxidant enzymes copper/zinc 
superoxide dismutase (SOD) [31]. Zinc-binding 
proteins, like those found in DNA repair proteins 
like XPA and poly (ADP-ribose) polymerase 1 
(PARP-1), as well as the tumor suppressor 
protein p53, appear to be the most vulnerable to 
oxidative attack [32]. We therefore suggest that 
the significantly lower Zn levels found in 
occupationally exposed HIV-positive individuals 
may reflect the consequence of susceptibility to 
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reactive oxygen species and depleted 
copper/zinc superoxide dismutase (Cu++/Zn++ 
SOD) activity, allowing for increased oxidative 
DNA damage, thereby causing genomic 
instability and cancer risk. 
 
The observed decrease in zinc, potentially 
resulting from the combined impact of HIV 
infection and exposure to toxic metals, can be 
partially attributed to the metabolic antagonism 
between zinc and cadmium.  Anetor [33] reported 
that a high Cd/Zn ratio causes a high error rate 
and defective DNA repair processes, which 
increases the risk of cancer. Additionally, our 
results are in line with prior studies [34,35]. 
Osuna-Padilla et al. [36] reported a high 
prevalence of suboptimal serum zinc levels                
in a cohort of antiretroviral-experienced HIV-
infected individuals. Decreased zinc level has 
been linked to elevated levels of multiple 
inflammatory cytokines [37,38], a possible 
predictor of an increased cancer risk. Our            
result suggests that chronic Zn insufficiency 
combined with occupational toxic metal  
exposure may predispose HIV-infected people  
to even greater risk of cancer via oxidative 
stress. Thus, highlighting the need for health 
promotion interventions among HIV positive 
workers in order to minimize probable             
workplace exposure to toxic metals and the 
associated risks of cancer in HIV positive 
populations. 

 
5. CONCLUSION 
 
Our study revealed that the combination of 
occupational toxic metal exposure and HIV 
infection considerably increased the risk of 
cancer over and above the risk associated with 
either factor alone. While the two explanatory 
variables, HIV-infection and toxic metal 
exposure, together raise Pb, Cd, and Hg levels, 
they simultaneously lower the protective 
micronutrient Zn. Increased levels of toxic metals 
in the body, as well as micronutrient imbalances, 
may result in oxidative stress, DNA damage, 
impaired DNA repair mechanisms, and altered 
angiogenesis, among other consequences. 
These pathophysiological effects may combine to 
pose a significant cancer risk in occupationally 
exposed HIV-infected individuals. However, 
further studies are required to better understand 
the mechanisms underlying the interaction of HIV 
infection and occupational toxic metal exposure, 
as well as to develop effective strategies for 
reducing cancer risk in people with these risk 
factors. 
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