
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Recipes for when physics fails: recovering robust
learning of physics informed neural networks
To cite this article: Chandrajit Bajaj et al 2023 Mach. Learn.: Sci. Technol. 4 015013

View the article online for updates and enhancements.

You may also like
Stochastic particle advection velocimetry
(SPAV): theory, simulations, and proof-of-
concept experiments
Ke Zhou, Jiaqi Li, Jiarong Hong et al.

-

Accelerating physics-informed neural
network based 1D arc simulation by meta
learning
Linlin Zhong, Bingyu Wu and Yifan Wang

-

Spectrally adapted physics-informed
neural networks for solving unbounded
domain problems
Mingtao Xia, Lucas Böttcher and Tom
Chou

-

This content was downloaded from IP address 122.163.64.247 on 10/07/2023 at 05:01

https://doi.org/10.1088/2632-2153/acb416
/article/10.1088/1361-6501/acc049
/article/10.1088/1361-6501/acc049
/article/10.1088/1361-6501/acc049
/article/10.1088/1361-6463/acb604
/article/10.1088/1361-6463/acb604
/article/10.1088/1361-6463/acb604
/article/10.1088/2632-2153/acd0a1
/article/10.1088/2632-2153/acd0a1
/article/10.1088/2632-2153/acd0a1

Mach. Learn.: Sci. Technol. 4 (2023) 015013 https://doi.org/10.1088/2632-2153/acb416

OPEN ACCESS

RECEIVED

26 July 2022

REVISED

25 November 2022

ACCEPTED FOR PUBLICATION

17 January 2023

PUBLISHED

6 February 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Recipes for when physics fails: recovering robust learning of
physics informed neural networks
Chandrajit Bajaj1, Luke McLennan1, Timothy Andeen2 and Avik Roy3
1 Department of Computer Science & Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin,
Austin, TX, 78712, United States of America

2 Department of Physics, The University of Texas at Austin, Austin, TX, 78712, United States of America
3 Center for AI Innovation, National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL,
61801, United States of America

E-mail: avroy@illinois.edu

Keywords: Physics informed deep learning, Gaussian Processes, nonlinear PDE, Robust deep learning

Abstract
Physics-informed neural networks (PINNs) have been shown to be effective in solving partial
differential equations by capturing the physics induced constraints as a part of the training loss
function. This paper shows that a PINN can be sensitive to errors in training data and overfit itself
in dynamically propagating these errors over the domain of the solution of the PDE. It also shows
how physical regularizations based on continuity criteria and conservation laws fail to address this
issue and rather introduce problems of their own causing the deep network to converge to a
physics-obeying local minimum instead of the global minimum. We introduce Gaussian process
(GP) based smoothing that recovers the performance of a PINN and promises a robust architecture
against noise/errors in measurements. Additionally, we illustrate an inexpensive method of
quantifying the evolution of uncertainty based on the variance estimation of GPs on boundary
data. Robust PINN performance is also shown to be achievable by choice of sparse sets of inducing
points based on sparsely induced GPs. We demonstrate the performance of our proposed methods
and compare the results from existing benchmark models in literature for time-dependent
Schrödinger and Burgers’ equations.

1. Introduction

Neural networks (NNs) are finding ubiquitous applications in fundamental sciences. Their abilities to
perform classification and regression over large and complicated datasets are making them extremely useful
for a variety of purposes, including modeling molecular dynamics modeling, nonlinear dynamical system
design and control, and other many body interactions [1–3]. In many cases, these important problems in
physics and engineering are posed in terms of static and time dependent partial differential equations
(PDEs). Analytical solutions to PDEs are scarce. Moreover, PDEs are difficult to solve and require
computationally intensive, and highly pre-conditioned numerical linear solvers [4]. Popular discretization
methods, finite difference method (FDM), and even finite element method (FEM) are used to obtain point
wise or piece-wise linear estimates over a fine grid or meshed domains of interest [5]. Although NN-based
approximations to differential equations have been explored for some time [6–8], interest in such approaches
have been reinvigorated recently due to significant improvement in computational platforms that support
fast forward and backward gradient propagation utilizing automatic differentiation [9]. Rapid progress has
been seen in NN-assisted solutions of ordinary differential equations (ODEs) [10]. Novel architectures like
NeuralODEs [11] have been proposed to harness the power of blackbox ODE solvers in conjunction with
continuous-depth residual NNs (Resnets) using the method of adjoints [12], while models like ODE2VAEs
use variational auto-encoder architectures to learn functions and derivatives via latent space embeddings
similar to Cauchy boundary conditions [13].

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/acb416
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acb416&domain=pdf&date_stamp=2023-2-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0116-1012
mailto:avroy@illinois.edu

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Solving PDEs using NNs has also seen significant attention by the development of physics informed
neural networks (PINNs) [14]. Trained PINNs have been shown to be effective in solving time dependent
PDEs for a given set of Cauchy boundary conditions over a finite spatio-temporal domain. They exploit a
deep NN’s ability as universal function approximators [15, 16]. Many variants of the trainable PINN
architecture have been explored to exploit structure, quality and speed of convergence, and dimensional
scalability [17–23]. However, one of the least explored areas is the robustness of trainable PINNs for various
noisy data scenarios and conditions. While most PINN architectures in literature assume perfectly known
boundary data, in many practical applications, this data comes from regulated and calibrated measurement
processes and is subject to uncertainties or errors pertaining to the limitations of the measurement system or
the stochastic nature of the physical processes themselves. Most PINN architectures utilize a finite and small
collection of training data on the domain boundary. Given the typical small size of this training data and
NNs ability to capture arbitrary non-linearity, vanilla PINNs can often propagate these errors or
uncertainties in an unstable fashion. Such unregulated error propagation can significantly limit the
applicability of PINNs as industrial strength numerical approximators of PDEs.

In this paper, we extensively investigate the problem of error propagation in PINNs. In section 2 we
introspect the architecture of a PINN, and how it responds when data on the initial timeslice is corrupted
with noise. The notion of PINN robustness is thus tied to the PINNs ability to preserve solution features
under such noisy perturbations. We analyze examples of learning time-varying non-linear Schrödinger, and
the non-convective fluid flow Burgers’ equations. We further show the impact of introducing regularization
based on continuity criteria inspired from conservative PINN (cPINN) architectures [19, 22] through
attempts to satisfy conservation laws. In section 3 we provide details of a Gaussian process smoothed PINN
(GP-smoothed PINN), and its sparse variant and compare its performance against most typical and popular
PINN architectures. We demonstrate how these twin GP-smoothed PINNs recover the intended solution and
can outperform methods realizing continuity or conservation regularizers [22] as well as better possess the
ability to control uncertainty propagation compared to uncertainty quantification methods proposed for
example in [20]. We briefly examine the efficiency role of sparse inducing points (IPs) and also demonstrate
the importance and choice of various kernels for achieving best model selection in GP training to prevent
data driven under- or overfitting.

2. Robustness of PINNs

In this section, we review the PINN and cPINN architectures and explain with different examples how such
models fail to capture the essence of robustness. We also investigate multiple physics-inspired regularization
schemes and identify their limitations in addressing the issue of robustness for usual PINN architectures.

2.1. Review of PINN architectures
A PDE that determines spatio-temporal evolution of a set of scalar (real or complex) fields, collectively
represented by u(⃗x), can be expressed as

N [u(⃗x), f(⃗x)] = 0 (1)

where x⃗ defines a n dimensional spatial or saptio-temporal coordinate system, defined on the domain
x⃗ ∈ D ⊂ Rn.N represents a set of known, finite-order, differential operators and f(⃗x) is the source function,
usually known as analytical expression in problems intended to solve a forward PDE problem. Equation (1)
is subject to a set of boundary conditions,

B [u(⃗x ∈ ∂D)] = 0. (2)

The general idea of a PINN [14] is to obtain an approximation of the field u(⃗x)≈ ũ(⃗x) by a deep NN that can
solve the system of equation (1), subject to 2.

ũ(⃗x) = NNθ (⃗x;UB,UC,UD) (3)

where,

• UB = {(⃗xbi ,B[u(⃗xbi)])
Nb
i=1} represents a set of samples on the domain boundary ∂D,

• UC = {(⃗xci , f(⃗xci))
Nc
i=1} is a set of measurements that enforces the PDE physics of equation (1) on the neural

net (equation (3)), and
• UD = {(⃗xdi ,u(⃗xdi))

Nd
i=1} is a set of direct measurements. Although, UD is not necessary for training a plain

PINN as in [14], they are often used for training networks for targeted simulation.

2

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

The parameters of the deep network (θ) in equation (27) are obtained by minimization of the loss
function,

θ∗ = argmin
θ

LPINN (4)

where the loss function can be decomposed as,

LPINN = αBCLBC +αPDELPDE +αDLD. (5)

Here, LBC is the MSE loss calculated over UB, enforcing the NN to approximate the boundary condition,

LBC =
1

Nb

∑
i

∣∣B[ũ(⃗xbi)]∣∣2 (6)

LPDE is the MSE loss calculated over UC, enforcing the physics on the NN,

LPDE =
1

Nc

∑
i

|N [ũ(⃗xci), f(⃗x
c
i)]|

2 (7)

and finally, LD, if employed, determines the loss with respect to observation,

LD =
1

Nd

∑
i

∣∣ũ(⃗xdi)− u(⃗xdi)
∣∣2 . (8)

The α() parameters in equation (5) are penalty parameters that determine the relative strength of the
regularizing terms in the loss function. Authors in [14] assign α() = 1 identically, but alternate choices have
been explored in other works [22, 24].

2.1.1. cPINNs
Variations of PINN architectures have been explored in a number of recent works. For example, authors
in [21] explore a multi-staged PDE solver for a long range solution and [19] introduces adaptive,
hyperparameterized activation functions that would accelerate the convergence of such networks.

Although the training of PINNs does not strictly require a discretized grid of evaluation points as often
required by traditional numerical techniques like FDM and FEMs, they can certainly benefit from such grid
structures by parallelizing the training of PINNs over a collection of subdomains. Hence, the domain of
integration and its boundary are divided into subdomains, i.e.

D =
K⋃
i=1

di, ∂D =
K⋃
i=1

∂di, ũ=
K⋃
i=1

ũi. (9)

An additional benefit to such parallelized structure is to include flux continuity at subdomain boundaries
in the loss function, providing additional safeguard against error propagation. In other words, the loss
function in equation (5) is modified as

LcPINN =
d∑

j=1

Lj
PINN +αILj

I (10)

where Lj
PINN is the PINN loss for the jth subdomain as defined in equation (5). The other term, Lj

I acts as a
regularizer that enforces functional and flux continuity at the interface of jth subdomain interface

Lj
I =

1

NIj

NIj∑
i=1

(∣∣∣ũj(⃗x j
i)− ũj+1(⃗x

j
i)
∣∣∣2 + ∣∣∣∇ũj(⃗x

j
i) ·n

j
i−∇ũj+1(⃗x

j
i) ·n

j+1
i

∣∣∣2) . (11)

here, {⃗xji} is a collection of points on the interface of jth and j+ 1th subdomains and nji is the unit vector

normal to the interface of jth subdomain at the location of x⃗ j
i.

Figure 1 shows a schematic representation of the different spatio-temporal regions that contribute to
evaluating the loss function in equation (5) along with a generic architecture for such models.

3

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 1. A visualization of the domains of (a) a PINN and (b) a cPINN with boundary points (•), collocation points (×), and
interface points (■) for a spatio-temporal domain with one spatial dimension. Figure (c) shows the model architecture diagram
of a PINN for a generic n+ 1 dimensional spatio-temporal domain solving for a set of coupled fields u1, . . . ,um.

2.2. Error propagation through PINNs
An NN can approximate non-linear functions with increasing degrees of accuracy. It is typically expected in
the case of a PINN that Nb ≪ Nc i.e. the size of the training data on the domain boundary is usually much
smaller than the size of the physics-enforcing collocation points. This unavoidable feature of PINNs make
them susceptible to overfitting on the boundary and eventually propagate those errors across the domain. In
the following subsections, we investigate the physical nature of error propagation through PINNs and the
impact of different regularizations on training the PINN architecture. We will use two popular examples that
have been widely used in the literature to illustrate this issue of error propagation.

2.2.1. Nonlinear Schrödinger equation
We consider the example considered in [14] of a nonlinear Schrödinger PDE which describes the
spatio-temporal evolution of a 1D complex field h(x, t) = u(x, t)+ iv(x, t) as

i
∂h

∂t
+

1

2

∂2h

∂x2
+ |h|2h= 0 (12)

which can also be interpreted as a set of coupled PDEs given as

−∂v

∂t
+

1

2

∂2u

∂x2
+(u2 + v2)u= 0

∂u

∂t
+

1

2

∂2v

∂x2
+(u2 + v2)v= 0. (13)

The domain boundary is defined as (x, t) ∈ [−5,5]× [0, π2]. The boundary conditions can be classified as

(a) Initial condition; the known value of the field on the initial time slice given as a collection of

measurements {(xj,h(xj,0)
Nb,t

j=0}. Unbeknownst to the NN, these measurements are taken from the
analytical solutions with possible sources of additive corruption-

u(xj,0) = 2sech(xj)+Θuϵ
u
i

v(xj,0) = Θvϵ
v
i (14)

where ϵu, ϵv are randomly chosen from a normal distribution withN (0,σ2). The parametersΘu andΘv

represent acceptance of errors which are set to 0 (1) for error-free (error-inclusive) initial conditions.
(b) Periodic boundary condition on spatial slices enforced on a discretized spatial boundary. A total of Nb,s

points are chosen to enforce the following spatial boundary conditions

h(+5, t) = h(−5, t)

∂h

∂x
(+5, t) =

∂h

∂x
(−5, t). (15)

4

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 2. The PINN-evaluated solution for |h(x, t)| from the Schrödinger equation at different timeslices, t= 0,0.39,0.78,1.37,
from left to right for error-free boundary data (top) and corrupted boundary data with (bottom). The additive errors on the
boundary data are taken independently from samples of zero mean Gaussian distribution with σ= 0.1. The points marked with
the blue cross (x) pointer in the leftmost set of plots indicate the samples on the initial timeslice used to train the PINN.

The loss function is constructed according to equation (5) with α() = 1.0. To set the benchmark for the
performance of a PINN for this problem, we solved for the PDE with error-free boundary data
(Θu =Θv = 0). We train a fully connected MLP with six hidden layers and 70 nodes per layer, with two
inputs corresponding to the space and time coordinate and two outputs corresponding to the real and
imaginary parts of the complex field. The MLP was trained for Nb = 100 points on the domain boundary, 50
of which were taken from uniformly sampling the space coordinate (x) on the initial timeslice to impose the
initial condition in equation (14), and the 50 points were taken on from a uniform distribution on the time
coordinate to impose the periodic boundary condition in equation (15). A fine grid of Nc = 20000
collocation points was chosen to impose the physics of the PDE.

Figure 2 shows the evolution of the complex field in the Schrödinger equation as evaluated by a vanilla
PINN at four different timeslices, taken at t= 0,0.39,0.78,1.37. The performance of the PINN for error-free
data on the initial timeslice is shown in figures 2(a)–(d). We use the same architecture to repeat the exercise
while training on corrupted data on initial timeslice by lettingΘu =Θv = 1 and additive errors generated by
drawing samples from zero-mean Gaussian distribution with σ= 0.1. The performance of the PINN in
evaluating the complex field magnitude at the same time instances is shown in figures 2(e)–(h). The effect of
introducing corrupted data on initial timeslice becomes evident when comparing figures 2(a)–(d) with
figures 2(e)–(h). The PINN tends to overfit on the initial timeslice and eventually propagates these errors on
the following timeslices.

2.2.2. Burgers’ equation
We consider the Burgers’ equation in one spatial dimension with Dirchlet boundary conditions as a second
example. Widely used in fluid dynamics and nonlinear acoustics, this nonlinear PDE has been widely studied
as a benchmark example in the PINN literature [14, 20]. The PDE and the boundary conditions for 1D
Burgers’ equation are given as :

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(16)

u(−1, t) = u(1, t) = 0 (17)

u(x,0) =− sin(πx)+Θuϵ
u (18)

where the domain boundary is given as (x, t) ∈ [−1,1]× [0,1]. To set the benchmark for this problem, we
solve equation (16) subject to boundary conditions in equations (17) and (18) with ν = 0.01

π using a PINN
without noise (Θu = 0) in the initial data. We used an MLP with 4 hidden layers, each with 40 nodes. We
trained with Nc = 10000 collocation points to enforce the physics (equation (16)) and Nb = 150 points on
the boundary, 50 points for enforcing the initial condition in equation (18) and 50 points on each of the

5

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 3. The PINN-evaluated solution for u(x, t) from the Burgers’ equation at different timeslices, t= 0,0.25,0.50,1.00, from
left to right for error-free boundary data (top) and corrupted boundary data with (bottom). The additive errors on the boundary
data are taken from independently samples of zero mean Gaussian distribution with σ= 0.5. The points marked with the blue
cross (x) pointer in the leftmost set of plots indicate the samples on the initial timeslice used to train the PINN.

spatial boundaries at x=−1,1 to enforce each of the Dirichlet conditions in equation (17). The loss function
is constructed according to equation (5) with α() = 1.0. Figures 3(a)–(d) shows the evolution of the field
u(x, t) in the Burgers’ equation as evaluated by a vanilla PINN at four different timeslices, taken at
t= 0,0.25,0.50,1.0.

Next, we repeat the exercise for Burgers’ equation by introducing additive corruption withΘu = 1 and
σ= 0.5. Figures 3(e)–(h) show the corresponding line shapes of the Burgers’ field for the aforementioned
timestamps. Similar to what was found for the Schrödinger equation, the vanilla PINN architecture fails to
auto-correct for the corruption in initial data and ends up overfitting on the initial timeslice and eventually
propagates these errors to later timeslices.

2.3. Regularization of PINNs
Both figures 2 and 3 show a PINN’s inherent inability to self-correct when trained with error-corrupted data
on the initial timeslice. The PINN rather learns to overfit on the initial timeslice and eventually propagates
the initial errors to later timeslices. This propagation of error to later timeslices is a direct consequence of
having no regularization in the loss term in equation (5) to constrain overfitting at the domain boundary.

In principle, this is not very different from overfitting in classic regression problems with a high degree
polynomial or introduction of bias in an un-regularized regression by outliers. This naively indicates that
additional regularization might be useful to limit the propagation of errors. However, our investigations
indicates that some of the most physically intuitive choices for regularizing constraints have little impact on
error propagation and boundary overfitting.

We consider two unique choices of regularizers. First, inspired by the cPINN architecture, we impose the
constraint of functional and flux continuity at arbitrary spatio-temporal boundaries to constrain the PDE
solution. Second, we explore the possibility of using physical conservation laws as additional sources of
regularization. In the following subsections, we explore the impact of using such regularization schemes in
training PINNs with corrupted boundary data.

2.3.1. Functional and flux continuity at subdomain interfaces
The cPINN architecture inspires a useful regularization that imposes continuity of the field and its flux
across domain boundaries. From a physics standpoint, these regularizations can be thought of as additional
conservation laws that ensures continuity and differentiability of a field across subdomains. In this
subsection, we explore the impact of including this term in the training loss function in equation (10) in
controlling propagation of uncorrelated errors at sampling points on the initial timeslice.

One immediate concern is that the convergence of the cPINN is susceptible to exact choices of how many
subdomains are chosen and where those boundaries are located. Based on the location of the subdomain
boundaries, the cPINN’s capacity to converge to the global minimum of the training loss function, can be
significantly impacted. To illustrate this, we compare the performance of cPINNs in solving the Schrödinger

6

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 4. The cPINN-evaluated |h(x, t)| for two (top row) and three (bottom row) equal subdomains at different timeslices,
t= 0,0.39,0.78,1.37, from left to right when no error is introduced on initial time-slice. The points marked with the blue cross
(x) pointer in the leftmost set of plots indicate the samples on the initial timeslice used to train the cPINN.

Figure 5. The cPINN evaluated lineshape for |h(x, t)| (left), ∂u
∂x

(middle), and ∂v
∂x

(right) at the subdomain interface (x= 0) for a
two subdomain cPINN as a function of t. PINN0 (PINN1) refers to the PINN trained to solve the PDE on a spatial boundary of
−5 ⩽ x ⩽ 0 (0 ⩽ x ⩽ 5).

equation with two and three equal spatial subdomains trained on error-free boundary data. The results are
shown in figure 4. Evidently, a three subdomain cPINN better recovers the analytical solution. However, the
failure of a two subdomain cPINN, to capture the solution of a PDE even for error-free boundary data is
intriguing. This observation yields a deeper insight to the impact of adding additional regularizers with the
PINN loss function in equation (5). As can be seen in figure 4(a), the two subdomain cPINN moderately
deviates from the analytical solution on the initial timeslice at the expense of converging to the local minima
introduced by the inclusion of the interface loss. Figure 5 shows how the PINNs trained on different
subdomains converge to identical functional and flux values at the subdomain boundary but eventually
experiences large deviations from the analytical solution which requires ∂u

∂x (x,0) =
∂v
∂x (x,0) = 0. It is

apparent that choice of subdomain boundary at x= 0 plays an important role in causing such deviating
solutions. As the real and imaginary fields reach local extrema at x= 0 for all values of t, even small
deviations in estimating the local gradients at the interface can create a cascading effect in the evaluation of
the complex field across subdomain boundaries as we can see in figures 5.

The result of such instabilities in convergence, is evidential consequence of such cPINN-inspired
regularizations and the architecture’s failure to be robust to such noisy perturbations. As also shown in
figure 6, regularization of functional and flux continuity at subdomain boundaries does not provide the
necessary safeguard to ensure robustness.

When we repeat the same set of exercises for the Burgers’ equation, we see very similar results, as shown
in figures 7. Similar to what we have seen for the Schrödinger equation, placing the subdomain boundaries at
functionally critical points can destabilize and deteriorate the quality of the solution learned by the deep
network. It can be seen in figures 7(a)–(d) from the deviation of the Burgers’ field’s predicted behavior at
later timeslices even without any error introduced on the initial timeslice when two subdomains are
considered with an interface at x= 0. However, the function is almost identically recovered when the data is

7

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 6. The cPINN-evaluated |h(x, t)| for two (top row) and three (bottom row) subdomains at different timeslices,
t= 0,0.39,0.78,1.37, from left to right when additive Gaussian errors with σ= 0.1 is introduced on initial time-slice. The points
marked with the blue cross (x) pointer in the leftmost set of plots indicate the samples on the initial timeslice used to train the
cPINN.

Figure 7. cPINN-evaluated solution to Burgers’ equation with (a)–(d) two subdomains with no error, (e)–(h) three subdomains
with no error, (i)–(l) two subdomains with error, and (m)–(p) three subdomains with error. The error on individual datapoints,
whenever applied, have been taken from additive zero-mean Gaussian distribution with σ= 0.5.

8

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

perfect on the initial timelice with three subdomains as shown in figures 7(e)–(h). This tendency of a
PINN-like architecture to converge to a local minima instead of the global minima almost infallibly
deteriorates the quality of convergence when error is introduced on the initial timeslice, and thus the
solution departs significantly from its ideal behavior. This is apparent in both the two subdomain
(figures 7(i)–(l)) and the three subdomain cPINNs (figures 7(m)–(p)).

2.3.2. Conservation law constraints
Physical laws are often subject to a number of conservation laws. While in many cases these conservation
laws emerge as direct consequences of the mathematical structure of the PDE, explicitly enforcing such
conservation laws will back-propagate additional constraining gradients for the NN hyperparameters. We
can explicitly include these conservation laws into the loss function.

For example, one of the major consequences of non-linear Schrödinger equation is global conservation
of the squared absolute value of the complex Schrödinger field |h(x, t)|2

ˆ
|h(x, t)|2dx=

ˆ
(u(x, t)2 + v(x, t)2)dx= C (19)

where C is a constant. A number of other conserved quantities follow for the 1D nonlinear Schrödinger
equation we are considering [25–27], which include:

ˆ (
u
∂v

∂x
+ v

∂u

∂x

)
dx (20)

ˆ (∣∣∣∣∂h∂x
∣∣∣∣2 − |h|4

)
dx. (21)

We can constrain the solution by explicitly including these conservation laws as regularizers in the loss
function. For instance, the probability conservation law in equation (19), along with the requirement of
probability confinement within the spatially bounded region for the domain of equation (12) requires that

0=
d

dt

ˆ b

a
|h|2dx= d

dt

ˆ b

a
u2 + v2dx= 2

ˆ b

a
uut + vvtdx (22)

where (a, b) is the spatial domain. We can approximate this integral using time-sliced collocation points:

ˆ b

a
uut + vvtdx≈

b− a

nc,t

nc,t∑
i=1

u(xi, t)ut(xi, t)+ v(xi, t)vt(xi, t) (23)

where nc,t represents the number of collocation points chosen over the spatial subdomain at timeslice t. We
can define the conservation loss to be

LC =
1

Nt

Nt∑
i=0

1

nc,t

nc,t∑
j=0

(
u
(
xj, ti

)
ut
(
xj, ti

)
+ v
(
xj, ti

)
vt
(
xj, ti

))2
. (24)

We train a PINN with this conservative constraint on data appended with the loss function in equation (5).
As seen in figure 8, the constrained PINN better represents the conservation laws, with the overall range for
dispersion of cumulative probability effectively reduced with the inclusion of conservative constraints in the
PINN loss function. However, the observed evolution of the field in figure 9, obtained by applying this
constraint does not result in superior accuracy. Errors are still propagated from the initial timeslice
throughout the spatio-temporal domain.

As a second example of the implication of conservation laws as regularizers, we take the example of
Cole-Hopf transformation [28, 29] for the Burgers’ equation. Based on proper mathematical wisdom
developing analytical solutions to PDEs, methods like the Cole-Hopf transform have been found useful to
convert one family of PDEs into another whose analytical solution is known and rather simple to compute.
The Cole-Hopf transformation converts the nonlinear Burgers’ equation to a linear Heat equation. This
transformation is defined by making the following change of variables:

u(x, t) =−2ν
∂v

∂x
(x, t). (25)

9

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 8. Plots of three of the conservation laws (equations (19)–(21)) of the nonlinear Schrödinger equation for (a)–(c) a vanilla
PINN and (d)–(f) a PINN constrained by the first conservation law. The PINNs were trained with initial data corrupted with
σ= 0.1 Gaussian noise. The constrained PINN has better performance of conservation laws 1 and 3, while both PINNs satisfy
conservation law 2 nearly exactly.

Figure 9. The PINN-evaluated |h(x, t)| at different timeslices, t= 0,0.39,0.78,1.37, from left to right. In this case the PINN is
constained by the Schrodinger equations first conservation law: d

dt

´
|h|2dx= 0. The training data on the initial timeslice is

subject to measurement errors, modeled by a Gaussian random variable with zero mean and a standard deviation of σ= 0.1. The
points marked with the blue cross (x) pointer in the leftmost set of plots indicate the samples on the initial timeslice used to train
the PINN.

The transformed field v(x, t) satisfies the heat equation ∂tv= ν∂xxv. The viscous case of the Burgers’
equation is for ν > 0 causing a non-linear dissipative shock for small values of ν. The inviscid case yields the
equation having a non-linear hyperbolic conservation law. For our purpose, the conservation law for the
modified field can be viewed as a regularizer to the conventional PINN loss function in equation (5).

LCH =
∑
i,j

(
vt(xi, tj)− νvxx(xi, tj)

)2
. (26)

In addition to using the Cole-Hopf loss term as a regularizer for a vanilla PINN architecture, we
additionally consider including the continuity criteria for equally split two and three subdomains.
Figures 10(a)–(d) shows the time evolution of the Burgers’ field u(x, t) when the PINN is trained with the
loss function including the Cole-Hopf term in equation (26). The functional approximation obtained from
the PINN is much smoother compared to what we have observed in our previous exploration of regularized
evaluation of the solution to the Burgers’ equation (figures 3 and 7). It can be directly traced back to the fact
that the Cole-Hopf transformed field is indeed an anti-derivative of the Burgers’ field and in the neural
architecture when implemented as a discrete integration acts as a smoothing operation in somewhat
canceling out the effect of the error. The smoothing operation however eventually leads to underfitting and
the evolution of the field at later timeslices is affected in a similar fashion.

10

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 10. The PINN-evaluated u(x, t) at different timeslices, t= 0,0.25,0.5,1.0, from left to right when additive Gaussian errors
with σ= 0.5 is introduced on initial time-slice for when additional regularization in terms of Cole-Hopf transformation is added
to the loss function. A single domain PINN used for the top row while the middle and bottom rows show result from 2 and 3
domain cPINNs respectively.

Figure 10(e)–(h) [(i)–(l)] shows the results when we trained the Cole-Hopf regularized PINN with
functional and flux continuity imposed at the interface of two [three] sub-domains. These results establish
the inadequacy of the Cole-Hopf regularizer in establishing the robustness of the neural architecture and
reinforces their tendency to converge to local minimum instead of reaching the intended global minimum.

3. GP based error correction for PINNs

As the previous section illustrates, physics-inspired regularization alone does not eliminate propagation of
errors in PINNs. In fact, application of such constraints forces the PINN to converge to a local minimum that
satisfies the physics of conservation laws for overfitted boundary conditions and eventually propagates the
overfitting across the spatio-temporal domain. In this section, we seek the explore alternate solution to this
problem by using smoothing techniques that safeguard the quality of fit by cross-validated regulation of
smoothed boundary data. The model of corruption considered in the PDE model for 1D Schrödinger and
Burgers’ equations is a ubiquitous approximation for many physics processes. In such processes, the spatial
evolution of a local field is often expected to be smooth. When the physical data on domain boundary is
subject to such errors, it is often convenient to model these measurements as a realization of a stochastic
process. For instance, the initial condition in equation (14) can be modeled by a pair of continuous
stochastic processes, Ux,Vx where the index representing the spatial coordinate of the PDE domain. The
mean and covariance for such processes are given as

E(Ui) = 2sech(x= xi)

E(Vi) = 0

Cov(Ui,Uj) = Cov(Vi,Vj) = σ2δij.

To obtain a functional estimate of these stochastic processes, GP Regression [30] is a powerful,
nonparametric method. Given the set of samples on the initial timeslice, UB, the DNN structure in
equation (27) is replaced by,

11

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 11. The GP-smoothed PINN-evaluated |h(x, t)| at different timeslices, t= 0,0.39,0.78,1.37, from left to right. In this case
the training data on the initial timeslice is subject to measurement errors, modeled by a Gaussian random variable with zero mean
and a standard deviation of 0.1. GP-based smoothing was used on initial timeslice before training the PINN. The points marked
with the blue cross (x) pointer in the leftmost set of plots indicate the samples on the initial timeslice used to fit the GP. The grey
band in the subsequent plots represents the uncertainty associated with the PINN-evaluated approximation of |h(x, t)|.

ũ(⃗x) = NNθ

(⃗
x; ÛB,UC,UD

)
(27)

where

ÛB = {(⃗xbi ,B[û(⃗xbi)])
Nb
i=1} (28)

and

û(⃗xbi) = GP
(⃗
xbi |
{
(⃗xbi ,u(⃗x

b
i))

Nb
i=1

})
(29)

represents the GP-predicted estimate of the boundary data. The choice of the kernel function, representing
the pairwise covariance of observations is given as a sum of RBF and white noise kernels,

k(xi,xj) = Aexp

(
−
|⃗xi − x⃗j|2

2l2

)
+σ2δij (30)

where A, l,σ are hyperparameters obtained by maximizing the log-marginal likelihood.
Smoothing techniques are commonly applied in problems where robustness is a desired quality.

Compared to other parametric smoothing techniques like fixed order polynominals or smoothing splines,
GP regression has often been proved to be more robust against underfitting and overfitting [31, 32].
Robustness guarantees for GPs have been extensively explored in literature [33, 34]. GPs have also been
explored in connection with physics-inspired kernel building [35, 36] and found to be effective in predicting
physical phenomena like phase transitions in quantum systems [37].

Using a GP-smoothing on the boundary data allows for the PDE solver to regain its performance by
training itself over the smoothed data on initial timeslice. Compared to other approaches [38–40] that
employ GPs to solve differential equations, our method uniquely harnesses the smoothing interpolating
functionality of an GP while exploiting the universal approximator feature of an NN. While GPs with a
proper choice of a kernel can be very useful in approximating smooth analytical solutions, their o(n3)
complexity makes them infeasible for optimizing such solutions over a large set of collocation points and
such complexity grows significantly with high dimensional problems. However, restricting their use on the
domain boundary reduces the complexity by an order of magnitude while almost identically recovering the
analytical solution. Figure 11 shows the performance of an GP-smoothed PINN in solving the Schrödinger
equation, where the DNN can recover the analytical form despite corruption in initial data.

Since the loss function in equation (5) is not a direct metric of validating the performance of the PINN,
the validation loss is measured in terms ofmean squared error (MSE) loss compared with respect to the
analytical solution. In figure 12, we compare the evolution of the loss function during training and the
validation MSE loss. It can be seen that GP-smoothed PINN performs almost as well as error-free PINN, and
significantly better than a PINN trained with corrupted boundary data but no smoothing.

3.1. Kernel selection for GPs
The choice of kernel for fitting a GP to the boundary data is very important- improper choices can lead to
underfitting or overfitting and eventually propagate large errors through the PINN architecture. In order to
make the best choice for a kernel, we explored a k-fold cross-validation technique on the initial time-slice

12

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 12. The training loss function from equation (5) (left) and the MSE validation loss from as a function of number of
iterations for a PINN solving.

Table 1. Comparison of average training and validation MSE losses for training and validation data on the domain boundary as given in
equation (14) with σ= 0.1.

kernel MSE loss on training data MSE loss on validation data

RBF 0.007 62 0.0110
Matèrn (ν = 0.1) 3.2× 10−8 0.0465
Matèrn (ν = 1.5) 0.005 98 0.0116
Matèrn (ν = 4.0) 0.005 88 0.0126
Rational Quadratic 0.007 21 0.0112

data for the 1D Schrödinger equation. The dataset on initial boundary is split into k equal subsets where
k− 1 of them are used for training and one subset is kept aside for validation. Training and validation data
are used to optimize the GP hyperparameters. We examine the performance of the optimized GPs for using
the RBF kernel, the Matèrn kernel [30] with ν = 0.1,1.5, and 4.0, and the Rational Quadratic (RQ)
kernel [30]. Each kernel is appended with a localized white noise kernel. The average training and validation
MSE losses, measured with respect to a fixed set of noise-corrupted sampling points on the initial timeslice
(equation (14)), with k= 10 for different choices of kernels are summarized in table 1. It can be seen that
RBF and RQ kernels have similar performance while the Matèrn kernels tend to overfit.

3.2. Evolution of measurement uncertainty
While a generic PINN fails to recover the physics-motivated evolution of noisy boundary data following a
PDE, a GP-smoothed PINN not only can recover the physical evolution but also provide a controlled
estimate of uncertainty at every point in the spatio-temporal domain. The uncertainty evaluated by a
GP-smoothed PINN is obtained by evaluating the deviation in the NN parameters for±1σ variation of the
training data on domain boundary

ũ(⃗x)± δũ(⃗x) = NNθ±δθ

(⃗
x; Û±

B ,UC,UD

)
(31)

where

Û±
B = {(⃗xbi ,B[û(⃗xbi)± δû(⃗xbi)])

Nb
i=1}. (32)

The uncertainty associated with the boundary data, δû is obtained from the covariance estimate of the
optimized GP. The deviation of the NN parameters, δθ can be obtained from minimizing the loss function
evaluated with Û±

B .

(θ± δθ)∗ = argmin
θ

LPINN(θ; Û±
B). (33)

Analytical estimate of δθ∗ is a computationally intractable task since it requires inversion of the very large

Hessian matrix ∂2L
∂θ2 . However, a rather inexpensive technique is to start with a PINN architecture with

parameters θ already optimized for the mean value of the boundary data ÛB and re-train the network with
the modified boundary data. This reoptimization converges more quickly and provides an estimate of

13

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Algorithm 1. Selection of IPs for SGP.

procedure IPSelect(n0,M,X,y,ρ)
Randomly Select X0,y0 from X,y with |X0|= |y0|= n0
k∗ = argmax log p(y0|GP(k,X0,y0))
for z ∈ X−X0 do
if max{k∗(z,x0)|x0 ∈ X0}< ρ then

X0← X0 ∪{z}
if |X0|=M then
break

return X0

evolution of uncertainty at all points of the space-time domain. The evolution of uncertainty for a
GP-smoothed PINN evaluated solution of equation (12) is shown in figure 11. The network was re-trained
for an additional 1000 iterations to optimize for the uncertainty bands. In general, the number of additional
required to converge for estimating the uncertainty bands depends on the size of the corrupting error, which
can be quantitatively estimated from the optimized value of the σ parameter in equation (29).

3.3. Sparse GP (SGP) based error correction
GP-based smoothing can provide robustness for PINNs as shown in the previous section. However,
optimizing a GP is an expensive process with a complexity of o(n3), with n being the number of points
considered to optimize the GP. Even though we are restricting the GPs to be optimized only over the domain
boundary, this can be still be a major bottleneck for our method for high dimensional problems. As the
dimension of domain boundary ∂D⊂ Rd−1 increases, it will require more and more points on the boundary
to satisfy the boundary condition. SGPs have been extensively studied in literature to significantly reduce the
complexity for high dimensional problems. A multitude of variants of sparsity inducing GPs have found
their applications in the context of sample efficient reinforcement learning [41], deep kriging with big
data [42], and variational learning of GPs [43]. We consider a hybrid approach for sparsity inducing
smoothing GP on the domain boundary following the algorithm suggested in [44]. to obtain inexpensive
selection of IPs. Originally designed for sparse variational GPs (SVGPs), this algorithm is effective in the
context of our problem of selecting a smaller subset of IPs on the domain boundary.

The SGP algorithm we use is explained in algorithm 1. The sparsity optimizations for GP is done in two
steps. In the first step, a small number of data points (n0) are randomly taken to optimize the GP
hyperparameters. In the second step, additional IPs are chosen from the data based on the kernel distance
between the new IP candidate (z) and the already selected set of IPs (X0). The new IP candidate is included in
X0 if the kernel distance between z and all existing IPs is smaller than some predefined threshold (ρ). To
reduce the complexity of this approach, iterative re-optimization of the kernel hyperparameters is avoided
and only after the desired set of IPs have been chosen, the GP hyperparameters are finally reoptimized to
smooth the corrupted dataset on the domain boundary. The total number of IPs chosen is bounded by
M⩽ Nb,t. Figure 13 shows how SGPs can be almost equally useful in recovering the Schrödinger field
dynamics. When the number of IPs is set too low, e.g. only 10 IPs for both u(x,0) and v(x,0), the recovery of
physical dynamics is not as satisfactory. However, with a somewhat larger set of IPs including 29 and 20 IPs
for u(x,0) and v(x,0) respectively, the PINN’s performance improves significantly and becomes comparable
to that of the full GP-smoothed PINN shown in figure 11.

Table 2 summarizes the validation MSE obtained with different models and compare them with the
benchmark model of a vanilla PINN with no errors. While the performance of a PINN significantly
deteriorates with the introduction of even modest errors with σ= 0.1, both GP-smoothed PINN and
SVGP-smoothed PINN perform similar to the benchmark model.

We demonstrate the effectiveness of GP and SGP smoothing in recovering the physical field dynamics for
1D Burgers’ equation in figures 14(a)–(d) and (e)–(h). The SGP employed 41 IPs on the initial timeslice and
shows remarkable performance recovery. We also compare the results from the UQ-PINN architecture
proposed in [20] and both GP and SGP smoothed PINNs perform noticeably better than the solution
obtained from the UQ-PINN architecture. Table 3 summarizes the validation MSE loss obtained from
different PINN architectures and it can be seen that both GP and SGP smoothed recover a similar level of
accuracy as observed by the error-free PINN.

14

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 13. The SGP-smoothed PINN-evaluated |h(x, t)| at different timeslices, t= 0,0.39,0.79,1.37, from left to right. In this
case the training data on the initial timeslice is subject to measurement errors, modeled by a Gaussian random variable with zero
mean and a standard deviation of 0.1. SGP based smoothing was used on initial timeslice before training the PINN using 10
inducing points for each u(x,0) and v(x,0) for the top row and 29 inducing points for u(x,0) and 20 for v(x,0) for the bottom
row. The points marked with the blue cross (x) pointer in the leftmost set of plots indicate the samples on the initial timeslice
used to train the PINN. The grey band in the subsequent plots represents the uncertainty associated with the PINN-evaluated
approximation of |h(x, t)|.

Table 2. Comparison of PINNs using different strategies for robustness to solve the 1D nonlinear Schrödinger equation. The
introduction of error in the initial condition causes a significant increase in MSE for the standard PINN. GP-smoothing reduces the
MSE to nearly as low as the PINN with no error. SGP-smoothing is also effective in reducing error and uses fewer inducing points (IPs).
However, if the SGP does not have a sufficient number of IPs the error increases as seen when 10 IPs are used. Multiple domain cPINNs
have worse performance. Results quoted for L1 and L2 regularizations are taken from the best performance observed over choices of
λ ∈ {10−n}5n=1.

Model MSE

PINN (no error) 0.0105
PINN (σ= 0.1) 0.0289
PINN (σ= 0.1, L1 regularization with λ= 10−4) 0.1613
PINN (σ= 0.1, L2 regularization with λ= 10−4) 0.2681
cPINN-2 (no error) 0.2745
cPINN-2 (σ= 0.1, no smoothing) 0.4782
cPINN-3 (no error) 0.0258
cPINN-3 (σ= 0.1, no smoothing) 0.4178
GP-smoothed PINN (σ= 0.1, 50 IPs for u and v) 0.0125
SGP-smoothed PINN (σ= 0.1, 10 IPs for u and v) 0.0231
SGP-smoothed PINN (σ= 0.1, 29 and 20 IPs for u and v) 0.0123

4. Additional examples

To demonstrate the effectiveness of GP and SGP smoothing for higher dimensional PDEs, we consider a
couple of 2D PDEs in this section.

4.1. 2D heat equation
The 2D heat equation and the corresponding spatio-temporal boundary conditions are given as:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(34)

u(x,y,0) = 3sin(πx) sin(πy)+ sin(3πx) sin(πy)+Θuϵ
u (35)

u(0,y, t) = u(1,y, t) = u(x,0, t) = u(x,1, t) = 0 (36)

where the domain boundary is given as (x,y, t) ∈ [0,1]× [0,1]× [0,0.1] andΘu is the acceptance function for
the noise term in the initial condition. The analytical solution to this equation is given as

15

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 14. The PINN-evaluated solution to Burgers’ equation when measurements on initial timeslice is corrupted with
zero-mean, σ= 0.5 Gaussian noise for GP-smoothed PINN (top), SGP-smoothed PINN (middle), and UQ-PINN [20] (bottom),
at time-slices t= 0,0.25,0.51,1, from left to right. For the GP- and SGP-smoothed PINNs uncertainty bounds are calculated by
retraining the PINN using the initial condition of the GP/SGP mean function plus or minus one standard deviation.

Table 3. Comparison of PINNs using different strategies for robustness to solve the 1D Burgers’ equation. The introduction of error in
the initial condition causes a significant increase in MSE for the standard PINN. GP-smoothing reduces the MSE to nearly as low as the
PINN with no error. SGP-smoothing is also effective in reducing error and uses fewer inducing points (IPs). Results quoted for L1 and L2
regularizations are taken from the best performance observed over choices of λ ∈ {10−n}5n=1.

Model MSE

PINN (no error) 0.0116
PINN (σ= 0.5) 0.1982
PINN (σ= 0.1, L1 regularization with λ= 10−4) 0.0392
PINN (σ= 0.1, L2 regularization with λ= 10−4) 0.0293
PINN (σ= 0.5, Cole-Hopf regularizer) 0.1125
cPINN-2 (no error) 0.0161
cPINN-2 (σ= 0.5, no smoothing) 0.0834
cPINN-2 (σ= 0.5, Cole-Hopf regularizer) 0.0891
cPINN-3 (no error) 2.782×10−5

cPINN-3 (σ= 0.5, no smoothing) 0.0854
cPINN-3 (σ= 0.5, Cole-Hopf regularizer) 0.0329
UQ-PINN [20] (σ = 0.5) 0.1248
GP-smoothed PINN (σ= 0.5, 50 IPs) 0.0384
SGP-smoothed PINN (σ= 0.5, 41 IPs) 0.0080

u(x,y, t) = 3sin(πx) sin(πy)e−2π2t2 + sin(3πx) sin(πy)e−10π2t2 . An MLP with four hidden layers, each with
256 nodes, has been used. The physics is enforced with Nc= 50000 collocation points. 64 points are chosen
on each of the four spatial boundaries and 1024 points on the initial timeslice for the initial condition, giving
a total of Nb= 1280 points on the spatio-temporal boundary. Like the previous examples, the loss function is
constructed according to equation (5) with α() = 1.0. For the SGP process, the IPs are chosen from the pool
of 1024 points on the initial time slice according to Algorithm 1 with the number of IPs bounded by
M= 768. The models are trained for 200 00 epochs with ADAM optimizer with a learning rate of 10−3.

16

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 15. The time evolution of the MSE loss for different models used in solving the 2D heat equation. Except the vanilla PINN
(no error), all models were trained with data sampled from the initial timeslice corrupted with additive Gaussian noise with zero
mean and σ= 1.0. MSE error evaluated over 50k points chosen over the entire spatio-temporal domain for the different models is
given in the accompanying table.

Figure 16. The initial condition at t= 0 for 2D heat equation for (a) error-free PINN, (b) noisy PINN without smoothing,
(c) noisy PINN with GP smoothing, (d) noisy PINN with SGP smoothing. Except the vanilla PINN (no error), all models were
trained with data sampled from the initial timeslice corrupted with additive Gaussian noise with zero mean and σ= 1.0. The
figures in the bottom row show the error in PINN-evaluated solution at the initial timeslice for the corresponding architecture in
the top row.

As shown in figure 15, GP-smoothing recovers the performance of the error-free PINN and SGP also
considerably brings down the MSE when compared to that of the PINN trained with noisy data without any
smoothing applied. We can see the initial condition each PINN architecture is trained with along with the
point-wise error estimate in the PINN’s solution for different models. The smoothing effect on the initial
timeslice can be seen in figure 16, where we can see that while the noisy initial condition almost completely
obliterates the distributive feature of u(x, t= 0), smoothing with GP or SGP allows its significant recovery.
This translates into better convergence to actual solution for the latter couple of models on both initial and
latter timeslices (figure 17).

4.2. 2D Burgers’ equation
The two dimensional Burgers’ equation is given by the following pair of PDEs-

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν

(
∂2v

∂x2
+

∂2v

∂y2

)
(37)

17

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 17. The leftmost column shows the exact solution for 2D heat equation at t= 0.0368 (top row) and t= 0.0632 (bottom
row). The remaining columns show the point-wise error in PINN-evaluated solution for noise-free PINN (second column), noisy
PINN without smoothing (third column), GP-PINN (fourth column), and SGP-PINN (final i.e. fifth column). Except the vanilla
PINN (no error), all models were trained with data sampled from the initial timeslice corrupted with additive Gaussian noise
with zero mean and σ= 1.0.

Figure 18. The figure demonstrates the time evolution of the MSE loss for different models used in solving the 2D Burgers’
equation. Except the vanilla PINN (no error), all models were trained with data sampled from the initial timeslice corrupted with
additive Gaussian noise with zero mean and σ= 0.5. MSE error evaluated over 50k points chosen over the entire spatio-temporal
domain for the different models is given in the accompanying table.

where we consider ν = 0.01
π and train the network to learn the following analytical solution [45, 46]-

u(x,y, t) =
3

4
− 1

4
(
1+ exp

(
−t−4x+4y

32ν

)) (38)

v(x,y, t) =
3

4
+

1

4
(
1+ exp

(
−t−4x+4y

32ν

)) . (39)

The domain boundary is chosen as (x,y, t) ∈ [0,1]× [0,1]× [0,1]. The network is trained with the initial
condition sampled from the functions u(x,y,0)+Θuϵ

u and v(x,y,0)+Θvϵ
v respectively for u and v where

Θu andΘv are the acceptance functions for the noise terms in the initial condition. The spatial boundary
conditions are obtained from plugging in the boundary coordinates in the analytical solution given in
Equations (38) and (39). An MLP with four hidden layers, each with 256 nodes, has been used to
simultaneously predict the two fields. The physics is enforced with Nc= 50000 collocation points. We
choose 64 points on each of the four spatial boundaries and 1024 points on the initial timeslice to enforce the
spatio-temporal boundary condition with a total Nb= 1280 measurements. The choice of loss function and
optimizer follows the example of the previous examples. A pool of 1024 uniformly sampled points on the
initial timeslice are used for SGP and IPs are chosen according to Algorithm 1 with the number of IPs
bounded byM= 768. The resulting performances of the four models after training for 20 000 epochs are
shown in figure 18. As we can see from the accompanying table in figure 18, the noise-free PINN replicates

18

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 19. The initial condition u(x,y, t= 0) for 2D Burgers’ equation for (a) error-free PINN, (b) noisy PINN without
smoothing, (c) noisy PINN with GP smoothing, (d) noisy PINN with SGP smoothing. The figures in the second row show the
error in PINN-evaluated solution at the initial timeslice for the corresponding architecture in the top row. The final two rows
show the equivalent distributions for the v(x,y, t) field. Except the vanilla PINN (no error), all models were trained with data
sampled from the initial timeslice corrupted with additive Gaussian noise with zero mean and σ= 0.5.

the analytical solution almost perfectly and when error is introduced, similar level of performance cannot be
retrieved. However, the MSE is noticeably reduced by the smoothing performed by GP and SGP.

One of the noticeable aspects of the 2D Burgers’ equations is the presence of a shockwave front at
4y− 4x= t around where both fields experience rather sharp, yet continuous gradients. We show the exact
initial condition used to train the noise-free PINN in figures 19(a) and (i). When corrupted with noise and
left unsmoothened, the shockwave feature is almost completely lost and as can be seen from figure 20 (third
column from the left), the network struggles to retrieve the shockwave front for latter timeslices as well. On
the other hand, while GP and SGP to some extent recovers the initial field distributions, the gradients near
the shockwave front are oversmoothed. It should be noted that this oversmoothing is not due to some
limitation of GP or SGP itself, but rather the choice of samples used to train these processes. Being agnostic
to the physical distribution, the enforcing points on the initial timeslice are uniformly sampled, which led to
an under-representation of sharp gradients near the shockwave front. As a consequence to the missing
perception of sharpness around the shockwave front, the GP-PINN and SGP-PINN accumulate their largest
deviations in the latter timeslices around the shockwave front, as seen in figure 20 (fourth and fifth columns
from the left). The opposite signs of the errors on the two sides of the shockwave front represent that the
PINN-reconstructed solution after GP or SGP smoothing has a more smoothly shifting wavefront.

19

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Figure 20. The leftmost column shows the exact solution for 2D Burgers’ equation at t= 0.1579 (first and third row from top for
u(x,y, t)) and t= 0.6316 (second and fourth row from top for v(x,y, t)). The remaining columns show the point-wise error in
PINN-evaluated solution for noise-free PINN (second column), noisy PINN without smoothing (third column), GP-PINN
(fourth column), and SGP-PINN (final i.e. fifth column). Except the vanilla PINN (no error), all models were trained with data
sampled from the initial timeslice corrupted with additive Gaussian noise with zero mean and σ= 0.5.

5. Conclusion

As it often happens, measurements associated physical processes are subject to errors. When these
measurements are used to learn the evolution of a system respecting some underlying physics dictated by a
PDE using NNs, these errors can significantly distort the predicted behavior via nonlinear propagation of
errors. In this paper, we explored the behavior of a PINN when it is trained with noise-corrupted datasets.
Our work shows that deep PDE-solvers can be subject to overfitting and dynamically propagating errors
observed on the domain boundaries even when physics-inspired regularizers are introduced to constrain the
solution. To circumvent this issue, we proposed GP-smoothed deep network that can help recover the
system’s behavior over a finite space-time domain while providing a controlled prediction and bounded
uncertainty. We further showed that the computational complexity of fitting an GP can be significantly
reduced by incorporating sparsely choosing IPs for SGPs. This opens up opportunities to explore uncertainty
propagation in predictive estimation using cPINNs or cPINN-like architectures as well as learning an
optimal policy of selecting sparsely chosen IPs.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/CVC-Lab/RobustPINNs.

20

https://github.com/CVC-Lab/RobustPINNs
https://github.com/CVC-Lab/RobustPINNs

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

Acknowledgment

The research for C B and L M was supported in part by NIH-R01GM117594, by the Peter O’Donnell
Foundation, and in part from a grant from the Army Research Office accomplished under Cooperative
Agreement No. W911NF-19-2-0333. The work of L M was additionally supported by the Moncreif Summer
Undergraduate Internship Program. The work of T A and A R is supported by U.S. Department of Energy,
Office of High Energy Physics under Grant No. DE-SC0007890. Studies performed by A R utilize resources
supported by the National Science Foundation’s Major Research Instrumentation program, Grant 1725729,
as well as the University of Illinois at Urbana-Champaign

ORCID iD

Avik Roy https://orcid.org/0000-0002-0116-1012

References

[1] Noé F, Tkatchenko A, Müller K-R and Clementi C 2020 Machine learning for molecular simulation Annu. Rev. Phys. Chem.
71 361–90

[2] Puscasu G, Codres B, Stancu A and Murariu G 2009 Nonlinear system identification based on internal recurrent neural networks
Int. J. Neural Syst. 19 115–25

[3] Carleo G, Nomura Y and Imada M 2018 Constructing exact representations of quantum many-body systems with deep neural
networks Nat. Commun. 9 5322

[4] Benzi M 2002 Preconditioning techniques for large linear systems: a survey J. Comput. Phys. 182 418–77
[5] Grossmann C, Roos H-Gorg and Stynes M 2007 Numerical Treatment of Partial Differential Equations vol 154 (Berlin: Springer)
[6] Dissanayake MWMG and Phan-Thien N 1994 Neural-network-based approximations for solving partial differential equations

Commun. Numer. Methods Eng. 10 195–201
[7] Aarts L P and Van Der Veer P 2001 Neural network method for solving partial differential equations Neural Process. Lett. 14 261–71
[8] Hayati M and Karami B 2007 Feedforward neural network for solving partial differential equations J. Appl. Sci. 7 2812–7
[9] Baydin A G, Pearlmutter B A, Radul A A and Siskind J M 2018 Automatic differentiation in machine learning: a survey J. Mach.

Learn. Res. 18 5595–637
[10] Lagaris I E, Likas A and Fotiadis D I 1998 Artificial neural networks for solving ordinary and partial differential equations IEEE

Trans. Neural Netw. 9 987–1000
[11] Ricky T Q Chen Y R, Bettencourt J and Duvenaud D 2018 Neural ordinary differential equations Advances in Neural Information

Processing Systems
[12] Pontryagin L S, Mishchenko E F, Boltyanskii V G and Gamkrelidze R V 1987Mathematical Theory of Optimal Processes (New York:

Gordon and Breach Science Publishers)
[13] Yıldız Çağatay, Heinonen M and Lähdesmäki H 2019 Ode2vae: Deep generative second order odes with bayesian neural networks

(arXiv:1905.10994)
[14] Raissi M, Perdikaris P and Karniadakis G E 2019 Physics-informed neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686–707
[15] Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural Netw. 2 359–66
[16] Pinkus A 1999 Approximation theory of the mlp model in neural networks Acta Numer. 8 143–95
[17] Pang G, Lu L and Karniadakis G E 2019 fpinns: Fractional physics-informed neural networks SIAM J. Sci. Comput. 41 A2603–26
[18] Yang L, Meng X and Karniadakis G E 2020 B-pinns: Bayesian physics-informed neural networks for forward and inverse pde

problems with noisy data (arXiv:2003.06097)
[19] Jagtap A D, Kawaguchi K and Karniadakis G E 2020 Adaptive activation functions accelerate convergence in deep and

physics-informed neural networks J. Comput. Phys. 404 109136
[20] Yang Y and Perdikaris P 2019 Adversarial uncertainty quantification in physics-informed neural networks J. Comput. Phys.

394 136–52
[21] Meng X, Li Z, Zhang D and Karniadakis G E 2020 Ppinn: parareal physics-informed neural network for time-dependent pdes

Comput. Methods Appl. Mech. Eng. 370 113250
[22] Jagtap A D, Kharazmi E and Karniadakis G E 2020 Conservative physics-informed neural networks on discrete domains for

conservation laws: applications to forward and inverse problems Comput. Methods Appl. Mech. Eng. 365 113028
[23] Shin Y 2020 On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes

Commun. Comput. Phys. 28 2042–74
[24] Kharazmi E, Zhang Z and Karniadakis G E 2019 Variational physics-informed neural networks for solving partial differential

equations (arXiv:1912.00873)
[25] Fujiwara K and Miyazaki H 2014 The derivation of conservation laws for nonlinear schrodinger equations with a power type

nonlinearity (arXiv:1407.5282)
[26] Watanabe S, Miyakawa M and Yajima N 1978 Method of conservation laws for solving nonlinear schrodinger equation J. Phys. Soc.

Japan 46 1653–9
[27] Barrett J 2013 The Local Conservation Laws of the Nonlinear Schrodinger Equation PhD Thesis Oregon State University
[28] Cole J D 1951 On a quasi-linear parabolic equation occurring in aerodynamics Q. Appl. Math. 9 225–36
[29] Hopf E 1950 The partial differential equation ut + uux = µuxx Commun. Pure Appl. Math. 3 201–30
[30] Williams C K and Rasmussen C E 2006 Gaussian Processes for Machine Learning vol 2 (Cambridge, MA: MIT press)
[31] Schulz E, Speekenbrink M and Krause A 2018 A tutorial on gaussian process regression: modelling, exploring and exploiting

functions J. Math. Psychol. 85 1–16
[32] Gramacy R B 2020 Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences (Chapman and Hall:

CRC)

21

https://orcid.org/0000-0002-0116-1012
https://orcid.org/0000-0002-0116-1012
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1142/S0129065709001884
https://doi.org/10.1142/S0129065709001884
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1006/jcph.2002.7176
https://doi.org/10.1006/jcph.2002.7176
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1023/A:1012784129883
https://doi.org/10.1023/A:1012784129883
https://doi.org/10.3923/jas.2007.2812.2817
https://doi.org/10.3923/jas.2007.2812.2817
https://doi.org/10.5555/3122009.3242010
https://doi.org/10.5555/3122009.3242010
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://arxiv.org/abs/1905.10994
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1137/18M1229845
https://doi.org/10.1137/18M1229845
https://arxiv.org/abs/2003.06097
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.4208/cicp.OA-2020-0193
https://doi.org/10.4208/cicp.OA-2020-0193
https://arxiv.org/abs/1912.00873
https://arxiv.org/abs/1407.5282
https://doi.org/10.1143/JPSJ.46.1653
https://doi.org/10.1143/JPSJ.46.1653
https://doi.org/10.1090/qam/42889
https://doi.org/10.1090/qam/42889
https://doi.org/10.1002/cpa.3160030302
https://doi.org/10.1002/cpa.3160030302
https://doi.org/10.1016/j.jmp.2018.03.001
https://doi.org/10.1016/j.jmp.2018.03.001

Mach. Learn.: Sci. Technol. 4 (2023) 015013 C Bajaj et al

[33] Cardelli L, Kwiatkowska M, Laurenti L and Patane A 2019 Robustness guarantees for bayesian inference with gaussian processes
Proc. AAAI Conf. on Artificial Intelligence vol 33 pp 7759–68

[34] Blaas A, Patane A, Laurenti L, Cardelli L, Kwiatkowska M and Roberts S 2020 Adversarial robustness guarantees for classification
with gaussian processes Int. Conf. on Artificial Intelligence and Statistics (PMLR) pp 3372–82

[35] Duvenaud D K, Nickisch H and Rasmussen C 2011 Additive gaussian processes Advances in Neural Information Processing Systems
vol 24

[36] Duvenaud D, Lloyd J, Grosse R, Tenenbaum J and Zoubin G 2013 Structure discovery in nonparametric regression through
compositional kernel search Int. Conf. on Machine Learning (PMLR) pp 1166–74

[37] Vargas-Hernández R A, Sous J, Berciu M and Krems R V 2018 Extrapolating quantum observables with machine learning:
inferring multiple phase transitions from properties of a single phase Phys. Rev. Lett. 121 255702

[38] Graepel T 2003 Solving noisy linear operator equations by gaussian processes: application to ordinary and partial differential
equations Proc. 20th Int. Conf. on Int. Conf. on Machine Learning (ICML) vol 3 pp 234–41

[39] Raissi M, Perdikaris P and Karniadakis G E 2018 Numerical gaussian processes for time-dependent and nonlinear partial
differential equations SIAM J. Sci. Comput. 40 A172–98

[40] Chen Y, Hosseini B, Owhadi H and Stuart A M 2021 Solving and learning nonlinear pdes with gaussian processes
(arXiv:2103.12959)

[41] Grande R, Walsh T and How J 2014 Sample efficient reinforcement learning with gaussian processes Proc. of the 31st Int. Conf. on
Machine Learning

[42] Gadd C, Heinonen M, Lähdesmäki H and Kaski S 2020 Sample-efficient reinforcement learning using deep gaussian processes
(arXiv:2011.01226)

[43] Tran D, Ranganath R and Blei D M 2016 The variational gaussian process 4th Int. Conf. on Learning Representations (ICLR 2016)
[44] Galy-Fajou T and Opper M 2020 Adaptive inducing points selection for gaussian processes Continual Learning Workshop of ICML
[45] Fletcher C A J 1983 Generating exact solutions of the two-dimensional burgers’ equations Int. J. Numer. Methods Fluids 3 213–16
[46] Zhu H, Shu H and Ding M 2010 Numerical solutions of two-dimensional burgers’ equations by discrete adomian decomposition

method Comput. Math. Appl. 60 840–8

22

https://doi.org/10.1103/PhysRevLett.121.255702
https://doi.org/10.1103/PhysRevLett.121.255702
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://arxiv.org/abs/2103.12959
https://arxiv.org/abs/2011.01226
https://doi.org/10.1002/fld.1650030302
https://doi.org/10.1002/fld.1650030302
https://doi.org/10.1016/j.camwa.2010.05.031
https://doi.org/10.1016/j.camwa.2010.05.031

	Recipes for when physics fails: recovering robust learning of physics informed neural networks
	1. Introduction
	2. Robustness of PINNs
	2.1. Review of PINN architectures
	2.1.1. cPINNs

	2.2. Error propagation through PINNs
	2.2.1. Nonlinear Schrödinger equation
	2.2.2. Burgers' equation

	2.3. Regularization of PINNs
	2.3.1. Functional and flux continuity at subdomain interfaces
	2.3.2. Conservation law constraints

	3. GP based error correction for PINNs
	3.1. Kernel selection for GPs
	3.2. Evolution of measurement uncertainty
	3.3. Sparse GP (SGP) based error correction

	4. Additional examples
	4.1. 2D heat equation
	4.2. 2D Burgers' equation

	5. Conclusion
	References

