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Contributory citizen science programs focused on ecological monitoring can produce
fine-grained and expansive data sets across spatial and temporal scales. With this
data collection potential, citizen scientists can significantly impact the ability to monitor
ecological patterns. However, scientists still harbor skepticism about using citizen
science data in their work, generally due to doubts about data quality. Numerous
peer-reviewed articles have addressed data quality in citizen science. Yet, many of
these methods are not useable by third-party scientists (scientists who are not directly
involved in the citizen science program). In addition, these methods generally capture
internal data quality rather than a dataset’s potential to be used for a specific purpose.
Assessing data fitness for use represents a promising approach to evaluating data
accuracy and quality for different applications and contexts. In this article, we employ
a Spatial, Temporal, Aptness, and Application (STAAq) assessment approach to assess
data fitness for use of citizen science datasets. We tested the STAAq assessment
approach through a case study examining the distribution of caribou in Denali National
Park and Preserve. Three different datasets were used in the test, Map of Life data (a
global scale citizen science mobile application for recording species observations), Ride
Observe and Record data (a program sponsored by the park staff where incentivized
volunteers observe species in the park), and conventionally collected radio collar data.
The STAAq assessment showed that the Map of Life and Ride Observe and Record
program data are fit for monitoring caribou distribution in the park. This data fitness for
use approach is a promising way to assess the external quality of a dataset and its
fitness to address particular research or monitoring questions. This type of assessment
may help citizen science skeptics see the value and potential of citizen science collected
data and encourage the use of citizen science data by more scientists.

Keywords: volunteered geographic information, data fitness, data quality, ecological monitoring, citizen science

INTRODUCTION

Contributory citizen science programs focused on ecological monitoring are generally initiated
by scientists, researchers, or resource managers. In these types of citizen science programs,
volunteers typically assist scientists with data collection or analysis (see Shirk et al., 2012 for a
typology framework of citizen science projects). Ecological monitoring focused citizen science
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programs can collectively produce finer grained and more
expansive data sets over regional and global scales and collect
data more frequently, covering long temporal extents (Theobald
et al., 2015). With these data collection abilities, citizen scientists
can significantly impact the ability to monitor ecological patterns
(Dickinson et al., 2010; Magurran et al., 2010; Andelman, 2011;
Jetz et al., 2012; Ballard et al., 2017; Kress et al., 2018). These
more temporally and spatially expansive datasets can support
longitudinal surveys and help identify climate change signals,
particularly species distribution changes (Champion et al., 2018;
Pecl et al., 2019). Nevertheless, scientists still harbor skepticism
about using citizen science data in their work, generally due to
doubts about data quality (Bonter and Cooper, 2012; Riesch and
Potter, 2014; Burgess et al., 2017; Golumbic et al., 2017). They
are concerned that individuals from the public lack the necessary
skills to identify species or collect data in a rigorous manner
(Burgess et al., 2017).

Despite concerns over citizen science data quality, the
number of contributory citizen science programs focused on
collecting data for ecological modeling is growing. This is due
in part to advances in mobile technology. Smartphones as data
collection devices have helped increase the number of volunteers
contributing to a diverse range of citizen science initiatives
at various spatial scales (Roy et al., 2012; Luna et al., 2018).
Some app-based programs have a global focus and amass large
observation datasets for any researcher to use for monitoring
purposes; these apps. include iNaturalist, eBird, and Map of Life,
among others. eBird, in particular, is a prominent data source
for monitoring the effects of climate change on birds (Hurlbert
and Liang, 2012; Cooper et al., 2014; Callaghan and Gawlik, 2015;
Walker and Taylor, 2017). eBird, developed by the Cornell Lab
of Ornithology, serves as a birding guide and citizen science data
collection tool; over 1 billion bird sightings have been contributed
as of 20211. The Map of Life (MOL) mobile application developed
at Yale University is a citizen science offshoot of the online species
distribution platform of the same name (Jetz et al., 2012). The
app serves as a simple field guide for tens of thousands of species
(flora and fauna) worldwide. It also allows users to record species
observations and contribute important data for research and
conservation, and it has over 50,000 downloads since its launch
in 20162

The managers of these global scale app-based programs
would like to see more third-party scientists (those who are not
directly affiliated with the program) taking advantage of these
data to address their own research and monitoring objectives.
Scientists, however, have various concerns with using citizen
science collected data in their work; Burgess et al. (2017)
provides a comprehensive overview of these concerns over data
quality, including accuracy and reliability. A common concern
found by Burgess et al. (2017) is data accuracy, specifically
concerns about how a program accounts for the volunteers’
data collection skills and the adequacy of volunteer training- or
lack thereof. Furthermore, much of the data collected through
app-based citizen science programs are considered opportunistic

1https://eBird.org
2https://mol.org

data- "observations of species collected without standardized
field protocol and explicit sampling design" (Van Strien et al.,
2013). While logistically opportunistic data is more manageable
for volunteers to collect than strategic sampling, opportunistic
citizen science data may not be reliable for monitoring
distribution trends over time. This is because opportunistic
citizen science data may suffer from changes in observation bias,
reporting bias, and geographical bias. However, Van Strien et al.
(2013) compared opportunistic citizen science data to strategic
samples monitoring data and found similar distribution trends.

Numerous peer-reviewed articles have looked at the quality of
citizen science data. Some have adapted or developed frameworks
and methods for validating data, assessing data quality, and
accounting for bias (Cohn, 2008; Wiggins et al., 2011; Toogood,
2013). Wiggins et al. (2011) provides a review of data validation
methods. The authors surveyed 52 citizen science projects
about how they validate data. Many of them reported using a
combination of methods, including expert review and additional
documentation of observations. Expert review means project
team members or other subject matter experts validating data
before it is accepted into the database. Further documentation
of observations could include asking citizen scientists to provide
photos, filling out article datasets, submitting observations
digitally, or filling out additional dataset fields about how the
observation was made.

Other methods found in the literature include increasing the
number of participants contributing data (such as Linus’ Law)
and data quality assessments based on data quality indicators
(Haklay, 2010; Comber et al., 2013; Senaratne et al., 2016).
Linus’ Law originated in open-source software development and
refers to the process of measuring the quality of the citizen
science data, in particular citizen science data that includes spatial
information (also called volunteered geographic information
(Goodchild, 2009). Linus’ Law considers the number of peers
who have reviewed or edited its content (Elwood et al., 2012).
In the case of citizen science data, Linus’ Law refers to the
notion that with a large number of data contributors, the biases
or inaccuracies made by a few of those contributors will be
quieted.

A thorough assessment of citizen science data, based on
quality indicators, is also used to improve and examine data
quality. Senaratne et al. (2016) identified 17 quality measures
and indicators for spatial citizen science data (also called
Volunteer Geographic Information or VGI). These indicators
include standard measures of quality, position accuracy,
topological consistency, thematic accuracy, completeness, and
temporal accuracy. They found that these standard data quality
measures alone are not enough to assess VGI quality. Thus,
additional indicators like reputation, trust, credibility, vagueness,
experience, and local knowledge are also used in the VGI
literature (Senaratne et al., 2016).

Many of these methods are meant to be done for internal
quality checks. Internal quality, generally reported in the
metadata (data about the data), is the intrinsic characteristics
of the data as determined by the producer of the data (Gervais
et al., 2009). External data quality looks at how data fit the
user’s needs (Juran et al., 1974; Devillers and Bédard, 2007;
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Gervais et al., 2009). More externally focused data assessments
that third-party scientists can use may make more of them
amiable to using citizen science data in their work.

An analysis of data fitness for use offers a way to address
these ongoing concerns of data quality by providing a way for
scientists and researchers to do a data quality assessment for
their specific research needs after they obtain data (Dickinson
et al., 2010; Parker et al., 2012; Crall et al., 2015). A data
fitness for use assessment does not provide a blanket assessment
of data quality; however, it assesses whether these data could
be used for a specific application within a given area (Juran
et al., 1974; Chrisman, 1991; Veregin, 1999; Devillers and
Bédard, 2007). Providing scientists with the ability to test the
fitness of the data for their specific research needs offers the
potential to standardize the use of citizen science data in
knowledge production.

Additionally, using data fitness as a metric for data quality is
a way to reduce the uncertainty of using a specific dataset. These
data are not only judged on what it can be fit for but also the
limitations and uncertainty (Veregin, 1999). While the citizen
science data quality literature does not explicitly showcase a data
fitness for use approach, some articles discussing data quality
suggest that assessing citizen science data for specific use cases
will increase the utility of the data (Dickinson et al., 2010).

Senaratne et al. (2016) concluded that a systematic framework
needed to be developed that provides methods and measures to
evaluate the fitness volunteer collected data. Furthermore, Haklay
(2013) also indicates that something like a data fitness approach
for citizen science data would ensure collected data can answer
the scientific questions being posed. Kosmala et al. (2016) also
determines that each citizen-science dataset should be judged
individually, based on the project design and application, and not
assumed to be substandard simply because volunteers generated
it. The authors also note that data fitness allows scientists to assess
if a possible bias in a particular dataset is an issue for their specific
research question.

There are various models of a data fitness assessment. Some
depend on metadata to assess data fitness, and others run datasets
through a series of fitness indicator checks. Pôças et al. (2014)
created an assessment called EQDaM, external quality of spatial
data from metadata. The metadata for each dataset was used to
compare different quality indicators, where the users choose these
indicators. The indicators include: spatial, temporal, topology,
lineage, precision, accessibility, and legitimacy. A metadata-
focused assessment may not be appropriate for citizen science
data. The lack of incompleteness of metadata is a known issue
in citizen science. While programs are improving their efforts
with the help of resources like the Citizen Science Associations
Data and Metadata Working Groups PPSR Core Standards3,
many citizen datasets do not have reliable metadata for a fitness
assessment (Grira et al., 2010).

Another way to assess data fitness is through different
indicator checks. Wentz and Shimizu (2018) compared data
sets through a framework based on quality indicators with the
DaFFU assessment. The DaFFU assessment compares fitness

3https://core.citizenscience.org/docs/

based on the accuracy, agreement, and aptness of the datasets.
Instead of relying on metadata like Pôças et al. (2014) and
Wentz and Shimizu (2018) identified specific data characteristics
that were compared through spatial analysis created a fitness
assessment based on the mathematical framework of multiple
criteria decision making. The DaFFU method selects "the best
data set from multiple options using a select set of user criteria."
The DaFFU assessment is robust and can easily be modified for
other applications. The assessment is applicable to any modeling
with a statistical performance output. This type of assessment
allows users to compare datasets (collected conventionally or
by volunteers) to determine which datasets (or combination of
datasets) may be best for the specific research or objective. This
ability to compare volunteer collected data to conventionally
collected data is suggested as a more comprehensive way to assess
citizen science data (Kremen et al., 2011; Holt et al., 2013; Cooper
et al., 2014; Theobald et al., 2015).

The comparison of datasets allows scientists to see how citizen
science data may be integrated (or mashed-up) with other data
they use. Hybrid/mash-up datasets are another method to assess
and improve citizen science data quality. Hybrid datasets involve
integrating the citizen science data with conventionally collected
data (Elwood et al., 2012; Parker et al., 2012; Upton et al.,
2015). Combined datasets (e.g., data mash-ups, hybrid datasets,
or cross-validation) allow researchers to test out the accuracy or
combine the datasets to fill in gaps (Batty et al., 2010; Connors
et al., 2012; Parker et al., 2012; Abdulkarim et al., 2014; Bruce
et al., 2014; Upton et al., 2015).

Wentz and Shimizu (2018) suggest that an adaption of
their assessment would be appropriate for citizen science/VGI
data. The use of user criteria instead of metadata makes
this type of data fitness assessment more amiable to citizen
science collected data. This article presents an application
of the DaFFU assessment presented in Wentz and Shimizu
(2018) called, The Spatial, Temporal, Aptness, and Application
(STAAq) assessment. This assessment was developed to address
data fitness of ecological monitoring citizen science data
specifically but can be used for other data types. The
STAAq assessment adapts the DaFFU assessment by adding a
temporal component and additional elements of assessing spatial
resolution. Understanding the temporal and spatial resolution
of species observation data set is important for examining bias
in the data and its fitness to monitor species that may have
seasonal distribution changes or varying spatial ranges. The
spatial resolution may also affect the performance of different
ecological models (Guisan et al., 2007).

To test the STAAq assessment, we used it for a case study
with various datasets collected in Denali National Park and
Preserve. We used the assessment to compare the fitness of
data from a global app-based citizen science program (Map of
Life) with two other species occurrence datasets managed by
the park service. We wanted to determine if these datasets are
fit to monitor caribou (Rangifer tarandus) distribution in the
park. After running each dataset through the STAAq assessment
components, we ranked the results to compare the datasets and
how well each performed in assessing spatial scale, temporal scale,
aptness, and application. The results of this assessment quantify
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how fit each dataset is for monitoring caribou distribution in
the park. More broadly, this assessment shows how quantifying
the fitness of citizen science data can make volunteer collected
data more usable and trustworthy for researchers monitoring
ecosystems for climate change signs.

METHODS

The Spatial, Temporal, Aptness, and
Application Assessment
The STAAq assessment modifies and adds additional assessment
components to Wentz and Shimizu’s (2018) DaFFU assessment,
including spatial and temporal scale; these additions make the
idea of data fitness more applicable to citizen science data. Like
similar assessments, the STAAq assessment ranks each dataset
according to its performance in the Spatial, Temporal, Aptness,
and Application components. These rankings are averaged to
create an overall ranking of the datasets (q). Table 1 shows
each of the four components in the STAAq assessment. The
number of elements (j) that is assessed by the particular
component. The datasets (q) are evaluated through STAAq,
and then these rankings can be weighted individually then are
averaged to give the overall ranking for each dataset in each
component. Weighting the ranking from each component allows
the assessment to account for components that may be more
important than others for specific research questions. In Table 1,
weights are represented by the symbol (w).

The Spatial component (S) (Figure 1) assesses two elements:
spatial resolution and spatial extent. These elements are evaluated
to determine each dataset’s rank. The datasets are assessed on
how well they perform at different standards of the spatial scale
elements. Depending on the geographic scale and scope of a
research question, different resolutions may be desired in a
dataset. For example, if a research question is focused on a small
area, data with a finer spatial resolution may be desired. Spatial
resolution refers to the minimum cell size of the raster data or a
measurement of error in the case of point data (Goodchild, 2011).
Spatial resolution is assessed through examining these data per a

specific cell size or measurement of error. Spatial extent refers to
the spatial scope of these data or the area size represented in these
data (Goodchild, 2011). The spatial extent can be determined by
calculating the convex hull around the set of data points.

The Temporal component (T) (Figure 2) is determined by
assessing the performance of each dataset with three different
elements (j) of temporal scale, event, temporal resolution, and
temporal extent. Temporal aspects of data are important for
species observation data in particular. Temporal aspects of
the data can show the season it was collected, the time of
day, and how long the datasets have been collected. Event
refers to the time at which the event was observed (Guptill
and Morrison, 2013). Temporal resolution, also referred to as
temporal consistency, is the frequency at which the dataset is
collected (Guptill and Morrison, 2013). Temporal extent, or
temporal transaction, relates to the data collection’s length or
how much time the dataset covers (Guptill and Morrison, 2013).
The datasets are ranked based on how they perform with each
of the elements. For example, if a dataset spanning multiple
years is desired, the dataset with a more extensive temporal
extent is higher.

Aptness (A1) determines the uniqueness (U) of the datasets
(Figure 3). To determine aptness, these data must be in raster
format. Aptness is calculated cell by cell to determine how unique
each dataset is. In some cases, uniqueness is a desired quality
in the datasets, while it is not in other cases. For example, the
Aptness component can identify outliers in a dataset not found in
other datasets. Outliers may be desired, a researcher may want to
know if there is something other datasets are missing, or outliers
may not be desired because these outliers may be errors. Figure 3
Aptness (A1) Component modified from Shimizu (2014) shows
the process of determining aptness. R1, R2, and RQ represent
sample raster data for each of the datasets (Q). Each cell in the
raster is given a value. The raster layers are then added together to
create R. The original raster layers for each dataset are multiplied
by R to create R1R, R2R, and RQR. Then cell by cell agreement,
c, is determined between the datasets.

c = 0 none of the datasets have an attribute assigned to that cell.
c = 1 one dataset assigned an attribute to that cell.

TABLE 1 | STAAq assessment.

Component Formula Description Definition

Spatial Scale Sq = w1
s1+s2+sj

j Spatial Scale = Sq

Sj = rank of elements
j = number of elements

The spatial scale component assess the dataset’s spatial
resolution and extent

Temporal
Scale

Tq = w2
t1+t2+tj

j Temporal Scale = Tq

tj = rank of elements
The temporal scale component assesses the following
elements: observation time, temporal resolution, and temporal
extent

Aptness A1q = w3 · a1q Aptness = A1q

a = the uniqueness of the dataset
Aptness refers to the context in which these data are used.
Aptness in the ranking order depends on what level of errors
the decision-makers are willing to accept (Wentz Shimizu 2018)

Application A2q = w4
a21+a22+a2j

j Application = A2q

a1j = rank of elements for the datasets
Refers to how accurate these data are geographically and
categorically. It can be examined through how well these data
address different accuracy components

STAAQ STAAq = w1
∑

XiQ Average of all the ranks of all components (X) for each data set.
Rank of 1 is considered best

The dataset that is most fit for use is ranked 1
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c = 2 two datasets assigned an attribute to that cell.
c = Q all datasets assigned an attribute to that cell.
In the case of aptness, c = 1 shows which dataset is unique.

The process of "cell by cell" agreement results in a new raster
layer (RQA1); the layer RQR is divided by this new layer to
calculate the percent of uniqueness (U) of the dataset. Then it
must be determined if omission or commission is preferred. Is
the uniqueness of a dataset a desired quality or not?

e = 1 when error of commission is preferred.
e = 0 when error of omission is preferred.
Finally, the datasets are ranked in either ascending or

descending order, depending on the value of e.
The Application (A2) component is concerned with the

product of a model (Figure 4). The elements of the Application
component vary with the models being assessed. For example,
Wentz and Shimizu (2018) use the Application component

FIGURE 1 | Spatial Scale (S) component, adapted from Shimizu (2014).

FIGURE 2 | Temporal Scale (T) component, adapted from Shimizu (2014).
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(called Accuracy component in Wentz and Shimizu, 2018) to
determine how accurately a model calculates the total nitrogen
removal and nitrogen load a watershed. The model that is used in
this component is specific to the research question. In Figure 4
Application (A2) component applied from Shimizu (2014), the
datasets are represented by q1, q2, and qQ.

The datasets’ overall ranking was determined by averaging
each component (Roszkowska, 2013). The resulting fractional
ranks were then ranked to provide a final ranking of the datasets.
We then examine the average ranking to compare datasets
in terms of fitness for use. Weights can be applied to each
component before averaging the ranks if desired. The elements

FIGURE 3 | Aptness (A1) component, adapted from Shimizu (2014).

FIGURE 4 | Application (A2) component, adapted from Shimizu (2014).
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and components of the assessment can be modified or weighted
to fit the user’s needs; assessment results can be included within
the metadata for each dataset and provide an example of what
these data fit for. A vital aspect of this assessment is that it can
be used when a conventionally collected dataset is unavailable or
only one dataset exists. Additionally, the assessment can be used
to partially perform a data fitness assessment.

This fitness for use assessment is relevant for volunteer
collected data and can be used with many other types of data
and models. Other typologies of citizen science programs can
use the data fitness for use framework. In this article, we focused
on adapting a method to work with the data collected by a
contributory style citizen science program focused on ecological
monitoring. Elements of the assessment can be adapted to fit

FIGURE 5 | Denali National Park and Preserve (Park Map obtained from https://www.nps.gov/carto/).

FIGURE 6 | Map of life mobile application: home page, species information page, and record observation page.
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other citizen science programs, such as a more collaborative
program, incorporating traditional knowledge with scientific
data. Additionally, this fitness for use assessment was developed
with citizen science data in mind and used citizen science data.
However, we recognize that this assessment can be applied to
conventionally collected data.

Denali National Park and Preserve as a
Case Study
We tested the STAAq assessment with a case study in Denali
National Park and Preserve (Figure 5). We chose Denali as
a case study because the park is interested in using citizen
science collected data to support their ecological monitoring
efforts, mainly monitoring the status and trends of selected
environmental and resource "vital signs" such as vegetation
composition, temperatures, species occurrence data, and visitor
use (Sadoti et al., 2018; Brodie et al., 2019). In Denali specifically,
vegetation changes due to rising temperatures affect caribou
habitat in the park, especially in popular visitor areas (Joly, 2011).
Thus, Denali is keen to monitor the changes in habitat in the
park area and how they may affect the visitor experience. For this
test of the assessment, we chose to focus on caribou monitoring
and caribou occurrence data because of the abundance of
data in the three datasets we compared for the test. We also
chose it because the park actively impacts and monitors the
needs of the Denali caribou herd. We wanted to showcase the
potential of the STAAq assessment on data that scientists are
using for wildlife monitoring. The results of this test of the
assessment were not intended to be directly used by the park
staff for caribou monitoring but rather be an example of how
the STAAq assessment works and how it may perform with
observation data collected through a citizen science mobile-
application program.

The three datasets include volunteer collected data from the
Map of Life mobile application (MOL), volunteer collected data
from the Ride Observe and Record Program (ROAR), and radio-
collar data from the National Park Service. The Map of Life
mobile phone-based application developed at Yale University-
allows volunteers to record the precise location of their wildlife
observations while touring the park with their phone’s internal
GPS to capture spatial data (Figure 6). The data used in this case
study was collected in 2016; we retrieved from the Map of Life
server on September 30, 2016. These data include the wildlife
observation’s geographic coordinates, taxonomic information for
the species, a time stamp, and a unique observer ID. In 2016
MOL volunteers recorded 1,200 wildlife and plant observations
in Denali; 343 observations were caribou observations. The MOL
volunteers are untrained and mainly tourists visiting Denali for
the first time. The mobile application and data collection protocol
are managed by the team at Yale University. The team did include
specific information pages for areas where a user can download
a species list. Thus, users in the Denali area were prompted to
download a local species list and see a Denali-specific information
page with some park-specific information, such as animal safety
warnings. The species list includes species photos and detailed
species information such as range maps.

Trained and incentivized local volunteers collect ROAR
program data (some are park employees or students at the local
high school and other community members). Volunteers ride the
shuttle buses in the park and record species observation data
using a GPS-enabled device to record: species location, time of
observation, and species behavior. This program is managed and
facilitated by park officials. These data used in this case study
were also recorded during the summer of 2016. The radio collar
caribou data were recorded through NPS wildlife population
surveys and were recorded at various time spans over the last
25 years. Both male and female caribou are collared; they are
captured and collared when they are calves (Adams, 2017). These
data include location and time.

Park officials currently use ROAR data and radio-collar data
for wildlife monitoring. They showed interest in seeing how
citizen science collected species observation data through an
established mobile application (such as MOL) could support
Denali’s habitat monitoring efforts, especially in the high visitor
use areas. Using an existing global-based app. means the park can
benefit from the data collected and promote the use of the app.

FIGURE 7 | Spatial extent, convex hull for each dataset (the black outline
represents the Denali Park boundary).

TABLE 2 | Spatial extent, percentage of the desired extent covered, and rankings.

Dataset Extent coverage (%) Rank (1 is best)

MOL 24.9 2

ROAR 4.46 3

NPS 76.7 1
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FIGURE 8 | Aptness Component results, areas of dark blue show agreement
amongst the three datasets.

but does not need to manage another citizen science program.
There were concerns over data quality and bias in the data. Thus,
we felt this was a good test of the STAAq assessment to show how
a researcher who does not control the data collection protocol can
perform a data quality assessment to determine if these data are
fit for their purposes.

RESULTS

To test STAAq, we assessed each of the three datasets’
performance with each of the STAAq assessment components.
The Spatial component of the STAAq assessment allows
the examination of the spatial extent and resolution of the
data. The desired spatial resolution is high-resolution caribou

data for the Denali case study, reflecting the point data’s
measurement error. Such data were collected with various
techniques: GPS collar and mobile phone GPS systems. The
resulting points have some error associated with them; the error
amount is considered the spatial resolution. The dataset with the
highest spatial resolution thus had the least amount of location
error. For the spatial extent element of the Spatial component, the
desired spatial extent is the park’s boundary. The percentage of
the dataset area that falls within the park boundary was calculated
to determine which datasets more closely matched the desired
extent. In the STAAq assessment, each dataset is ranked in each
element. The overall ranking for the Spatial component was
determined by averaging the datasets’ rankings in each element.

For the spatial extent, the dataset, which most closely matches
the desired extent- the park boundary in this case study- is
given a rank of 1. Figure 7 and Table 2 show the results
from the spatial extent analysis. The NPS caribou dataset
covers 76.7% of the park area and thus received a rank of
1 (Table 2). The MOL data received a rank of 2, and the
ROAR data was third because these data extent covered the
least amount of the park. The extent that covers the park
area the most is preferred because the data would be used to
monitor the caribou distribution in the entire national park.
The NPS dataset received a rank of 1 for the spatial resolution
element because these data were collected at high resolution,
with fewer errors. The NPS radio collar dataset’s resolution
is mainly due to the data collection methods of radio collars
directly on the caribou. In contrast, the other two datasets
were collected through GPS locations on tablets or smartphones,
recording the volunteer’s location observing the caribou, not
the actual caribou.

The Temporal component includes the analysis of the datasets’
temporal event, resolution, and extent. To monitor caribou
distribution in the park, observations made at any time of day
throughout the year on a weekly (or more frequent) basis are
acceptable. The desired temporal extent is the last 5 years: June
2012 to September 2016. For the temporal event analysis, the
MOL and ROAR data received a ranking of 1 because both were

FIGURE 9 | Aptness component results for each dataset. Gray areas are where no datasets have data, blue are areas of agreement, and red areas are unique.
(A,B), and (C) show where each dataset is in the agreement with the others. (A) The MOL data; the areas in blue are where the MOL data are in agreement with the
other two datasets and the areas in red show where the MOL data are unique and had observations where the other two datasets do not. (B) The ROAR data; the
ROAR data are mostly in agreement with the other two datasets. (C) The NPS radio collar collected data and it is the dataset with the most unique points.
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TABLE 3 | Aptness Component Rankings.

Dataset Uniqueness (%) Total agreement (%) Rank for aptness

ROAR 0.41 83.31 1

MOL 16.5 69.21 2

NPS 90.9 6.98 3

recently collected. The radio collar data was also collected year-
round but not within the last 5 years, so this dataset received a
rank of 3. For the temporal resolution analysis, the MOL and
ROAR datasets were ranked 1 because the data were collected
almost daily (multiple observations were made on collection
days). Since the NPS data were collected with radio collars, each
caribou’s location was only collected twice a month; thus, this
dataset received a ranking of 3.

For the temporal extent analysis, the NPS data has the largest
temporal extent and therefore received a rank of 1. The MOL and
ROAR datasets only contain one summer season (2016) of data
and are tied at a rank of 2. To obtain an overall ranking for the
Temporal component, each dataset’s rankings for the temporal
elements were averaged then ranked to create the final Temporal
component rankings. The MOL and ROAR datasets are tied at a
rank of 1; while these datasets did not match the desired temporal
extent, they were acceptable for the desired temporal events and
temporal resolution.

The Aptness component compares the datasets to each other
and determines the spatial uniqueness of the datasets. Uniqueness
is not the desired data quality for this case study, so the more
similar dataset is ranked higher. The ROAR data are almost
in total agreement with the other two datasets for the Aptness
component, meaning that much of these data in the ROAR
dataset is also reflected in the other two datasets (Figures 8, 9
and Table 3). Since the error of omission is preferred, the ROAR
dataset is given a rank of 1.

The Application (A2) component is concerned with the
model’s product, which in this case, we used Species Distribution
Models (SDM). However, the STAAq assessment can be used
with other models; in the Wentz and Shimizu (2018) DaFFU
assessment, they used nitrogen models and ranked the data based
on the outputs of the nitrogen models. We chose to use SMDs in
this test of the assessment because they are ecological models that
use species presence data and environmental variables to predict
species distribution (Franklin, 2013), also many citizen science
projects are applied to conservation biology and ecological
assessments. The species occurrence points are subject to a set of
constraints based on the environmental variables (Phillips et al.,
2006). Environmental variables include climate, land/ground
cover, and elevation. This project used the Maxent software
package with the maximum entropy models and the species’
distribution. The available data drove this project to use Maxent,
which only requires presence and ecological data for the study
area (Phillips et al., 2006; Franklin, 2013).

The SDM created with the datasets is depicted in Figure 10.
The resulting maps show areas with a high probability of caribou
(warmer colors) and areas with a low probability of presence
(cold colors). The large blue area in the middle of the park is

the location of the Alaska Range and Denali; we do not expect to
find caribou near 20,000 feet elevation. With the MOL data, the
area to the northeast of the park (where many of the observation
points were collected) has many areas with a high probability of
occurrence. These areas are of known caribou habitat. The SDM
output using the ROAR data are similar to the MOL data since
both datasets were collected on and around the park road area
(Figure 10). The model using ROAR data did outperform the
model using MOL data by a small margin. The SDM model using
the NPS dataset performed worse than the other two models.

The ROAR dataset had the highest AUC and received a rank
of 1 (Table 4). The differences in variable contributions, seen in
Table 4, may be caused by the datasets’ spatial extent; since the
MOL and ROAR data are clustered around the park road, the
model may be relying on variation in each of the environmental
variables in that area. Land cover is essential for caribou habitat
since caribou generally prefer open tundra and are not often
found lingering in dense boreal forest areas.

Each dataset was assigned a final STAAq ranking, which is
the average of the four component rankings. The highest-ranking
is 1; this indicates the dataset that is the fittest for use. The
ROAR program data was ranked 1, the Map of Life data came
in second in this test, and the radio collar data was third
(Table 5). This shows that volunteer collected data may be more
fit than authoritative datasets when fitness for use is considered
depending on the specific use case.

DISCUSSION

The STAAq assessment was tested to characterize data
fitness for use in citizen science data. Citizen science data
are typically not looked at for external data fitness but
rather an internal assessment of data quality or accuracy.
The STAAq assessment shows data fitness for a specific
application and provides a third-party scientist or researcher
the ability to assess data fitness for their particular needs.
This type of assessment uses fitness indicators instead
of metadata like other assessments such as Pôças et al.
(2014). Citizen science data often have incomplete or
missing metadata.

The STAAq assessment is relevant to evaluating data in the
context of intended use. It assesses these data’s usability for that
specific purpose by comparing these data to data from other
datasets. We tested the assessment in a case study examining
which of three datasets would be most fit to use in monitoring
or caribou distribution in Denali National Park and Preserve.
The assessment’s initial step is to clarify the desired data quality
elements for the particular use case. This, in itself, is a valuable
exercise. The assessment proved flexible and adaptable yet
straightforward to implement. We were able to quantify how
each dataset performed in the assessment in the same way,
even though the datasets were collected differently, covered
different spatial and temporal extents, and had different spatial
and temporal resolutions.

For this case study, we expected the NPS radio collar data
to outperform the volunteer datasets, not because these data
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FIGURE 10 | SDM made with caribou data. (A) The distribution of the MOL collected caribou data. (B) The ROAR data. (C) The NPS radio collar collected data.
Areas of warmer colors have a higher probability of caribou presence.

are authoritative, but because the data covers a greater spatial
and temporal extent. However, these data did not meet other
desired data quality elements. We also thought the spatial
bias of the MOL and ROAR data being collected near the
park road might hinder its performance in the Application
component. In Denali, this assessment shows that volunteer
collected observation data was more fit for use than radio collar
data for ecological modeling. This outcome of the assessment
shows us that volunteer collected data from both the ROAR
program and MOL is a viable and usable data source for caribou
monitoring. The next step for biologists in Denali is to use
the STAAq assessment to compare data for other species they
monitor, such as bears, wolves, moose, and Dall sheep. It is also
possible to combine the MOL and ROAR data and see how a
hybrid dataset performs compared to the other datasets.

Employing and testing this assessment did pose some
challenges and revealed some improvements and refinements
that could be made. For the Spatial component, elements may be
added. For example, an element related to the clustering of data
in a given area, would be useful if the research question focused
on a smaller area or multiple smaller area in a given region.

TABLE 4 | SDM results.

Dataset AUC Variables which contributed
the most

Variables which contributed
least

MOL 0.961 Elevation and land cover Summer temperature

ROAR 0.979 Elevation and fall precipitation Spring precipitation

NPS 0.804 Winter and fall precipitation Winter temperature and slope

TABLE 5 | Overall rankings.

Dataset (q) S (Spatial) T (Temporal) A1 (Aptness) A2 (Application) Rank

MOL 2 2 1 2 2

ROAR 1 2 2 1 1

NPS 1 2 3 3 3

The Aptness component is the only component that requires
other datasets for comparison, and it only performs a binary
assessment – whether data for a particular attribute is present or
not. It would be interesting to expand this assessment to be able to
test the magnitude of the attributes. Also, it would be interesting
to use the aptness components for vector data in addition to raster
data. For this test of the STAAq assessment we choose to use
SDMs for the Application component. Other types of models can
be used in this component. We recognize the criticism of the use
of AUC to evaluate SDMs (Lobo et al., 2008). The use of AUC in
this test was to to compare models of the same species (similar to
El-Gabbas and Dormann, 2018).

This fitness for use assessment is relevant for volunteer
collected data and can be used with many other types of data
and models. The elements and components of the assessment
can be modified or weighted to fit the user’s needs. The
STAAq assessment results can be included within the metadata
for each dataset and provide an example of what these data
are fit for. A vital aspect of this assessment is that it can
be used when an authoritative dataset is unavailable or only
one dataset exists. It can be used to partially perform a data
fitness assessment.

Future directions for researching data fitness for use in
citizen science include refining the STAAq assessment process,
comparing this assessment technique to other data quality
evaluation methods, and applying it to different types of
citizen science programs. The impetus of this assessment was
to determine data fitness for data collected in a contributory
style citizen science program through a mobile application.
The STAAq assessment should be further adapted and refined
to possibly be used to assess data quality in other types of
citizen science programs, such as collaborative programs and
programs that may include local and indigenous knowledge
with their data. The assessment could be used to assess
the potential for a citizen science dataset to be combined
with a conventionally collected dataset and determine the
fitness for the hybridized dataset. As noted earlier in this
article, hybrid datasets can fill in gaps and create a more
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comprehensive and complete dataset (Batty et al., 2010; Connors
et al., 2012; Parker et al., 2012; Abdulkarim et al., 2014; Bruce
et al., 2014; Upton et al., 2015). The assessment should be tested
with standalone datasets to determine how the assessment can
evaluate fitness for use when there are no conventionally collected
datasets for comparison. Further development of this assessment
could include automatization, web interface components, and
possibly a simplified GUI (Graphical User Interface) to allow
researchers to examine data fitness easily.

CONCLUSION

Mobile technology creates opportunities for citizen science
programs to collect more ecological data covering more temporal
and spatial extents (Jepson and Ladle, 2015). These data can
be vital for ecological monitoring; however, without adequate
data quality assessments, these data may go unused by scientists
(Coleman et al., 2009; Boulos et al., 2011; Dickinson et al., 2012;
Hart et al., 2012; Roy et al., 2012; Devisch and Veestraeten, 2013;
Starr et al., 2014).

Various data quality assessments have been presented in
the citizen science literature; however, these mainly focus on
internal data quality and do not allow third-party scientists
to assess external data fitness. An easy-to-implement data
fitness for use assessment may encourage more scientists and
researchers to utilize these ever-growing volunteer collected
datasets for their own research and monitoring purposes
(Wentz and Shimizu, 2018). This article presented and tested
a promising method for assessing citizen science data based
on its fitness for a particular purpose. This assessment stresses
that not all data are created equal, and different datasets may
be appropriate (or deemed adequate) for various purposes.

Getting the scientific community to trust citizen science data is
a fundamental challenge (Burgess et al., 2017). By developing
easy-to-implement external data quality methods such as this
data fitness for use assessment, citizen science data will become
more accepted by the scientific community and more widely used
for ecological monitoring. Data fitness assessments, like STAAq,
can help make decisions on using different datasets for different
models and analyses.
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