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Abstract — High dimensional datasets expose a critical obstacle in machine learning. Feature selection overcomes this 

obstacle by eliminating duplicated and unimportant features from the dataset to increase the robustness of learning 

algorithms. This paper introduces a binary version of a hybrid swarm intelligence approach as a wrapper method for 

feature selection that gathers between the strengths of both the grey wolf and particle swarm optimizers. This approach 

is named Improved Binary Grey Wolf Optimization (IBGWO). The original version of this hybrid approach was 

proposed in the literature with a continuous search space as a high-level hybrid form, which runs the optimizers one 

after the other. Two different types of transfer functions, named S-Shaped and V-Shaped, are applied in this work to 

turn continuous data into binary. Nine of high-dimensional small-instance medical datasets are employed to assess the 

proposed approach. The experimental results demonstrate that IBGWO based on S-Shaped (IBGWO-S) outperforms 

the binary particle swarm and the binary grey wolf optimizers on six out of nine datasets according to the classification 

accuracy and fitness values. IBGWO-S selects the fewest features on 100% of the datasets. The results show IBGWO 

based on V-Shaped (IBGWO-V) outperforms the binary particle swarm and binary grey wolf optimizers on five datasets 

based on the classification accuracy and fitness values. The results indicate that IBGWO-V outperforms IBGWO-S in 

terms of all studied evaluation metrics. The results also show that IBGWO-S and IBGWO-V outperform eight meta-

heuristics known in the literature in selecting the relevant features with acceptable classification accuracy. 
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I. INTRODUCTION 
Feature Selection (FS) is an essential task for machine learning algorithms. It decreases the dimensionality by 

removing irrelevant information. FS can be defined as a kind of optimization and search problem as it searches for 

the most related features to reduce the size of the dataset without any loss of information. There are three searching 

techniques with FS [1]; random search, exhaustive search, and heuristic search. Random search means creates and 

selects the features randomly then evaluates each selected subset until finding the best. An exhaustive search assesses 

all candidate features to detect the best subset. Finally, heuristic search generates the initial feature subset randomly 

then heuristic searching techniques guide the search strategies toward the best feature subset. The heuristic search 

has been widely used nowadays for FS to determine the best feature subset in an acceptable time. 

From an evaluation point of view, three general models are employed to examine the selected features; filters [2, 

3], wrappers [4], and embedded [5]. A feature subset in the filter models is assessed based on the interconnections 

between the features rather than utilizing any classifier. Otherwise, the wrapper models use the classifiers as 

assessment indicators. The embedded models are a classifier dependent on which the selected feature subset in the 

training process is based on a specific classifier. 

Meta-heuristic (MH) algorithms have been successfully utilized as a search algorithm with high-dimensional 

datasets. Swarm Intelligence (SI) algorithms that imitate animals' social behaviors in nature, such as birds, fish, 

whales, and wolves, are a kind of MHs [6]. They have been used to solve optimization problems and they have also 

proved their capabilities in the literature with the FS problem [7]. Some examples of SI algorithms, Particle Swarm 

Optimization (PSO) [8], Ant Colony Optimization (ACO) [9], Gravitational Search Algorithm (GSA) [10], Harris 

Hawks Optimization (HHO) [11], Grey Wolf Optimizer (GWO) [12], Whale Optimization Algorithm (WOA) [13], 

and Salp Swarm Algorithm (SSA) [14]. SI algorithms suffer from trapping on local optima when searching in a large 

search space. So, these algorithms ought to adjust the local and the global search process to obtain the global optima.  

Particle Swarm Optimization (PSO) is an example of SI that imitates creatures' social behaviors when they search 

for their food, such as birds and fish [15, 16]. The movement of the particles in the search area depends on the best 

value attained by the particle and the fittest value attained by the swarm. Grey Wolf Optimization (GWO) is another 

example of SI that emulates the hunting technique of the grey wolves [12, 17]. Each wolf follows the leaders until 

finding the prey.   
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MHs are adequate for both continuous and binary problems. Two groups of Transfer Functions (TFs) called S-

Shaped and V-Shaped are used to transform continuous values into binaries according to [18]. FS is considered as a 

binary optimization issue since the features can be displayed as a string of zeros and ones [19, 20]. 

This paper presents a binary form of the hybrid SI approach as a wrapper method for the FS. SI ought to prevent 

the local optima by balancing between two phases during the searching process; exploration and exploitation. The 

binary form of a hybrid SI approach introduced in this paper merges the great expertise of both PSO and GWO. In 

addition to the binary representation that aims to maintain a stability between exploration and exploitation efforts. 

This approach is termed the Improved Binary Grey Wolf Optimization (IBGWO). The IBGWO benefits from the 

strong exploration ability of binary PSO (BPSO) to enhance the exploratory behavior of binary GWO (BGWO). 

BPSO can refine the solutions that are generated by BGWO in each iteration until finding the best solution. This 

approach is compared with BPSO and BGWO and with eight well-known MHs. The results indicate that IBGWO 

outperforms other optimizers in classification accuracy, the number of detected features, and fitness values.  

This paper is organized into the following sections. The related works are presented in Section 2. Section 3 briefly 

describes GWO, PSO, and the binary version of optimization algorithms. The proposed approach is described in 

Section 4. The datasets and the experimental setup are presented in Section 5. Section 6 presents and discusses the 

experimental results. Finally, the conclusion is summarized in Section 7. 

 

II. Related Works 
MHs have been suggested to handle optimization problems such as the FS problem [22]. These algorithms seek 

to find the global optima by balancing between searching locally, i.e., exploitation, and searching globally, i.e., 

exploration, to avoid the local optima. Examples of MHs include but not limited to Genetic Algorithm (GA) [23], 

Honey Bee Mating Optimization (HBMO) [24], Particle Swarm Optimization (PSO) [8, 19], Whale Optimization 

Algorithm (WOA) [25], Ant Colony Optimization (ACO) [26, 27], Dragonfly Algorithm (DA) [28], Harris Hawks 

Optimizer (HHO) [11], Ant Lion Optimizer (ALO) [29, 30, 31], Grey Wolf Optimizer (GWO) [12, 20, 32, 33, 34], 

Bacterial Foraging Optimization (BFO) [35] and many others. 

Hybrid MHs have been utilized in optimization problems to improve the searching techniques to avoid local 

optima. According to [22], hybrid algorithms were employed in two forms; low level and high level. In the first form, 

one algorithm is mixed and embedded inside the other algorithm. In the second form, one algorithm is employed and 

run after another algorithm. The first hybrid MH algorithm in the FS area was proposed in [36]. The searching 

technique was by using local search strategies with the GA algorithm for the FS domain. Jinjie Huang et al. introduced 

in [37] a hybrid wrapper MH approach based on GA and Mutual Information (MI) [38] to detect the optimal features 

from the dataset. Mafarja and Abdullah in [3] discussed a hybrid approach of GA and Simulated Annealing (SA) 

inside the rough set theory. A hybrid algorithm for the FS domain relying on ACO and Artificial Neural Networks 

(ANNs) was mentioned in [39]. 

A hybrid algorithm based on PSO with a spiral-shaped technique for the FS domain was presented in [40]. The 

spiral-shaped mechanism [13] was used in the position’s update formula of PSO to enrich the accuracy of the feasible 

solution that can be selected to avoid a local optimum. Alper Unler et al. presented in [41] a hybrid approach for FS 

called maximum relevance minimum redundancy PSO (mr2PSO). The hybridization merged the MI as a filter 

approach with the PSO as a wrapper approach. Mafarja et al. in [42] introduced a hybrid approach that enhanced the 

exploitation and exploration of WOA by combining it with SA and tournament selection [43] algorithms. A hybrid 

algorithm that merged the Artificial Bee Colony (ABC) and Differential Evolution (DE) was presented in [44]. A 

hybrid approach called SSAPSO was proposed in [45]. It utilized the SSA and PSO to enhance the stability between 

local search and global search. 

Rough Set (RS) was hybridized with improved Harmony Search (HS) to resolve FS problem in [46]. HS algorithm 

imitates the process of musical orchestration, where each musician usually provides the sound of his device by 

seeking an ideal state of tune [47]. RS was merged with GA in [48] as a hybrid method for medical datasets 

classification. A hybrid model that mixed GWO with the strong search ability of DE to avoid local optima was 

adopted in [49]. Shahrzad Saremi in [50] used a combination of Evolutionary Population Dynamics (EPD) with 

GWO to solve the optimization problem. Also, the Cuckoo Search (CS) was used with GWO to improve the searching 

mechanism in [51]. A hybrid method of ACO and GA was presented in [52] for text FS. In [53], ACO was also 

merged with CS for FS in digital mammographic sets of data. 

Hybrid optimization approaches that combine GWO and PSO to resolve the FS problem are mentioned in [78, 

79]. El-Hasnony et al. in [78] utilized GWO to achieve the three best solutions, then the individuals update their 

position using PSO equation which is interested in the individual’s best location in addition to the three best solutions 

of a whole swarm. This approach also used the idea of inertia weight to give each best solution a certain inertia 

weight to increase the control of exploration and exploitation. In [79], the approach proposed a hybrid technique that 
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combines GWO and PSO. It divided the population into two groups. The first group followed the GWO procedures, 

while the second group followed the PSO procedures. This hybridization is intended to achieve a balance between 

exploitation and exploration. 

The hybrid algorithms in [21, 54] also benefit from the potentials of both GWO and PSO. These optimization 

algorithms used hybridization to resolve the problems with continuous values. In [21], the hybrid algorithm was an 

example of a high-level hybrid form utilized to resolve the economic load dispatch problem. The results indicated a 

high ability of this algorithm to resolve this kind of problem. The same hybrid approach that uses GWO and PSO 

was introduced in [55] to reach optimal reactive power dispatch problem solution in the field of electric power 

networks. A hybrid algorithm was presented in [54] called HPSOGWO. It combined PSO and GWO in a low-level 

hybrid form to enhance exploitation and exploration ability during the search process. Some test functions had been 

used to determine the effectiveness of HPSOGWO. The outcomes showed that the hybrid approach surpassed the 

PSO and GWO in obtaining the optimal solution. The binary version of the HPSOGWO was proposed in [56] called 

BPSOGWO. It was used as a wrapper method for FS. It exceeded the binary versions of GWO, PSO, GA, and the 

WOA with SA regarded to classification accuracy, number of selected features, and the computing time. 

 

This work proposes a binary form of a hybrid MH algorithm that depends on the hybrid approach defined in [21]. 

This binary approach is called the IBGWO algorithm. According to [18], the binary version of the MHs balances 

between exploitation and exploration to avoid the local optima. Two types of TFs were used in this study to convert 

the solutions into binary format, namely S2 and V2, as will show later. The experimental results show that IBGWO 

selects the most relevant features with acceptable classification accuracy. The suggested approach also demonstrates 

a good performance compared with several related algorithms mentioned in the literary works in terms of different 

evaluation metrics used in this paper. 

According to the No-Free-Lunch (NFL) theorem [57], no single algorithm is ideal to handle all optimization 

problems. That means, not only one optimization algorithm can solve FS problems for all datasets. For this reason, 

there is a demand to find new optimization algorithms to solve these problems. 

III. BACKGROUND 
 

A. Particle Swarm Optimization PSO 
It was created by Kennedy and Eberhart [58]. It simulates the social interactions between the birds when searching 

for their food [58, 59]. PSO employs a group of searching individuals called particles to search for the best solution 

within the search area. Each particle has its position that represents a candidate solution, and its velocity that used to 

adjust the speed and the direction of the particle. PSO initializes the searching process by generating random 

solutions, then in each iteration, each particle modifies its position under the orientation of the particle’s best position 

namely, pbest, and the swarm’s best position namely, gbest. Such steps are repeated until the stopping criteria are 

attained, such as detecting the best solution or reaching the maximum iteration [59]. 

The new velocity of the particle, velnew depending on pbest and gbest solutions as shown in equation (1). 

 velnew = w ∗ velold + c1 ∗ rd1 ∗ (pbest − posold) + c2 ∗ rd2 ∗ (gbest − posold) (1) 

where velold is an old velocity, posold is a particle’s old position. The Numbers rd1 and rd2 are random numbers 

between 0 and 1. The acceleration factors, c1 and c2, refer to a particle’s confidence on itself and its neighbors, 

respectively. These parameters lead each particle towards the positions of pbest and gbest. In the literary works, c1 

and c2 are equal to 2 as a generally accepted setting for most of the problems [15, 41, 60, 61, 62]. Inertia weight w is 

utilized to control the exploitation and exploration aspects of the particles. The inertia weight decreased linearly or 

non-linearly according to the equations presented in [63, 64, 65].  

The new position, posnew, is calculated using the following equation: 

 posnew
 = velnew

 + posold
 (2) 

 

B. Grey Wolf Optimization GWO 
It is SI algorithm which was created by Mirjalilia et al. to resolve optimization problems [12]. It simulates the 

grey wolves' hunting process, from the searching strategy until surrounding the prey, then attacking it. The hunting 

process of the grey wolves depends on the social hierarchy structure of these creatures, where all wolves follow the 
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leaders who have the strength and good hunting ability. As shown in Figure 1, the social hierarchy structure is 

categorized into four groups of wolves: alpha, beta, delta, and omega. 

 

                  

Fig. 1. Hierarchical Structure of Grey Wolves 

Alpha α wolf is a leader and a decision-maker. Beta β is alpha’s assistant in leading the group. Delta δ obeys the 

orders from alpha and beta. The remaining wolves are called omega ω which follow other wolves in their movement. 

The grey wolves that represent the solutions in a search region are initialized randomly. The solutions are assessed, 

and the three best wolves are determined. The remaining wolves, ω, update their locations depending on the best 

three solutions. The process, from solutions evaluation to select the three optimal solutions until updating positions, 

are iterated until α has been obtained. The descriptions and the mathematical models that represent the hunting 

process are discussed in detail as follows: 

i. Surrounding the prey 

The wolves surround the prey at the beginning of the hunting mechanism. The equations that inspire the 

encircling activity are as follow: 

Dis = |C · PosP(i) − Pos(i)| (3) 

PosP (i +1) = PosP(i) − A · Dis (4) 

where Dis is the distance from each wolf's location to the prey, i and i+1 refer the current and next iterations, 

respectively. Pos refers to the position of the wolf. PosP refers to the prey’s position. A and C are calculated 

by the following equations. 

 A = 2a · rd1 − a (5) 

 C = 2 · rd2 (6) 

where rd1 and rd2 are random values within the interval [0,1]. Vector a decreases linearly during the iterations 

from 2 to 0 based on the equation (14). 

ii. Hunting prey 

Each wolf relies on the location of the three optimal wolves to change its position. This process is formulated 

by the following equations: 

 Pos1 = |Posα − A1 · Disα| (7) 

 Pos2 = |Posβ − A2 · Disβ| (8) 

                                             Pos3 = |Pos δ – A3 · Disδ|                                                 (9) 

 

                                                         Pos(i+1) = 
𝑃𝑜𝑠1+ 𝑃𝑜𝑠1+ 𝑃𝑜𝑠1

3
                                                        (10) 

 

Pos(i+1) is the new position of ω wolves. The new position depends on Pos1, Pos2, and Pos3 based on the 

distances Dis between each wolf’s position and the three optimal solutions’ position Posα, Posβ, and Posδ. 

The distances are calculated by the following equations: 

 

Disα = |C1 · Posα − Pos| (11) 

Disβ = |C2 · Posβ − Pos| (12) 

Disδ = |C3 · Posδ − Pos| (13) 
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C1, C2, and C3 are calculated based on equation (6). 

By performing the previous equations, the new position of each wolf would be in any location around the prey 

that is simulated by α, β, and δ. 

iii. Attacking prey 

Attacking the prey can be simulated by the following equation: 

 𝑎 = 2 (1 − 
𝑛

𝑁
) (14) 

where a is a linear decreased vector that reduces from 2 to 0 during the iterations to tune the exploitation and 

the exploration aspects of GWO. Variables n and N are the current and the overall iterations of the algorithm, 

respectively. 

C. Binary Version of Optimization Algorithms 
FS can indeed be defined as a binary issue since the solutions can be converted to a binary set of 0’s and 1’s, 

where 0 indicates the not selected feature while 1 indicates the selected one. According to Mirjalili and Lewis [18], 

there are two types of TFs that are used to convert continuous solutions into binaries. These functions called S-

Shaped and V-Shaped TFs. TFs produce a probability to transform the binary solution from 0 to 1 and conversely. 

Table 1 illustrates the mathematical formulas of TFs. 

 

 
Table 1: V-Shaped and S-Shaped TFs [18] 

V-Shaped TFs 

1 V1 T(x) = |𝑒𝑟𝑓 (
√𝜋

2
𝑥)| 

2 V2 T(x) = |tanh (𝑥)| 

3 V3 T(x) = |
𝑥

√1+𝑥2
| 

4 V4 T(x) = |
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜋

2
𝑥)| 

S-Shaped TFs 

1 S1 T(x) = 1 (1 + 𝑒−2𝑥)⁄  

2 S2 T(x) = 1 (1 + 𝑒−𝑥)⁄  

3 S3 T(x) = 1 (1 + 𝑒
−𝑥

2 )⁄  

4 S4 T(x) = 1 (1 + 𝑒
−𝑥

3 )⁄  

 

The binary solution can be updated using equation (15) that was presented by Kennedy and Eberhart [66]. They 

concentrated on S2-TF that called the sigmoid function. 

 

 𝑥(𝑖+1) =  {
1, 𝑇𝐹(𝑣(𝑖+1)) > 𝑟𝑑

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 (15) 

where x(i+1) is the binary value at iteration i+1. TF(v(i+1)) is the probability of any value v(i+1) that can be retrieved 

by TF mathematical formula. The number rd is any random value between 0 and 1. 

According to Rashedi et al. [67], V2-TF which is called hyperbolic tangent is utilized to update the binary solution 

according to the following equation: 

 𝑥(𝑖+1) =  {
𝑐𝑜𝑚𝑝(𝑥(𝑖)), 𝑇𝐹(𝑣(𝑖+1)) > 𝑟𝑑

      𝑥(𝑖)   , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (16) 

where x(i) and x(i+1) are the binary solutions at iterations i and i+1, respectively. The function comp( ) is the 

complement of any binary solution. TF(v(i+1)) is the probability of any value v(i+1) that can be retrieved by TF 

mathematical formula. The number rd is any random value between 0 and 1. 
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IV. The proposed approach 
Through this paper, a binary version of a hybrid MH algorithm, IBGWO, is utilized as a wrapper method for the 

FS. This approach aims to look for the appropriate features from the dataset that convenient for the classification 

task. MH algorithms have the challenge of achieving a global optimum solution. The proposed approach would have 

to improve the adjustment between the exploitation and exploration aspects to overcome this challenge, thus prevents 

the local optima. A binary form of both PSO and GWO algorithms are used to design a high-level hybrid approach 

that interests from the exploration and exploitation ability of both PSO and GWO, respectively. This work utilizes 

S2 and V2 TFs to modify continuous solutions into binary ones. 

The objective function that assesses the solutions is measured using equation (17). This function depends on the 

size of the picked attributes and the classification error value. The fittest solution is the one that has the lowest fitness 

value, which means the smallest number of selected attributes and the minimum classification error value. 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =  𝑚 𝐸𝑟𝑟𝑜𝑟 + 𝑛
|𝑦|

|𝑌|
 (17) 

where Error is a classification error. |y| is the size of selected attributes and |Y | is the overall set of attributes. The 

two parameters m and n indicate the importance of the classifier performance and the number of picked attributes. m 

is any value within the interval [0,1] and n = (1-m) as mentioned in [34, 42]. 

According to the GWO algorithm, the wolves modify their positions depending on the optimal solutions α, β, and 

δ. These solutions may not be the best, especially in the high dimensional set of data. So, the algorithm may trap in 

a local optimum [51]. IBGWO combines both BPSO and BGWO to enhance the global search capability when 

solving the FS problem in high dimensional datasets. This approach is proposed in more detail in the following 

subsection. 

A. Improved Binary Grey Wolf Optimization Algorithm (IBGWO) 
In this approach, the BPSO algorithm is used to enhance the exploration aspect of BGWO. As mentioned earlier, 

PSO has a strong exploration ability while GWO has a strong exploitation ability. The binary form of a hybrid 

approach can protect BGWO from dropping into a local optimum by depending on the BPSO's superior exploration 

ability. This approach is called Improved Binary Grey Wolf Optimization Algorithm (IBGWO). 

The original model of the hybrid algorithm that combined GWO and PSO, called GWO-PSO [21]. The individuals 

moved continuously in the search region. In this approach, the individuals move in a binary search space. In BGWO 

[34], the wolves’ steps toward α, β, and δ are calculated by equation (7), equation (8), equation (9), and the new 

position of each wolf is measured using equation (10). The new position is binarized using equation (15). According 

to BPSO in [66], the particle’s new velocity that is calculated by equation (1) is substituted in equation (15) to binarize 

the new position. 

Figure 2 demonstrates the proposed approach. The initial population for the BGWO algorithm is generated 

randomly. BGWO improves the solutions then passes them to the BPSO algorithm. The BPSO also improves the 

solutions again and returns them to the BGWO algorithm. These processes will be iterated until stopping criteria are 

fulfilled. Figure 3 shows the pseudo-code of the hybrid algorithm. In lines 1-6, the population size is determined, the 

solutions are generated randomly, and all the parameters are initialized. Then the fitness value of each solution is 

calculated, and the three best solutions are determined as shown in lines 9 and 10. Each wolf updates its position 

according to the BGWO equations as illustrated during lines 12-17. The new fitness values are calculated in line 18 

and gbest is identified in line 19. The new velocities and locations are calculated according to the BPSO equations 

as shown in lines 20-24. These steps are repeated until the best solution is found or the maximum number of iterations 

is reached which is determined by the main while loop between lines 8 and 26. 



73 

 

Fig. 2. Improved Binary Grey Wolf Optimization Algorithm (IBGWO) 

 

 
Fig. 3. Pseudocode of IBGWO Algorithm 

 

V. The Datasets and the Experimental Setup 
A. The Datasets 

The experiments are evaluated using nine of the high-dimensional medical datasets that were used in [68]. Table 

2 provides a list of the datasets and their characteristics, such as number of instances, number of features, and number 

of classes. These sets of data are a kind of high-dimensional small instance datasets that contain thousands or millions 

of attributes with a small set of instances. As mentioned in [69], dealing with these types of datasets is a big obstacle 

since a small set of observations is not sufficient to train the learning model. Besides, the large set of features 

increases the search area and the computational complexity. 
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Table 2: High-dimensional small instance datasets 

Data set No. of instances No. of features No. of classes 

11_Tumors 174 12533 11 

14_Tumors 308 15009 26 

Brain_Tumor1 90 5920 5 

Brain_Tumor2 50 10367 4 

DLBCL 77 5469 2 

Leukemia1 72 5327 3 

Leukemia2 72 11225 3 

Prostate_Tumor 102 10509 2 

SRBCT 83 2308 4 

B. Experimental Setup 
According to a cross-validation manner, samples in the datasets are divided randomly into 80% training and 20% 

testing subsets. The implementations were done using MATLAB 2013 and the algorithms were run 20 times on Intel 

Core i5, 2.2 GHz CPU and 4GB RAM. The results are recorded upon 100 iterations with population size equal 10. 

In the fitness equation, parameters m and n are assigned to 0.99 and 0.01, respectively, to give the classification 

accuracy more importance than the number of selected features. These settings are tuned after several experiments, 

in addition to some earlier empirical studies. 

C. Evaluation Metrics 
The evaluation metrics that are used to assess the optimizers are: average classification accuracy, average FS size, 

average fitness value, average running time, the Statistical standard deviation (Std), in addition to the F-Test of each 

algorithm to determine its average rank.  

The average classification accuracy is defined by the following equation  

 𝐴𝑣𝑔 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑅
∑

1

𝑇
∑ (𝑃𝑖 == 𝐴𝑖)𝑇

𝑖=1
𝑅
𝑗=1  (18) 

where R is the overall runs, T is the instances number in the dataset, Pi and Ai are the predictive and actual class, 

respectively. 

The average FS size is defined by the following equation 

  𝐴𝑣𝑔 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 =  
1

𝑅
∑

𝑓𝑖

𝐹
𝑅
𝑖=1  (19) 

where R is the overall runs, fi is the best number of features at ith iteration, and F is the overall number of features. 

The average fitness value is by the following equation 

  𝐴𝑣𝑔 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =  
1

𝑅
∑ 𝐹𝑖𝑡𝑖

𝑅
𝑖=1  (20) 

where R is the overall runs, Fiti is the best fitness value at ith iteration. 

The, average running time is defined by the following equation 

 𝐴𝑣𝑔 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =  
1

𝑅
∑ 𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑖

𝑅
𝑖=1  (21) 

where R is the overall runs, RunTimei is the run time in millisecond at ith iteration. 

Finally, Std is utilized to reflect the stability and robustness of each optimizer. A low standard deviation indicates 

that the values tend to be close to the mean. The Std is defined by the following equation 

𝑆𝑡𝑑 =  √
1

𝑅
∑(𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖 −  𝑎𝑣𝑔)2                                                     (22)     

where R is the number of times to run the optimization algorithm, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖 is the optimal solution resulted from 

iteration i, and 𝑎𝑣𝑔 is the average of solutions acquired from running an optimization algorithm. 
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VI. Experimental Results and Discussion 
Several comparisons are conducted to achieve an overall view of the positive and negative aspects of the binary 

hybrid approach (IBGWO). The S-Shaped and V-Shaped TFs are employed to transform continuous values into 

binaries. First, IBGWO approach is compared with the native version of BGWO and BPSO based on the S-Shaped 

TF. Then, IBGWO approach is compared with original version of BGWO and BPSO based on the V-Shaped TF. 

After that, the comparisons between the best approaches among S-Shaped and V-shaped are done. Finally, a 

comparative study between the best approaches among S-Shaped and V-Shaped with eight well-known MH 

algorithms is done. 

The results compared the novel hybrid approach with the original version of BPSO and BGWO in addition to the 

comparisons with eight well-known MH algorithms used in FS domain, such as Binary Gravitational Search 

Algorithm (BGSA) [67], Binary Ant Lion Optimization (BALO) [30], Binary Bat Algorithm (BBA) [70], Binary 

Salp Swarm Algorithm (BSSA) [71], Binary Dragonfly Algorithm (BDA) [72], Binary Whale Optimization 

Algorithm (BWOA) [73], Binary Harris Hawk Optimization (BHHO) [74] and Binary Teaching Learning Based 

Optimization (TLBO) [75]. The classification performance was measured by using K-Nearest Neighbors (KNN) 

classifier [76, 77]. The best results in each table are written in bold font. 

A. Comparisons between IBGWO, BGWO and BPSO based on S-Shaped TF 
Tables 3, 4, 5, and 6 illustrate the results of the comparisons between IBGWO, BGWO, and BPSO based on S-

Shaped TF according to the classification accuracy results, number of picked features, fitness results, and running 

time. Table 3 shows that IBGWO-S attained the best accuracy on six datasets, while BPSO-S achieved the highest 

accuracy on three datasets. BGWO-S was unable to compete other approaches with classification accuracy. 

According to F-Test, IBGWO-S attained the best accuracy rank. 

By analyzing the results on table 4, IBGWO-S obtained the best results based on selecting the fewest features on 

all datasets. BGWO-S and BPSO-S couldn’t compete the proposed approach on picking the relevant features. As 

shown by F-Test, IBGWO-S achieved the best rank and surpassed BGWO-S and BPSO-S by attaining the minimum 

set of features. 

The outcomes according to the fitness values are provided in Table 5. The findings showed IBGWO-S obtained 

the best optimizer on six datasets. In the case of BPSO, it gained the best findings on three datasets. As F-Test 

showed, IBGWO-S was the best approach followed by BPSO. 

Table 6 illustrates the outcomes based on the average running time. BPSO-S recorded the best running time 

followed by BGWO-S then IBGWO-S. The results conclude that IBGWO-S was the best according to the fitness 

values that integrate the minimum features with the best classification accuracy. In other words, IBGWO-S is the 

best S-shaped TF approach. 
Table 3: Classification accuracy results obtained from various approaches based on S-Shaped TF 

Dataset Metric BGWO-S BPSO-S IBGWO-S 

11_Tumors 
Avg 0.7714 0.8055 0.8257 
Std 0.0000 0.0114 0.0137 

14_Tumors 
Avg 0.5999 0.5996 0.6842 

Std 0.0076 0.0069 0.0160 

Brain_Tumor1 
Avg 0.7627 0.9046 0.7741 
Std 0.0107 0.0244 0.0096 

Brain_Tumor2 
Avg 0.6067 0.5067 0.8000 
Std 0.0254 0.0254 0.0000 

DLBCL 
Avg 0.8750 1.0000 0.9396 
Std 0.0000 0.0000 0.0114 

Leukemia1 
Avg 0.8644 0.9244 0.9400 
Std 0.0122 0.0230 0.0203 

Leukemia2 
Avg 0.8000 0.7333 0.8644 
Std 0.0000 0.0000 0.0410 

Prostate_Tumor 
Avg 0.8984 0.9524 0.9349 
Std 0.0165 0.0000 0.0233 

SRBCT 
Avg 0.9412 0.8235 0.9980 
Std 0.0000 0.0000 0.0107 

Mean Rank F-Test 4.89 4.22 3.11 
Overall Rank 3 2 1 



76 

 

Table 4: Number of selected features obtained from various approaches based on S-Shaped TF 

Dataset Metric BGWO-S BPSO-S IBGWO-S 

11_Tumors 
Avg 7736.30 6206.57 2037.10 

Std 486.93 49.91 198.06 

14_Tumors 
Avg 9650.33 7460.10 3338.60 
Std 414.84 51.47 421.20 

Brain_Tumor1 
Avg 3435.23 2825.03 801.90 

Std 320.02 39.74 140.27 

Brain_Tumor2 
Avg 5192.90 4927.73 1293.30 
Std 316.01 42.69 77.41 

DLBCL 
Avg 2674.70 2543.70 650.73 
Std 24.28 15.19 31.95 

Leukemia1 
Avg 3271.20 2559.83 750.50 
Std 235.28 35.38 38.15 

Leukemia2 
Avg 5619.67 5391.97 1525.97 
Std 235.90 27.83 144.39 

Prostate_Tumor 
Avg 6408.63 5105.10 1540.33 
Std 483.60 32.65 199.12 

SRBCT 
Avg 1262.37 1042.73 357.50 
Std 134.60 9.65 67.72 

Mean Rank F-Test 6.00 5.00 2.00 
Overall Rank 3 2 1 

 

Table 5: Fitness results obtained from various approaches based on S-Shaped TF 

Dataset Metric BGWO-S BPSO-S IBGWO-S 

11_Tumors 
Avg 0.2325 0.1975 0.1742 
Std 0.0004 0.0113 0.0136 

14_Tumors 
Avg 0.4026 0.4014 0.3149 
Std 0.0075 0.0068 0.0159 

Brain_Tumor1 
Avg 0.2407 0.0992 0.2250 
Std 0.0105 0.0241 0.0094 

Brain_Tumor2 
Avg 0.3944 0.4932 0.1992 

Std 0.0248 0.0251 0.0001 

DLBCL 
Avg 0.1286 0.0047 0.0610 
Std 0.0000 0.0000 0.0113 

Leukemia1 
Avg 0.1403 0.0796 0.0608 

Std 0.0121 0.0228 0.0201 

Leukemia2 
Avg 0.2030 0.2688 0.1356 
Std 0.0002 0.0000 0.0406 

Prostate_Tumor 
Avg 0.1067 0.0520 0.0659 
Std 0.0158 0.0000 0.0231 

SRBCT 
Avg 0.0637 0.1792 0.0035 
Std 0.0006 0.0000 0.0106 

Mean Rank F-Test 5.00 4.22 3.11 

Overall Rank 3 2 1 
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Table 6: Running time in millisecond obtained from various approaches based on S-Shaped TF 

Dataset Metric BGWO-S BPSO-S IBGWO-S 

11_Tumors Avg 177.3157 136.3651 347.4332 

14_Tumors Avg 747.0982 440.8359 1338.7236 

Brain_Tumor1 Avg 25.4853 19.7345 51.2097 

Brain_Tumor2 Avg 22.8867 18.1753 51.3258 

DLBCL Avg 19.6718 15.7296 47.191 

Leukemia1 Avg 18.5404 14.4966 40.8158 

Leukemia2 Avg 36.1515 27.6931 97.8216 

Prostate_Tumor Avg 57.893 40.6904 134.5022 

SRBCT Avg 9.2276 7.9226 17.877 

 

B. Comparisons between IBGWO, BGWO and BPSO based on V-Shaped TF 
This section Clarifies the outcomes of the comparisons based on V-Shaped TF based on the assessment metrics. 

According to table 7, IBGWO-V got the most accurate results on five datasets followed by BGWO-V on four datasets. 

According to the F-Test, IBGWO-V yielded the best rank amongst all approaches. 

Table 8 illustrates that BGWO-V attained the best performance on eight datasets followed by IBGWO-V which 

obtained the best results only on one dataset. However, BGWO-V has rated the best approach based on the F-Test. 

Table 9 reports that IBGWO-V outperformed other approaches on five datasets based on the fitness values, while 

BGWO-V obtained the best fitness values on four datasets. These results are compatible with the overall ranks where 

IBGWO-V achieved the highest rank followed by BGWO-V. 

Table 10 includes the average running time. It is observed that BGWO-V had the best running time followed by 

BPSO-V, and IBGWO-V, respectively. Although IBGWO-V is a hybrid algorithm, there is no big difference between 

it and the native BPSO and BGWO in the running time that is calculated in milliseconds. 

Overall, IBGWO-S is best S-Shaped approach, while IBGWO-V is the best V-Shaped approach. The next section 

presents the comparisons between IBGWO-V and IBGWO-S. 

 
Table 7: Classification accuracy results obtained from various approaches based on V-Shaped TF 

Dataset Metric BGWO-V BPSO-V IBGWO-V 

11_Tumors 
Avg 0.9018 0.8007 0.9208 
Std 0.0215 0.0164 0.0229 

14_Tumors 
Avg 0.7587 0.5972 0.7018 
Std 0.0349 0.0133 0.0165 

Brain_Tumor1 
Avg 0.9043 0.8941 0.9537 
Std 0.0510 0.0216 0.0329 

Brain_Tumor2 
Avg 0.9867 0.5067 0.9700 
Std 0.0346 0.0254 0.0466 

DLBCL 
Avg 0.9958 1.0000 1.0000 
Std 0.0159 0.0000 0.0000 

Leukemia1 
Avg 1.0000 0.8956 0.9956 
Std 0.0000 0.0336 0.0169 

Leukemia2 
Avg 0.9978 0.7356 1.0000 
Std 0.0122 0.0213 0.0000 

Prostate_Tumor 
Avg 0.9968 0.9429 0.9984 

Std 0.0121 0.0194 0.0087 

SRBCT 
Avg 0.9980 0.8235 0.9961 
Std 0.0107 0.0000 0.0149 

Mean Rank F-Test 2.89 5.11 2.61 

Overall Rank 2 3 1 
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Table 8: Number of selected features obtained from various approaches based on V-Shaped TF 

Dataset Metric BGWO-V BPSO-V IBGWO-V 

11_Tumors 
Avg 341.40 6127.23 1891.53 
Std 123.34 74.03 539.54 

14_Tumors 
Avg 1032.70 7393.97 4004.87 
Std 358.13 75.31 742.30 

Brain_Tumor1 
Avg 49.33 2771.63 125.30 
Std 17.25 40.03 58.79 

Brain_Tumor2 
Avg 81.47 4879.90 219.10 
Std 37.36 50.19 99.82 

DLBCL 
Avg 52.90 2514.03 113.00 
Std 17.59 34.95 57.84 

Leukemia1 
Avg 90.43 2490.97 252.53 
Std 23.03 39.64 122.14 

Leukemia2 
Avg 92.17 5337.63 5.27 
Std 24.52 38.60 2.69 

Prostate_Tumor 
Avg 138.60 5042.40 977.10 
Std 38.92 57.76 487.49 

SRBCT 
Avg 38.47 1019.10 222.73 
Std 12.20 14.34 101.91 

Mean Rank F-Test 2.00 6.00 2.78 
Overall Rank 1 3 2 

 

 
Table 9: Fitness results obtained from various approaches based on V-Shaped TF 

Dataset Metric BGWO-V BPSO-V IBGWO-V 

11_Tumors 
Avg 0.0975 0.2022 0.0799 

Std 0.0213 0.0162 0.0228 

14_Tumors 
Avg 0.2395 0.4037 0.2979 
Std 0.0346 0.0132 0.0166 

Brain_Tumor1 
Avg 0.0948 0.1095 0.0460 

Std 0.0505 0.0214 0.0326 

Brain_Tumor2 
Avg 0.0133 0.4931 0.0299 
Std 0.0342 0.0251 0.0462 

DLBCL 
Avg 0.0042 0.0046 0.0002 

Std 0.0157 0.0001 0.0001 

Leukemia1 
Avg 0.0002 0.1081 0.0049 
Std 0.0000 0.0332 0.0167 

Leukemia2 
Avg 0.0023 0.2666 0.0000 

Std 0.0120 0.0211 0.0000 

Prostate_Tumor 
Avg 0.0033 0.0614 0.0025 
Std 0.0120 0.0191 0.0087 

SRBCT 
Avg 0.0021 0.1791 0.0048 
Std 0.0106 0.0001 0.0149 

Mean Rank F-Test 2.56 5.33 2.50 
Overall Rank 2 3 1 

 
 

 



79 

Table 10: Running time in millisecond obtained from various approaches based on V-Shaped TF 

Dataset Metric BGWO-V BPSO-V IBGWO-V 

11_Tumors Avg 57.1855 296.4533 242.8638 

14_Tumors Avg 225.7733 869.2334 1001.608 

Brain_Tumor1 Avg 10.8095 26.4363 38.8603 

Brain_Tumor2 Avg 14.7791 29.7486 45.6683 

DLBCL Avg 17.1194 22.9108 39.3595 

Leukemia1 Avg 17.1668 22.5012 42.504 

Leukemia2 Avg 25.9756 40.5877 50.8046 

Prostate_Tumor Avg 30.0724 63.9304 125.5382 

SRBCT Avg 14.0818 12.4427 31.7024 

 

C. Computational complexity analysis 
The computational complexity is an essential indicator to evaluate the algorithm performance. When using MH 

algorithms for solving the FS problem, the computational complexity depends on the dimension of the problem D, 

the population size P, and the process of updating the individuals’ positions that continue until the maximum number 

of iterations T is reached. As shown in table 11, the three algorithms have the same total computational complexity. 

The main steps of these three algorithms are initializing the population, evaluating the fitness value of each 

individual, and updating the positions according to the algorithm’s equations. The computational complexity is 

commonly expressed using the Big-O notation. After summarizing all the complexity discussed in the table below, 

the total computational complexity for all algorithms is the same which equals O (P x D x T), where T is the main 

while loop which indicates the maximum number of iterations to run the algorithms. 

 

Table 11: Computational complexity analysis for PSO, GWO, and IBGWO. 

Main step for BPSO Complexity Main step for BGWO Complexity Main step for IBGWO Complexity 

initializing the 

particles 
O (P x D) 

initializing the wolf 

pack 
O (P x D) initializing the wolf pack O (P x D) 

Evaluate objectives O (P) Evaluate objectives O (P) Evaluate objectives/ GWO O (P) 

Update velocities O (P x D) Compute new positions O (P x D) Compute new positions (GWO) O (P x D) 

Compute new 

positions 
O (P x D)   Evaluate objectives/ PSO O (P) 

    Update velocities O (P x D) 

    Compute new positions (PSO) O (P x D) 

total computational 

complexity 
O (P x D x T) 

total computational 

complexity 
O (P x D x T) 

total computational 

complexity 
O (P x D x T) 

 

D. The comparison between IBGWO-S and IBGWO-V 
As shown in the previous two sections, IBGWO-S and IBGWO-V outperformed other approaches. In this section, 

the comparisons between these two best approaches shown in table 12. According to the classification accuracy 

values, IBGWO-V achieved the best on 89% of the datasets. Based on reduction rates, it is observed that IBGWO-V 

outperformed IBGWO-S on 89% of the datasets. According to fitness values, IBGWO-V also outperformed IBGWO-

S on 89% of the datasets. The results detected that the outweigh of IBGWO-V over IBGWO-S on selecting the 

optimal features with minimal classification error. The performance of the IBGWO-V optimizer also demonstrated 

that V-Shaped TF enhance IBGWO optimizer by balancing exploration and exploitation. Next subsection, the 

comparisons between IBGWO-S, IBGWO-V and eight well-known MH algorithms are conducted. 
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Table 12: Comparison of IBGWO-S with IBGWO-V based on classification accuracy, number of selected features, and fitness values 

Dataset Metric 
Accuracy No. Features Fitness 

IBGWO-S IBGWO-V IBGWO-S IBGWO-V IBGWO-S IBGWO-V 

11_Tumors 
Avg 0.8275 0.9208 2037.10 1891.53 0.1742 0.0799 

Std 0.0137 0.0229 198.06 539.54 0.0136 0.0228 

14_Tumors 
Avg 0.6842 0.7018 3338.60 4004.87 0.3149 0.2979 
Std 0.0160 0.0165 421.20 742.30 0.0159 0.0166 

Brain_Tumor1 
Avg 0.7741 0.9537 801.90 125.30 0.2250 0.0460 

Std 0.0096 0.0329 140.27 58.79 0.0094 0.0326 

Brain_Tumor2 
Avg 0.8000 0.9700 1293.30 219.10 0.1992 0.0299 
Std 0.0000 0.0466 77.41 99.82 0.0001 0.0462 

DLBCL 
Avg 0.9396 1.0000 650.73 113.00 0.0610 0.0002 

Std 0.0114 0.0000 31.95 57.84 0.0113 0.0001 

Leukemia1 
Avg 0.9400 0.9956 750.50 252.53 0.0608 0.0049 
Std 0.0203 0.0169 38.15 122.14 0.0201 0.0167 

Leukemia2 
Avg 0.8644 1.0000 1525.97 5.27 0.1356 0.0000 

Std 0.0410 0.0000 144.39 2.69 0.0406 0.0000 

Prostate_Tumor 
Avg 0.9349 0.9984 1540.33 977.10 0.0659 0.0025 
Std 0.0233 0.0087 199.12 487.49 0.0231 0.0087 

SRBCT 
Avg 0.9980 0.9961 357.50 222.73 0.0035 0.0048 
Std 0.0107 0.0149 67.72 101.91 0.0106 0.0149 

Ranking W|T|L 1 | 0 | 8 8 | 0 | 1 1 | 0 | 8 8 | 0 | 1 1 | 0 | 8 8 | 0 | 1 
 

E. The comparison between IBGWO-S, IBGWO-V, and well-known MH algorithms 
The comparisons are done between IBGWO-S and IBGWO-V with eight well-known metaheuristic algorithms 

such as BGSA, BALO, BBA, BSSA, BDA, BWOA, BHHO, and BTLBO. Table 13 reveals that IBGWO-V 

performed highest accuracy result on four datasets. F-Test showed the excellence of IBGWO-V over other optimizers 

followed by IBGWO-S. Table 14 observes that IBGWO-V surpassed other algorithms on 89% of datasets. Table 15 

shows the superiority of IBGWO-V on 6 out of 9 datasets referred to fitness values. F-Test supports the superiority 

of IBGWO-V followed by IBGWO-S over other competitors. These results prove that the proposed binary hybrid 

approach based on V-Shaped TF is effective and has an excellent performance on FS optimization problem. 

As we have noted, various optimizers produced various results for the same dataset, this confirms the NFL 

theorem mentioned previously which concludes that the permanent demand for new optimizers to tackle FS problem. 

 
Table 13: Comparison of IBGWO-S, IBGWO-V with other well-known algorithms in terms of classification accuracy results 

Dataset IBGWO-S IBGWO-V BGSA BALO BBA BSSA BDA BWOA BHHO BTLBO 

11_Tumors 0.8275 0.9208 0.9114 0.9219 0.7657 0.8399 0.7733 0.7324 0.7257 0.8781 

14_Tumors 0.6842 0.7018 0.5209 0.5738 0.5874 0.5038 0.6281 0.4893 0.5532 0.5968 

Brain_Tumor1 0.7741 0.9537 0.8130 1.0000 0.8278 1.0000 0.8333 1.0000 0.8889 0.7222 

Brain_Tumor2 0.8000 0.9700 0.6833 0.8000 0.4733 0.5300 0.8967 0.6000 0.6033 0.6933 

DLBCL 0.9396 1.0000 0.8208 0.9688 0.8563 0.8750 0.8813 0.9979 0.9146 0.8750 

Leukemia1 0.9400 0.9956 0.9911 0.9800 0.9356 0.9333 0.9711 0.9178 1.0000 0.8689 

Leukemia2 0.8644 1.0000 0.8022 0.8133 0.9578 0.9333 0.9333 1.0000 1.0000 0.9333 

Prostate_Tumor 0.9349 0.9984 0.9302 0.8286 0.6254 0.9937 0.9651 0.8921 1.0000 0.9048 

SRBCT 0.9980 0.9961 0.9882 0.9451 0.8765 1.0000 0.9157 1.0000 0.9922 1.0000 

F-Test 3.11 2.61 7.00 5.33 7.78 6.06 5.50 5.89 5.00 6.28 

Overall Rank 2 1 9 4 10 7 5 6 3 8 
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Table 14: Comparison of IBGWO-S, IBGWO-V with other well-known algorithms in terms of number of selected features 

Dataset IBGWO-S IBGWO-V BGSA BALO BBA BSSA BDA BWOA BHHO BTLBO 

11_Tumors 2037.10 1891.53 6252.87 8764.90 5035.77 7407.87 6218.33 6248.80 4741.13 5818.70 

14_Tumors 3338.60 4004.87 7570.20 12283.43 6130.67 9068.40 7473.97 8534.73 7398.67 7077.67 

Brain_Tumor1 801.90 125.30 2927.17 3098.20 2432.43 2901.83 2781.40 1944.17 1637.10 2526.77 

Brain_Tumor2 1293.30 219.10 5166.03 5106.63 4120.63 5632.33 5018.47 3830.00 2755.37 4767.57 

DLBCL 650.73 113.00 2681.93 2939.43 2148.10 3070.67 2554.63 2362.60 1665.57 2466.57 

Leukemia1 750.50 252.53 2635.70 3337.93 2098.73 2756.63 2534.37 2151.83 1693.43 2281.33 

Leukemia2 1525.97 5.27 5543.83 5764.73 4460.70 5564.43 5370.17 4498.87 3304.43 4863.43 

Prostate_Tumor 1540.33 977.10 5215.00 7486.43 4080.80 5953.00 5145.57 4829.07 3555.10 4549.90 

SRBCT 357.50 222.73 1134.33 1318.23 936.83 1290.23 1070.90 955.03 921.60 979.90 

F-Test 2.00 2.78 8.11 9.67 4.11 9.11 6.78 5.44 3.22 5.56 

Overall Rank 1 2 8 10 4 9 7 5 3 6 
 

Table 15: Comparison of IBGWO-S, IBGWO-V with other well-known algorithms in terms of fitness values 

Dataset IBGWO-S IBGWO-V BGSA BALO BBA BSSA BDA BWOA BHHO BTLBO 

11_Tumors 0.1742 0.0799 0.0927 0.0843 0.2019 0.1645 0.2294 0.2699 0.2753 0.1253 

14_Tumors 0.3149 0.2979 0.4794 0.4302 0.3778 0.4973 0.3732 0.5113 0.4473 0.4039 

Brain_Tumor1 0.2250 0.0460 0.1901 0.0052 0.1395 0.0049 0.1697 0.0033 0.1128 0.2793 

Brain_Tumor2 0.1992 0.0299 0.3185 0.2029 0.4429 0.4707 0.1071 0.3997 0.3954 0.3082 

DLBCL 0.0610 0.0002 0.1823 0.0363 0.1253 0.1294 0.1222 0.0064 0.0876 0.1283 

Leukemia1 0.0608 0.0049 0.0137 0.0261 0.0650 0.0712 0.0334 0.0854 0.0032 0.1341 

Leukemia2 0.1356 0.0000 0.2007 0.1899 0.0104 0.0710 0.0708 0.0040 0.0029 0.0703 

Prostate_Tumor 0.0659 0.0025 0.0741 0.1768 0.2975 0.0120 0.0395 0.1115 0.0034 0.0986 

SRBCT 0.0035 0.0048 0.0166 0.0601 0.0873 0.0056 0.0881 0.0041 0.0118 0.0042 

F-Test 3.11 2.50 7.00 5.44 6.89 6.67 5.89 5.89 5.22 6.44 

Overall Rank 2 1 9 4 8 7 5 5 3 6 

 
 

VII. CONCLUSION 
This paper introduces a binary hybrid MH algorithm called IBGWO used to resolve the FS problem. This hybrid 

approach benefits from the strong ability of both BGWO exploitation and BPSO exploration. The evaluation metrics 

were applied on nine of high-dimensional small-instance datasets to assess the hybrid approach. The results of the 

comparisons between IBGWO, BPSO, and BGWO based on the S-shaped TFs proved that IBGWO-S is the best 

approach according to all evaluation metrics. The outcomes of the comparisons between IBGWO, BPSO, and BGWO 

according to V-Shaped TFs showed that IBGWO-V is the ideal approach according to the classification accuracy 

and fitness values. The comparisons between the two best approaches IBGWO-S and IBGWO-V showed that 

IBGWO-V outperformed IBGWO-S on selecting the minimal features with high classification accuracy. The results 

of the comparisons between IBGWO-S, IBGWO-V, and eight well-known MHs revealed that IBGWO-V 

outperformed other optimizers in the searching capabilities for the best solution followed by IBGWO-S. The 

remarkable results of the IBGWO approach revealed its ability to adjust the behavior of exploitation and exploration 

among the iterations. 

The recommendation for future studies is to hybridize the GWO algorithm with other MH algorithms. 

Additionally, it would be interesting to employ the IBGWO approach to solve other types of datasets not only medical 

ones. 
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