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Abstract
Unsupervised and semi-supervised ML methods such as variational autoencoders (VAE) have
become widely adopted across multiple areas of physics, chemistry, and materials sciences due to
their capability in disentangling representations and ability to find latent manifolds for
classification and/or regression of complex experimental data. Like other ML problems, VAEs
require hyperparameter tuning, e.g. balancing the Kullback–Leibler and reconstruction terms.
However, the training process and resulting manifold topology and connectivity depend not only
on hyperparameters, but also their evolution during training. Because of the inefficiency of
exhaustive search in a high-dimensional hyperparameter space for the expensive-to-train models,
here we have explored a latent Bayesian optimization (zBO) approach for the hyperparameter
trajectory optimization for the unsupervised and semi-supervised ML and demonstrated for
joint-VAE with rotational invariances. We have demonstrated an application of this method for
finding joint discrete and continuous rotationally invariant representations for modified national
institute of standards and technology database (MNIST) and experimental data of a plasmonic
nanoparticles material system. The performance of the proposed approach has been discussed
extensively, where it allows for any high dimensional hyperparameter trajectory optimization of
other ML models.

1. Introduction

Unsupervised and semi-supervised ML methods have become the mainstay of multiple domain areas
ranging from machine vision to physics and astronomy due to their capability to disentangle representation
and find latent manifolds for classification and/or regression tasks on complex raw data [1–3]. For
sufficiently simple systems, the disentangled representations can often be associated with the specific physical
factors of variability in the system. In particular, unsupervised ML approaches have allowed the discovery of
physics from complex and/or large microscopic images/datasets as in [4–12], where the disentangled
representations provide insight into specific physical order parameters.

As is common for unsupervised ML, the training of the model is sensitively dependent on the choice of
hyperparameters. Generally, a hyperparameter is a parameter which controls the learning process of the ML
models, and the hyperparameter tuning (or optimization) is the problem of choosing a set of optimal values
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for those hyperparameters to optimize the learning process. Extensive effort has been dedicated towards
optimal tuning of ML models, with different optimization techniques such as gradient based method, genetic
algorithm (GA), Bayesian optimization (BO) etc [13–19]. In the process of tuning ML models where the
training cost is computationally high, any exhaustive or manual parameter space search is a highly
non-desirable approach. In such cases, BO is better suited than other optimization techniques due to the
inbuild adaptive sampling towards maximizing the learning of region of interest within the parameter space
while minimizing the function evaluation cost or training cost of expensive ML models. This approach has
been widely used in these machine learning problems [20–24]. However, the downside of standard BO is the
convergence issue when the control parameter is high dimensional (dimension⩾ 15–20) [25], resulting in a
sub or non-optimal hyperparameter tuning of ML models. This again, will lead to improper ML training
which ultimately results in poor physical insights from data. Additionally, the increase in the dimensionality
of the control parameters decreases the rate (more function evaluations) of BO convergence, thus increasing
the computational cost exponentially. This decreases the general applicability of using BO in optimizing an
expensive ML model. Methods have been attempted to tackle BO in high dimensional problems through a
different strategy of projection with random embedding and quantile Gaussian Process [26, 27] to a reduced
space, or using special kernels [28]. However, performance of the method in [26] depends on the problem
and the importance of parameters in the high-dimensional space whereas the method in [27] lacks
computational efficiency. The method described in [28] builds on the technique on providing special
attention to avoid excessive sampling over boundary region with a cylindrical kernel.

Another popular projection strategy of high dimensional real space to a reduced latent space, is to use a
variational autoencoder (VAE) model. Applying a BO incorporate the maximization of learning into the
reduced latent dimension, thereby lowering computational cost of expensive function evaluations and the
risk of non-convergence of BO. Previously, similar approaches were attempted to solve for high dimensional
and/or discrete input space as in [29–35], in the field of chemistry [36] and medicines [37].

In different experimental analysis in the field of material science, we often encounter a large untidy
dataset, which needs further analysis through ML models to interpret useful physical information. Therefore,
the large-scale data labeling process becomes challenging and infeasible. Therefore, in this paper, we focused
on an unsupervised ML tool, a joint rotationally invariant variational autoencoder (jrVAE) model [38].
However, depending on the complexity of the data, the performance of the training of jrVAE needs proper
tuning, which also includes high-dimensional training-dependent hyperparameter trajectory functions. As
per the research contribution, we adapted the standard Latent Bayesian optimization (zBO) workflow and
extended the application to the high-dimensional continuous iterative dependent hyperparameter trajectory
optimization of the expensive, unsupervised joint rotationally invariant jrVAE model where a trade-off
between learning and function evaluation cost is critical without any prior knowledge from labeled data,
allowing for multiple independent high-dimensional input (trajectory function) space in a common reduced
latent space. This can be easily extended to any iteration-dependent high dimensional hyperparameter (or
parameter) trajectory optimization of other expensive ML (or black box) models. The overall integrated
zBO-jrVAE framework is demonstrated on Modified National Institute of Standards and Technology
database (MNIST) test problem and plasmonic nanoparticles material systems containing dataset of
correlated scattering spectra of gold particles and SEM images.

The outline of this paper is as follows. Section 2 describes the general jrVAE and BO methods, and finally
the proposed zBO algorithm, integrated to tune jrVAE model with a demonstration of the workflow on
MNIST data. Section 3 demonstrates the application of zBO-jrVAE workflow plasmonic nanoparticles
experimental dataset. Section 4 concludes the paper with final thoughts and potential future directions.

2. Methodology

In this section, we start with discussing on the key components focused for this paper, namely, VAE, jrVAE
and BO. Finally, we discuss the adaptation of the Latent BO (zBO) worflow implementation, and its
integration with the autoencoder model.

2.1. jrVAE
A VAE [39] is a deep generative probabilistic model that belongs to the family of probabilistic graphical
models and variational Bayesian methods. The VAE is comprised of the encoder and decoder, as shown in
figure 1. Given the input x, the encoder transforms it into a reduced latent space as a distribution, p(z|x).
Then, given any sample from the latent space z, the decoder reconstructs the input as p(x̄|z). The overall goal
is to optimize the encoding-decoding process jointly to minimize the reconstruction error and the
Kullback–Leibler (KL) divergence, to ensure the best representation of the latent space and maximize the
restoration of the features in the input data. Here, the reconstruction error can be chosen as mean square
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Figure 1. Joint rotational variational autoencoder (jrVAE) framework.

error, the cross-entropy error, etc. The KL divergence [40, 41] DKL(p(z |x)| |p(z)) is the distance loss between
the prior p(z) distribution (usually chosen as standard Gaussian) and the posterior p(z|x) distributions of
the latent representation from data. Different VAE models have been applied to materials systems, in attempt
to learn from complex image data [11, 38, 42–44].

Here, we considered a specific example of jrVAE, as demonstrated in figure 1, as implemented in
pyroVED package in Python [45]. Here, the goal is to divide and to learn the latent space into both
continuous p(zc|x) and discrete p(zd|x) latent representation from the data, while enforcing rotational
invariances. The loss function, L, can be mathematically represented as follows:

L= φ+ βc (i)DKL(p(zC |x)| |p(zC) )+βd (i)DKL(p(zd |x)| |p(zd) ) (1)

where φ is the reconstruction error, DKL (p(. |x)| |p(.)) is the KL divergence, βc (i) and βd (i) are the
continuous and discrete scale factors of KL divergence respectively at ith training cycle of jrVAE. The scale
factors encourage a better disentanglement of the data, thus provides better learning [46]. However, as from
equation (1), these are N-dimensional hyperparameters, where d= e, i.e. the dimension increases with the
increase of training iteration e. Our objective in this paper is to tackle these high dimensional scale factors
and build an optimization framework, balancing the accuracy in learning the optimal tuning and the
computational cost of exploration.

2.2. BO
BO [47], has been originally developed as a low computationally cost global optimization tool for design
problems having expensive black-box objective functions. Here, as shown in figure 2, the BO replicates the
expensive functions with a cheap surrogate model and then utilizes an adaptive sampling technique through
maximizing an acquisition function to learn or update the knowledge of the parameter space towards finding
the optimal region.

Though the application of BO is focused on problems with continuous response functions, attempts have
been made when the response is discontinuous [48] or discrete such as in consumer modeling problems
where the responses are in terms of user preference [47, 49]. Here, the user preference discrete response
function is transformed into continuous latent functions using Binomial-Probit model for binary choices
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Figure 2. Bayesian optimization (BO) framework.

[50, 51] and polychotomous regression model is used for more than two choices where the user can state no
preference [52]. However, the vast majority of these applications address for low-dimensional parameter
optimization, especially when the function evaluations are expensive. Here, we aim to introduce a direction
for BO application towards high-dimensional optimization problems with expensive evaluations.

A Gaussian Process Model (GPM) is generally integrated in BO as the cheap surrogate model. However,
random forest regression has been proposed as an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration [53]. Although random forests are good interpolators in the
sense that they output good predictions in the neighborhood of training data, they are very poor
extrapolators [54]. This can lead to selecting redundant exploration (more experiments) in the
non-interesting region as suggested by the acquisition function in the early iterations of the optimization,
due to having additional prediction error of the region far away from the training data. This motivates us to
consider the GPM in a Bayesian framework while extending the application to high dimensional
optimization problems.

Figures 3(a)–(d) shows a simple 1D Gaussian Process Model with one control parameter x and one
objective function variable z= f(x), based on the evaluated locations (green dots). GPM then fits the
function with the posterior mean and variance as shown by grey dotted line and the area within the black
lines where the variance near the evaluated region is small and increases as the design samples are farther
away from the data. Much research has been ongoing regarding incorporating and quantifying uncertainty of
the experimental or training data by using a nugget term in the predictor GPM. It has been found that the
nugget provides better solution and computational stability framework [56, 57]. Furthermore, GPM has also
been attempted in high dimensional design space exploration [58] and big data problems [59], as an attempt
to increase computational efficiency. A survey of implementation of different GP packages has been provided
in different coding languages such as MATLAB, R, and Python [60]. The detailed mathematical
representation of GPM is provided in supplementary material (appendix A).

Once a cheap surrogate model is fitted in a BO iteration with the sampled data, the next task is to find the
best locations for sampling in the next iteration through defining and maximizing the acquisition function
(AF). Figures 3(a)–(d) shows a simple example of BO exploration with one control parameter x and one
objective function variable z= f(x) of the sequential selection of samples by maximizing the acquisition
function, given posterior GP model in iterations 1, 2, 4 and 50. Here for each iteration, the red dot (top
figures) is the new suggested location, as per maximizing the acquisition function (bottom figures). Thus,
with iterative learning, the search space is explored towards finding the optimum. We can see from the figure
that the acquisition function value is highest where the samples have high prediction mean and/or high
variance and the lowest where the samples have low prediction, low variance or both. The acquisition
function can be defined with different measure of trade-off between exploration and exploitation of the
search space. One such method is the Probability of Improvement, PI [55] which is improvement-based
acquisition function. However, Jones [61] highlighted that the limitations of the performance of PI(·)
acquisition function towards efficient balance between exploration and exploitation. As alternative, the
Expected Improvement (EI) acquisition function, EI [47, 62], is widely used over PI which generally provides
a good measure of trade-off between exploration and exploitation. Another acquisition function is the
Confidence Bound criteria, CB, introduced by Cox and John [63], where the selection of points is based on
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Figure 3. 1D Gaussian process and search space exploration by maximizing acquisition function. The top images of (a)–(d) are
the Gaussian process illustration. Gray dotted lines are the true function value, blue solid lines are the GP predicted mean, black
solid lines are the GP mean± 2× standard dev. Green dots are the current evaluated locations. Red dots are the new locations for
next evaluations. The bottom images of (a)–(d) are the acquisition function illustration. Blue solid lines are acquisition function.
For this theoretical example, we use Probability of Improvement (PI) [55] acquisition function. Red dots are the new locations
(at max. acq. func. value) for next evaluations.

the upper or lower confidence level of the predicted design surface for maximization or minimization
problem respectively.

2.3. Latent Bayesian optimization (zBO): integrated to jrVAE
As our objective mentioned in section 2.1, to optimize the high dimensional KL factors or KL trajectory, we
considered BO technique due to adaptive sampling (from acquisition function) for fast learning to find the
region of interest in the parameter space. However, the standard BO (section 2.2) is not well suited to tackle
high-dimensional parameter optimization. Hence, here we illustrate the modification to build a Latent
Bayesian Optimization (zBO). Figure 4 shows the overall workflow of zBO, integrated to jrVAE model.
Table 1 shows the detailed algorithm of the workflow. However, the zBO framework is a standalone
application, which can be easily coupled with other ML or mathematical models, which requires high
dimensional (hyper)parameter optimization.

We further elaborate Step 6 of the stated Algorithm (table 1) and describe the workflow of the objective
function considered in this paper. However, to generalize, the proposed approach can be easily coupled with
any objective functions as required for a given problem. In this paper, our general task is to undergo different
multi-label classification problems through unsupervised learning techniques of jrVAE model, and the
attempt for better quality of solution from optimal tuning of scale (β) trajectories through zBO framework.
In the experimental data, often we do not possess any prior knowledge of discrete classes for supervised or
semi-supervised learning, thus, we have focused on the unsupervised ML learning as the problem domain in
this paper. Table 2 provides the workflow of the objective function evaluation, which aids the task of better
separation of different classes from the data.

3. Results: benchmark problem

To demonstrate the proposed workflow, we first considered a test MNIST dataset [64], which is a large
database of handwritten digits, commonly used for training various image processing systems. The database
contains 60 000 training datasets, where each digit can be considered as a label for our multi-class
classification problem. To note, the digits contain rotational variability, which is a target to tackle by jrVAE
model, and with the hyperparameter tuning.

In this case study, we considered gaussian decoder sampler with sigma= 0.3, learning rate= 1× 10−4

and training cycles= 1000 to initialize and train the VAE model for 2D latent representation of
N-dimensional β trajectories (table 1, Step 2). For initializing the jrVAE model, we considered Bernoulli
decoder sampler, learning rate= 1× 10−3 and training cycle, N= 120. For the zBO, we started with 20
randomly selected samples with maximum of 120 BO iteration, thus a total of 140 function evaluations. We
choose EI acquisition function. To simplify the problem, we considered to optimize the continuous scale
factor, βc trajectory only and set the discrete scale factor at constant setting as βd (i) = 3; i= 1, 2, . . . , N
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Figure 4. Latent Bayesian optimization (zBO) architecture: application to high-dimensional hyperparameter tuning of jrVAE
model for performance enhancement.
∗∗Note: The objective function formulation is based on the analysis on this paper and can be easily updated in the framework
with different formulation as per the problem requirement.

Table 1. Algorithm: latent Bayesian optimization: to optimize high-dimensional hyperparameter tuning of jrVAE.

1. Initialization of high-dimensional parameters: Generate, either random or with some prior knowledge, a set of
N-dimensional scale (β) trajectories. N represents the number of training cycles of jrVAE model.

2. Training VAE: Define and train a standard VAE model on the set of β trajectories. We assume here the VAE model
is tuned properly for maximized learning.

3. Dimension reduction of high-dimensional parameters:With the trained VAE model (step 2), we build a 2D
latent space of N-dimensional β trajectories.

4. Feasibility Check: Formulate all the physical constraints (if any). We validate the 2D latent space for any
constraint’s violations. In this case, β (i)> 0; i= 1, 2, .., N. Finally, build the feasible 2D latent space.

5. Initialization for BO: State maximum BO iteration,M. Randomly select j samples from the feasible 2D latent
space, Z= {Z1, Z2}. Assuming f is the expensive objective function. Set k= 1.

For k⩽M

6. Decoding into reconstructed high-dimensional parameters for expensive function evaluations: Given the
trained VAE model (Step 2), decode each latent sample z= {z1, z2}; z ∈ Zk into reconstructed N-dimensional
sampled β trajectories, as x̄|z= {x̄1, x̄2, . . . .x̄N|z1,z2}; x ∈ Xk. Evaluate j samples for objective as, yj (x|z); y ∈ Yk.
The detailed formulation of the objective function in this case is provided later in the section. Build training data
matrices (in 2D latent space), Dk = {Zk, Yk}.

7. Surrogate Modeling: Develop or update GPMmodels, given the training data, as∆(Dk).
a. Optimize the hyper-parameters of GPM by minimizing the loss (negative marginal log-likelihood) function

using Adam optimizer algorithm. Here, we consider learning rate 1× 10−4.

8. Posterior Predictions: Given the surrogate model, compute posterior means and variances for the unexplored

locations, Zk, over the 2D latent space as π(Y
(
Zk

)
|∆ and σ2(Y

(
Zk

)
|∆ respectively. It is to be noted that we

directly compute the posterior predictions from the input 2D latent samples, given the GPM, without the need to
decode to high dimensional parameter.

9. Acquisition function: Compute and maximize acquisition function, max
z

U( f|∆) to select next best location in the

2D latent space, zbest,k for evaluations.

10. Augmentation: Following step 6, decode zbest,k into x̄best,k|zbest,k, and evaluate the same as y(x̄best,k|zbest,k).
Augment data, Dk+1 = [Dk;{zbest,k, y}.

where N= 120 in this case. As per pre-optimization analysis, we set the maximum and minimum bounds of
βc (i), as 1⩽ βc (i)⩽ 50. However, the proposed workflow can be easily extended to optimize both scale
factors jointly, which is considered in future scope.
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Table 2.Workflow: objective function evaluation (for problem of multi-label classification) as in step 6 and 10 of table 1.

1. Train jrVAEmodel: Initialize number of discrete classes, Dc. Given the data (simulated or experimental), and the
decoded β trajectories, as x|z, train jrVAE model for N training cycles. Compute the 2D trained manifold for each
discrete classes, as in matrixΦ.

2. Evaluate objective 1: Choose learned manifoldsΦi, Φj for two discrete classes, i, j; j> i; i, j= 1,2, . . . .DC.
Calculate structural similarity (SSIM) loss function between them. Do the same between every discrete class.
Compute the total loss as ℓ1(β|data) =

∑Dc

i,j;j>i ℓi,j.

3. Evaluate objective 2: Choose learned manifoldΦi for a discrete class j; j= 1,2, . . . .DC. Randomly choose unique I
pairs, as i1, i2; i1 ̸= i2; i1, i2 = 1,2, . . . .I, of image grid location within the learned manifold. Calculate structural
similarity (SSIM) loss function between each pair. Compute the mean loss for learned manifolds of each discrete

class as ℓj =
∑I

i1,i2;i1 ̸=i2
ℓi1,i2

k where k is the number of unique location pairs. Do the same for every discrete class.

Compute the total loss as ℓ2(β|data) =
∑j

Dc
ℓj. We avoid computing for every possible combination of grid

location for significant (exponential) increase in computational cost as the number of grid locations and the
discrete classes increases.

4. Formulate final objective function:Here our goal is to maximize the SSIM loss of learned manifolds among
different discrete classes, thus maximize objective 1, to minimize the SSIM loss within the images of the grid
location of a learned manifold of a discrete class, thus minimize objective 2. Finally, to modify into a maximization
problem (as per default setting of zBO), the objective function is stated as

max
β

ℓ1 (β|data)− ℓ2(β|data) (2)

During the function evaluation process within BO, we considered a subset of data (randomly selected) to
avoid redundant computational cost from training with a large dataset (as we need function evaluations
multiple times). Since the dataset is balanced, it is easy to work with the subset of the data and the objective
function should be able to still capture the necessary information from data to find the optimal region. Also,
we avoided the loss function computation of table 2, Step 3 as we observe the other loss function is sufficient
to achieve the optimal region for this case study, and therefore further reducing the computational expense.
Thus, in this case study, we only consider the first part of equation (2). Once the zBO model is converged, we
train the jrVAE model with full (large) dataset, stated settings, and optimal tuning of βc.

Figure 5 shows an example of the projection of N-dimensional search space to the feasible 2D latent
search space, following the algorithm in table 1, Step 1–4. To increase the complexity, we defined the training
trajectories from two different functions, as per domain expert knowledge: (a) linear cooldown and (b)
randomly segmented with random noise (see figure 5(a)), assuming the optimal trajectory exists. We
modified the training data at the same scale. However, it is to be noted, our zBO workflow can accompany
any trajectory functions (as per the problem and domain expert knowledge) which is suitable for application
to hyperparameter trajectory optimization to other MLmodels. With VAE training and constraint validation,
we defined the feasible 2D latent space (figure 5(b)) where each latent samples can be reconstructed to a βc

trajectory (figures 5(c)–(e)). For the constraint validation, we simply eliminated any points priorly in the 2D
latent space which decoded to an infeasible trajectory (in this case, as per table 1 step 4). Thus, we build a
dataset of latent points with only feasible decoded trajectories as the set of potential design solutions for BO.
The blue dots over the 2D latent space are the training data. We can clearly see the trained VAE model build
clusters of two different patterns of trajectories (defined from separate functions) and the decoding provides
the pattern of reconstructed trajectories (red dots) with a weighted information, depending on the distance
from these clusters (comparing figures 5(c)–(e)). This shows the VAE model is well trained which not only
restores sufficient knowledge of each defined trajectories separately (storing original patterns) but also
provides reconstruction with mixing of both knowledge (introducing new hybrid patterns). This increases
the possible set of new solutions for zBO without losing pre-considered solutions.

Figure 6 shows the result of zBO convergence, and the optimal βc trajectory, whereas figure 7 shows the
comparison among different VAE models, with and without the high-dimensional continuous scale factor
tuning. It is clear that the Vanilla VAE model provides the worst result (see figure 7(b)), where it could not
extract all the labels from data and has rotational variability in the learned manifolds. With the jrVAE model,
but with default constant setting of βc (i) = 1; i= 1, 2, . . . , 120, though the model improved much and
could be able to separate the labels with rotational invariances, there are still some mixings of labels at some
locations of the trained manifolds (see figure 7(c)). We see once the jrVAE trained with optimal tuning of βc,
we get the best solution among other scenarios, where all discrete classes separated efficiently with negligible
mixing of labels at any locations of the trained manifolds (see figure 7 (d)).
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Figure 5.Workflow to generate a feasible 2D latent search space from N-dimensional (hyper)parameter space. (a) Samples of
different βc trajectories (here defined from two different functions) as input for training VAE model (ref table 1, step 2). (b) 2D
latent representation of the βc trajectories, given the trained VAE model. The blue dots are the training data as shown in (a). The
light area and dark area are the feasible and infeasible region. The feasible region is only considered for the search space during
optimization. (c)–(e) Are the reconstructed βc trajectories from the trained VAE decoder at locations (red dots):
(z1, z2) = (−1, 6), (z1, z2) = (3, 4) and (z1, z2) = (1, 1) respectively.

4. Results: experimental analysis

In this section, we showcased the proposed zBO-jrVAE workflow to an experimental data of plasmonic
nanoparticles. The datasets contain correlated scattering spectra of gold particles and scanning electron
microscope images (in supplementary material, figure B1). Here, our task is to conduct the multi-label
classification, where we attempt to extract and separate the discrete labels as particle counts in the images
through the unsupervised learning of jrVAE model, integrated with zBO.

In this case study, we considered gaussian decoder sampler with sigma= 0.3, learning rate= 1× 10−4

and training cycles= 2000 to initialize and train the VAE model for 2D latent representation of
N-dimensional β trajectories (table 1, Step 2). For initializing the jrVAE model, we considered gaussian
decoder sampler with sigma= 0.01, learning rate= 1× 10−4 and training cycle, N= 200. It is to be noted
that here we have different input scale factor dimension (N= 200) unlike the MNIST analysis (N= 120),
depending on the number of training cycles of jrVAE model. However, the dimension of the problem in zBO
(during optimization) can be still represented as 2D (in latent space) and does not increase with the increase
of dimension of the input in real space. For the zBO, we started with 20 randomly selected samples with
maximum of 100 BO iteration, thus a total of 120 function evaluations. We choose EI acquisition function.
Here to find the suitable scaling of β, we considered different scale factors and attempted multiple BOs in
coarse grid search. Finally, with domain expert knowledge, we set the maximum and minimum bounds of
βc (i), as 0.001⩽ βc (i)⩽ 0.05, assuming the optimal solution exists within the bound. Here also, we
optimize the continuous scale factor, βc trajectory only and set the discrete scale factor at constant setting as
βd (i) = 0.01; i= 1, 2, . . . , N where N= 200 in this case. We first normalized and balanced (through
weighted resampling technique) the raw experimental data set. During the function evaluation process
within BO, as previous analysis, we considered a subset of data (randomly selected). We executed the zBO on
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Figure 6. Results of zBO to find optimal region of βc trajectories. (a), (b) GP estimated objective function (SSIM loss) map and
its uncertainty map in the latent space respectively. The red dot is the maximum estimated objective value, and the red cross is the
maximum among evaluated samples. We consider the GP estimated maximum value as the optimal solution and (c) is the
respective reconstructed βc trajectory at that optimal location (red dot) in the feasible 2D latent space.

Figure 7. Comparison of different VAE models, with and without βc trajectories tuning. (a) Few training samples of MNIST
dataset as the task of multi-label (digits) classification problem. We have trained different VAE model for 120 cycles, given the full
MNIST data (60 000 training data). The learned manifolds traversal for the 2D latent space (two latent variables) as shown in
rows after training of respective (b) Vanilla VAE model, (c) jrVAE model, with default setting of βc trajectory (no zBO
implementation) and (d) jrVAE model, with optimal tuning (as shown in figure 6(c)) of βc trajectory (zBO implementation).

NVIDIA’s DGX-2 server. Once the zBO model is converged, we train the jrVAE model with large dataset,
stated settings, and optimal tuning of βc. We use the Google Colab Pro to execute the final training. However,
unlike the previous analysis, here we considered the full loss function (Step 2, 3 of table 2) as per equation (2).

We started with the classification of three labels as images with one, two and three particles. Figure 8
shows the projection of N-dimensional search space to the feasible 2D latent search space. In this case, we
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Figure 8. Classification problem of plasmonic nanoparticles data (3 discrete labels). Results of zBO to find optimal region of βc

trajectories. (a) Samples of different βc trajectories (here defined from three different functions) as input for training VAE model.
(b) 2D latent representation of the βc trajectories where the blue dots are the training data (c), (d) GP estimated objective
function (SSIM loss) map and its uncertainty map in the latent space respectively. The red dot is the maximum estimated objective
value, and the red cross is the maximum among evaluated samples. We consider the GP estimated maximum value as the optimal
solution and (e) is the respective reconstructed βc trajectory at that optimal location (red dot) in the feasible 2D latent space.

defined the training trajectories, with same scale, from three different functions: (a) linear cooldown, (b)
randomly segmented and (c) periodic (see figure 8(a)). Figure 8(b) shows the respective feasible 2D latent
representation. Figures 8(c)–(e) shows the result of zBO convergence, and the optimal βc trajectory. The
model converged earlier than 100 function evaluations as the acquisition function value goes to negligible,
meaning the optimal region is already found with negligible uncertainty and no further meaningful learning
is possible as trade-off with expensive function evaluations at any other locations. We can see the optimal
trajectory is very different than what we found in solving MNIST problem (see figure 6(c)).

Figure 9 shows the comparison among different VAE models, with and without the high-dimensional
continuous scale factor tuning. We can clearly see the Vanilla VAE model provides the worst result again (see
figure 9(a)). Even with tweaking other hyperparameters, though we are able to get the images with distinct
features (see figure 9(b)), however for both cases the models could not separate the labels and thus provide
no physical insight from the data. With the jrVAE model, but with unscaled default constant setting of
βc (i) = 1; i= 1, 2, . . . , 200, though the model shows some separation of classes (class of two particles), there
are still some mixings of labels specially at top rows of the trained manifolds (see figure 9(c)), which results
in some infeasible physical behavior. As we scaled βc (i) = 0.01 within the bounds for optimization (see
figure 9(d)), we see the performance improved but still we find the separation of two classes (class of 1 and 3
particles). Finally, we see once the jrVAE trained with optimal tuning of βc, we see further enhancement and
get the best solution among other scenarios. Unlike in figure 9(d) where the top and bottom rows have the
same class of 2 particles, in figure 9(e), we see the top and the bottom rows of the learned manifolds now
have distinct classes of 2 and 1 particles respectively. The middle row contains classes of 2 and 3 particles at
different locations. We have also compared the results (in supplementary material, figure B2.) with optimal
tuning of βc found in solving MNIST problem (figure 6(c)) to understand the sensitivity of βc for a given
problem. We see the optimal setting found for the nanoparticles problem provides better training of jrVAE,
in better separating into discrete class (rows) of the manifolds.

Similar analysis to materials and methods is done utilizing the GPU server for fast training, with more
complex nanoparticles dataset where we considered 7 labels (particles counts). A sample of the dataset is
provided in supplementary material as figure B2. Workflow on 2D latent representation and optimizing βc

through zBO is illustrated in figure 10. Here also, the model converged earlier than 100 function evaluations
as the acquisition function value goes to negligible. Figures 11 and 12 show the similar comparative analysis
among different VAE models. Here also, the Vanilla VAE models (figures 11(a) and (b)) are not able to
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Figure 9. Comparison of different VAE models, considering plasmonic nanoparticles dataset, with 3 discrete labels (particle
counts). We have trained different VAE model for 200 cycles. The learned manifolds traversal for the 2D latent space (two latent
variables) as shown in rows after training of respective (a) Vanilla VAE model (all parameter in default settings as in [45]),
(b) VAE model with other hyperparameter setting as stated for this case study, (c) jrVAE model, with constant unscaled default
setting of βc trajectory (no zBO implementation), (d) jrVAE model, with constant scaled βc trajectory (no zBO implementation)
and (e) jrVAE model, with optimal tuning (as shown in figure 8(c)) of βc trajectory (zBO implementation).

Figure 10. Classification problem of plasmonic nanoparticles data (7 discrete labels). Results of zBO to find optimal region of βc

trajectories. (a) 2D latent representation (through VAE) of the βc trajectories where the blue dots are the training data (b), (c) GP
estimated objective function (SSIM loss) map and its uncertainty map respectively. The red dot is the maximum (optimal)
estimated objective value and (e) is the respective reconstructed βc trajectory at that optimal location (red dot) in the feasible 2D
latent space.
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Figure 11. Comparison of different VAE models, for multilabel classification of plasmonic nanoparticles dataset, considering 7
discrete labels (particle counts). We have trained all VAE models for 200 cycles. The learned manifolds traversal for the 2D latent
space (two latent variables) as shown in rows after training of respective (a) Vanilla VAE model (all parameter in default settings
as in [45]), (b) VAE model with other hyperparameter setting as stated for this case study and (c) jrVAE model, with constant
unscaled default setting of βc trajectory (no zBO implementation).

separate any labels and therefore fail to extract any valuable physics from data. Surprisingly, the jrVAE model
with unscaled default constant setting of βc (i) = 1; i= 1, 2, . . . , 200 gives very poor solution with too
distorted images to identify any labels properly, which results in an unrealistic extraction of physical
information (see figure 11(c)). Similarly with proper scaling the trajectory within the stated bounds for
optimization as βc (i) = 0.01, we get better solution but could only extract 2 meaningful discrete labels
(particle counts 3 and 5) out of 7 (see figure 12(a)). Training the model with optimal tuned βc, shows the
best disentanglement of data among all other scenarios (see figure 12(b)). Here, we could be able to extract 5
discrete labels (particle counts 1–5) out of 7. This shows a much better improvement than rest of the
scenarios, where we have extracted >70% physical insights from the data, with the optimization approach
through zBO. With the increase in complexity of the data, we see higher value to optimize the scale trajectory
for optimal jrVAE training process, instead of considering any unscaled or scaled constant values. However,
we believe for further improvement may need the optimization of βd, which is a task for future investigation.
However, it is evident that the extraction of knowledge from experimental data is much harder than test data
(like in MNIST), however, we still get a very good improvement from optimal tuning with zBO in learning
plasmonic nanoparticle system, where we can get an appropriate physical insight of all the classes from the
data (considering 3 labels) and above 70% physical information from the data (considering 7 labels). The
purpose of this work is the zBO framework to guide towards finding the maximum (not necessarily always
100%) learning of physical insights from optimizing high dimensional parameters or hyperparameters of
other mathematical or ML models for a given application, given the degree of complexity (variability) of the
problem (data) and the fixed settings of other parameters or hyperparameters.

5. Conclusion

To summarize, here, we extend Latent Bayesian optimization (zBO) to tackle any iteration- dependent
high-dimensional hyperparameter optimization (or hyperparameter trajectory) problem for jrVAEs. In high
dimensional parameter optimization, considering expensive function evaluations, the guidance of where to
invest more on the search space is very critical in terms of reducing overall computational cost, thus manual
or exhaustive search is very tedious or infeasible. Due to the curse of dimensionality, the standard BO is also
not entirely reliable or computationally efficient. In the zBO framework, the high dimensional parameter
space is compressed into a two-dimensional latent space, where we capture sufficient variability of
parameters through training a VAE model. We see the latent space preserves the pattern of original training
samples (as per domain expert knowledge) while introducing some variability (new hybrid patterns) as well
in the feasible input set of solutions. Thus, the prior expert knowledge is still preserved as we project into the
reduced latent space. Then, the reduced latent space is considered as the proxy search space for optimization
where the optimal latent solution can be easily decoded into the high dimensional trajectory.

In this analysis, we choose to optimize the high dimensional continuous scale parameters of jrVAE model
and apply to multi-label classification problems of MNIST and plasmonic nanoparticles dataset. We see the
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Figure 12. Comparison of different VAE models, for multilabel classification of plasmonic nanoparticles dataset, considering 7
discrete labels (particle counts). We have trained all VAE models for 200 cycles. The learned manifolds traversal for the 2D latent
space (two latent variables) as shown in rows after training of respective (a) jrVAE model, with constant scaled βc trajectory (no
zBO implementation) and (b) jrVAE model, with optimal tuning of βc trajectory (zBO implementation). For the optimal tuned
βc, we find 5 discrete labels (as particle counts from 1 to 5) out of 7 labels from the learned manifolds as marked by black, white,
orange, red and yellow circles respectively, whereas for the constant (but scaled) βc, we find only 2 discrete labels (as particle
counts 3 and 5) out of 7 labels as marked in the respective locations of the learned manifolds.

performance of jrVAE model, with optimal tuning of the scale parameters through zBO is promising.
Interestingly, the optimal tuning of scale parameters varies even in patterns for given problems, where an
optimal trajectory pattern (e.g. Cooldown trajectory) in one problem (MNIST dataset) seemed not ideal for
the other problem (plasmonic nanoparticles), and thus cannot be generalized to guarantee best performance
of the same model to extract information from all type of dataset. This observation further values the need of
zBO framework in enhancing a ML model, without the assumption of generalizing optimal tuning, for
different problems separately. As per the results in figure 11 showcased the room for improvement, one way
to do is to extend the framework to optimize both the high dimensional discrete and continuous scale factors
jointly, which is a scope for future. Another future task would be to investigate the trade-off between overall
computational cost and solution improvement with higher dimension of latent space. However, the overall
approach is flexible to incorporate various pattern of trajectories (from different functionals) in the same
latent space, to handle any dimension of correlated input parameters without increasing the dimension of
the reduced latent space, to consider different problem objectives (other than classifications) as set by user
defined objective functions in the zBO.

Data availability statement

The analysis reported here is summarized in Colab Notebook for the purpose of tutorial and application to
other models [65].
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